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1 Introduction

The focus of my research is to facilitate the development of software capable of auto-
matically cataloging Electroencephalogram (EEGs). The ultimate goal is the creation
of an open search-by-signal database of EEG records. A database is primarily a refer-
ential tool intended to function when relationships are applied to the data, or in the
case of EEGs classes of assorted feature sequences, that enable quick reference between
stored content. To achieve this end it is fundamental to understand the development
of relevant primitives or features derived from clinical domain knowledge and existing
signal analysis techniques. The methods used to establish robust universal features will
inform the classification method used to query the database records. With well chosen
features naturally creating a hierarchy for storage and search, novel patterns of EEGs
should emerge that improve the speed with which diagnosis can occur while providing
new metrics to evaluate previously undefined signals against.

A large amount of work related to feature manipulation resides in literature pertaining
to speech processing which serves to inform this paper. Equivalent developmental steps
once used to narrow the knowledge deficit in speech guide the way for progress in the
realm of EEGs. The full process of collecting EEG features, evaluating features, and de-
ploying and training appropriate classifiers is taken directly from the speech community.
While not perfect, it boosts the rate at which the knowledge gap between supervised
and unsupervised techniques can be narrowed. The results of this research will fill in
fundamental knowledge gaps about how the brain works as a system.

This document considers major work in the realms of feature specific domain knowledge,
feature manipulation, and classifier development to present critical understanding of
the EEG signal processing pipeline. Research highlighting the importance of melding
domain knowledge with advanced analytical techniques, brute forced feature components
designed to mitigate the curse of dimensionality, and assessments of the latest in classifier
development will be discussed at length. As insightful as the presented works are, they
are not exhaustive, but instead serve to highlight fundamental developments in the areas
of interest related to my PhD research.

2 Mining Event-Related Brain Dynamics

A main component of understanding electroencephalograms is the ability to correctly
map a response to a stimulus. In numerous studies, subjects are directed to perform ac-
tions or triggered into specific responses to allow for closed loop testing easily duplicated
across subjects. This ranges from responses to real and imagined motion, event-related
triggers such as sounds or visual cues, physical external stimulus of tactile stimulation,
or altered states of mind through the use of drugs. Each approach provides insight into
the functionality of the brain, but the complexity of correct interpretation varies greatly
amongst each approach. The work of Scott Makeig et al in “Mining Event-Related Brain
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Dynamics” examines a novel way to address categorizing responses from event-related
potentials (ERPs).

Event-related potentials (ERPs) are responses of the brain triggered by external visual
or auditory stimuli. A common and somewhat novel use of this response is seen in P300
spellers. A P300 speller operates by tracking a latent 250 to 500ms response over the
parietal lobe through the oddball paradigm. Subjects are asked to search out the letters
for a specific word and when that letter is flashed before them, their brain responds to
‘finding’ the letter by producing a spike in their parietal lobe. [8]

This sequence of events allows for researchers to link changes in the subject’s brain waves
together. The stimulus provides a common index in time for each subject’s response
because the delay time is precise across trials. The work in Makeig’s paper goes beyond
an analysis of the single channel response of P300 in an effort to discern the changes
in the subject’s entire brain wave state given the ERP. The aim is to develop a better
methodology for mapping and modeling the state of a brain in response to an ERP. A
lack of congruence between the two dominant analysis strategies prevents a full dynamic
model of the brain’s response to the ERP. The two approaches used (1) average the time
responses to specific trials to build a class response or (2) average the full frequency
response of the subject over the duration of the ERP. By combining the ERPs and
the frequency based approach, event-related spectral perturbation (ERSP), their work
produces a state-space response map.

2.1 Feature Fundamentals

2.1.1 Event Related Potentials — ERPs

Figure 1: Example of ERP recording from an image recognition trial. [8]

Notice the P300 response in green spike near 162ms. The coloring indicates brain region
clustering via the Quality Threshold clustering algorithm.

6



ERPs are a response to sensory stimulus, shown in Figure 1, where their expression
can be seen as both bottom-up and top-down. Early studies believed in the bottom-up
theory where the peak was the manifestation of activity deep in the cortex that had no
further impact on the brain. Changes outside the evoked peaks were considered nothing
more than random background noise and discarded in the analysis. The original bottom-
up premise relied on the brain being in a static state waiting to be perturbed by the
stimulus. In truth, the base state of the brain is very active and the interplay of this
activity is what triggers the ERPs, but can obscure ERPs because of signal mixing at
the site of the electrodes.

In contrast, a model that combines bottom-up with top-down for neural activation can
capture the true impact of a stimulus response. This is because the temporal proximity of
cortical activity can contribute to multiple aspects of the overall response, usually beyond
the main ERP seen. A top-down view takes into account that the visible response layer
is impacting and impacted by other temporal events. Previous ERP studies average the
response over numerous trials, which effectively eliminates dynamic information pre- and
post-stimulation which hides such top-down features.

The problem in focusing on just the peak responses, in terms of their delay and location
after sensory stimulus, ignores dynamic information before, during and after the ERP.
Continued application of this approach reduced ERPs to nothing more than timing
markers, when larger factors were in play to produce them and occurring because of
them. While useful in the application of novel spellers, there true power was being
subjugated by uninformed physiological understanding.

2.1.2 Event Relates Spectral Perturbations — ERSP

The ERSP captures the dynamic environment of the brain as a temporal power spectrum
map in response to sensory stimulus. Where the ERP captures a single event, the ERSP
represents the frequency spectrum at each electrode highlighting the mixing of cortical
sources. Changes in brain activity are captured to show the propagation of waveforms
throughout the brain over the duration of the ERP. This feature evolved from event-
related desynchronization, ERD, which was used to describe a shift in cortical arousal
via spatial and temporal synced rhythms being replaced by faster spatially differentiated
rhythms. These events are noticeable when subjects shift from eyes closed to eyes opened,
as the alpha-band sees a decrease over the occipital lobe. From an ERP view, this would
appear as more background noise not related to stimulus response.

Providing the frequency content at a given electrode does not intuitively detail a re-
sponse to the sensory stimulus, but places the response in the context of the brain state.
Difficulty arises in understanding these maps to determine where a source is located
given that the shifting of frequencies is unclear without a reference point for the sub-
ject. It shows how the frequency activity is shifting over time, providing insight for the
top-down view and capturing the dynamic environment ignored by the ERPs.
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Figure 2: Combination of ERP, ERSP, and ITC results. [5]

This data comes from Makeig’s paper that developed ERSP. The ERP is plotted in the
middle.

Makeig et al introduced this feature in an earlier work to compensate for the narrow-
banded ERD. The goal was to measure the relative changes across the brain being
induced by the stimulus and other latent features. The resultant data is three dimen-
sional providing time versus frequency with intensity mapped in the third dimension as
the log of the EEG amplitude seen in Figure 2.

2.1.3 Inter-Trial Coherence — ITC

Originally called the phase-locking factor , ITC is a two dimensional image, phase vs.
latency, of how well the EEG signals phase lock to the time-locking events. Changes
in the phase will not be visible through the ERSP because it only captures magnitude.
However, it is known that changes in phase can impact the ERP because the it is sensitive
to the polarity of the EEG. Even a subtle adjustment in phase, if occurring across a large
enough frequency band can trigger additional spikes or cancel out previously anticipated
spikes. As the spatial mixing occurring at each electrode prevents a true understanding
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Figure 3: Response to visual stimulus across ERP, ITC, and phase.[5]

Two averaged response are plotted, one is high-alpha (brown) and the other is low-alpha
(blue). The phase trials are taken from the subject’s responses used to make the average
ERP and ITC plots.

of how the waveforms are contributing to the recorded signal.

To resolve how the waveform are mixing, constructively, destructively or not all, calcu-
lating the phase at each electrode provides insight into the direct of the changes in the
frequency amplitude shown in the ERSP. In turn this leads to understanding how the
ERPs are being produced in terms of identifying which frequencies are responsible of
the change and where they originated from in the brain. With all three measures being
recorded prior to and after the targeted ERP, the full picture of the dynamic brain state
can be understood in the context of the stimulus.

Figure 3 presents a response to the subject’s left visual field. In both cases a similar
pattern emerges where sigmoidal striations appear in the phase-sorted trials windows.
The stronger alpha wave, at 10.25Hz, response produces a stronger ERP and ITC as the
majority of the phase change is negative. The lower alpha response produces a smaller
change corresponding with the weaker phase change associated with its subjects. Each

9



of the > 1200 trials was averaged to make the modeled ERP and ITC waves, but the
details from the phase plots illustrate how the change is being generated.

2.2 Feature Selection

The information in the time, ERPs, and the information in frequency, ERSP, maps needs
to be decomposed to find the distinct components that compose the signals. By using
ICA to act as a spatial filter they are able to reduce the 69 scalp electrodes down to 20
maximally independent components. An additional two channels are added to address
artifacts, from eye artifacts via a bipolar diagonal electrooculogram (EOG), and a ground
on the right mastoid for general muscle contractions. The 20 maximally independent
components is a higher threshold across all the data, because they need to resolve each
component back to a linear independent set of the electrodes. If a combination of
the electrodes returned as a component, with their associated weights, created a linear
dependency within the 20 it would be removed.

From the resultant 20, or less, components found for each response a projection of the
single dipole or bilaterally symmetric dipole pair can be plotted with respect to electrode
probes. The chosen electrodes’ data is then turned into an ERP, ERSP, and ITC plot to
provide the full projection of the stimulus response. These 20 components are actually
20 representations of unique responses from sensory stimulus.

2.2.1 Independent Component Analysis — ICA

ICA allows for the multichannel data to be decomposed via its distinctiveness by finding
all the non-Gaussian signals in the data. The behavior of channels of interest is assumed
to be statistically independent and as such it should appear as distinct from the common
’idle’ state of the brain. It relies on eigenvalue decomposition to whiten the data of
interest as it iteratively searches for the most distinct components from the average of
the signals present. Results from the algorithm promise no guarantee of their ordering
nor importance so there is still some liability on the user to interpret the resultant
components.

These resultant components come in the form of a matrix W that models the relationship
between the input vector x, and an offset vector w. These are used to transform x into a
statistically independent vector u. This vector u represents a statistically independent
set of the N features presented in x = [x1...xN ].

u = Wx + w.

where

u = [u1...uN ]T .

x = [x1...xN ]T .

(2.1)
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ICA attempts to ensure that u has minimal mutual information between each element.
This is exemplified in 2.2, where the summation of all the elements of u must equal
the probability density function of the entire vector. If elements in u contained mutual
information the product would exceed the vector’s probability from the redundant com-
ponents not contributing to the growth of the distribution, see 2.3. The function fu(q)
represents the probability density function of the variable q and the function Fu(q) is
the cumulative density function of variable q.

fu(u) =

N∏
i=1

fui(ui). (2.2)

ICA: I(ui, uj) = 0,∀ij.
PCA: 〈uiuj〉 = 0,∀ij.

(2.3)

Operating under an assumption that the components sought exhibit the same probability
density function, the generic form of [2.1] can be updated to find the maximum entropy
H(y), where y = Fu(u) is a non-linearly transformed vector. An equation for the
stochastic gradient ascent of both W and w is shown in [2.4] based upon the entropy
equation.

∆W ∝ [WT ]−1 + ŷxT ,∆w ∝ ŷ. (2.4)

The result turns the elements of ŷ into proportional ratios between the probability
density function of the data and its entropy in [2.5]. Relaxation of [2.4,2.3] allows the
ICA solution to reach a stable point to find the resultant W and w in solving [2.1].

ŷi =
∂

∂yi

∂yi
∂ui

but [y = Fu(u)] so =
∂fu(ui)

∂Fu(ui)
. (2.5)

The complications of breaking down biologic data when the underlying triggers are
masked, requires one to find those triggers that are most independent and/or conversely
most dependent on each other. This is especially true when resolving the ERPs of a
subject across all the recorded channels. Finding the most temporal distinct patterns
enables effective mappings of how the various ERPs are generated and propagate through
the brain scaling as needed to the number of channels present. As ICA is a blind
separator it is also able to separate contributions from non-desired sources, eye blinks
and muscle artifacts, as they would be physiologically decoupled from other activity in
the brain. This is why ERPs are important because they enable data related to the
targeted class, in our case the ERP response, to be focused in a supervised manner.
Without knowing what is already present in the data, it would be difficult to discern
what components ICA returned to classify.

11



Caution must be advised because ICA does not provide any assurance that the found
principal components are the best principal components. The decomposition finds only
a suitable minimum for what best represents the presented data given the specified
optimization parameter. The resultant components are not ordered by strength, in
terms of contribution to the original signal, nor is any indication given as to how much
overlap there is between components. Ideally, the results are all decoupled from each
other, but this relies on the size and quality of the observations to cover the full space
of the class. The quality of data on hand and the variation of ICA used will greatly
impact the resultant mapping. This is not to say that the method won’t continue to
work, but the results may not always produce the ideal mapping of electrodes to stimulus
response.

ICA’s indifference to outside information makes it ideal in this application where ex-
ternal data, scalp maps or head geometry, is not available. This is in contrast to to
Principal Component Analysis (PCA) that requires additional knowledge to be able to
separate the data. This requirement comes from needing to scale each set of variables
in an observation to properly map out the observation in a nth order space, where n is
the number of variables in the observation. This a priori knowledge would be hugely
beneficial in the context of this work, but the degrees of freedom are too large to make
it feasible to attain. PCA returns components in order of their variance which makes
the first component the strongest contributor and each successive component less im-
pactful.

In this application, the algorithm is working as a spatial filter to discern which channels
are the most distinct at capturing the ERPs. There initial recording device consists of
71 channels from which they are able to resolve 20 maximally independent components
using runica - an automated form of ICA built out of the extended infomax ICA algo-
rithm developed by the author.[7] These components give rise to both single pole source
projections and bilateral symmetric dipole sources. The resultant sources are mapped
back to the intersection locations in the brain, but suffer from variance in the place-
ment of the probes on the subjects’ heads. Various sensor stimuli indicate location maps
which further support the effectives of the approach given the final mappings align with
commonly seen types of EEG activity for such a stimulus response.

2.3 Results — Event-Related Brain Dynamic State Space

Compiling the results of processing all the ERPs from the study they are able to build
a state-space model, [5], related to EEG frequency, EEG Power, and ITC. The states
modeled in Figure 5 are event-related desynchronization (ERD), event-related synchro-
nization (ERS), ERP, partial phase-resetting (PPR), and a grouping label “?” which
represents a feature of undefined event-related data. This space exists where signals
would undergo phase-locking while decreasing in power, however it lacks an official la-
bel. It also enables ERPs to be mapped to brain locations enhancing the results of
studies working with repetitive sensory stimulus beyond a single probe location. The
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Figure 4: Combine ERP, ERSP, and ITC mapping. [4]

tightening of the labeling standards can lead to new ways to separate or combine al-
ready existing data results. The largest contribution can be seen from taking what was
assumed to be a 1D ERP image and turning it into a 2D image that can be used to map
a location in 3D dimensions when compared across channels.

2.4 Discussion — A Biological Feature Basis

Even with the relative ease that ERPs can be tracked in EEGs, difficulty remains in
correctly determining their source as the ICA results can only map back to the electrodes
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location. Maintaining uniform electrode placement across subjects and mitigating errors
from skull structures handicaps the true accuracy of the source detection. As the brain
heat maps of Figure 4 show, the location is generalized on the scalp and then pinpointed
with assumed electrode placement. This provides a more complete contextual answer
to the question of ‘how does the brain response to triggered stimulus’ and what label is
that response given. The dynamic state space provides a 4-dimensional vector resolved
directly from linearly independent components providing classification that is robust in
regards to subject-specific variability and subject variability.

Given the success of the author in finding upwards of 20 unique components, the ap-
proach can be deployed on presently existing recordings of similar tests to unearth their
own results. As this work was presented as an opinion piece, it seems the authors did
not fully work through how the physically mapped location correlates with the type of
event-related dynamic experienced. They only present the method on a few test cases
from their data set, but even in that set of data they note that sorting by different
parameters can produce different ERP image representations. This speaks to the com-
plexity of EEGs in that even when the data is consistent, there is still concern that
not enough variables have been taking into account. Chiefly among them would be the
number of electrodes used in the data set, as 69 seems to be above average for many
ERP studies.

Even after noting there are limitations, the author posits that the combined use of time
and frequency to model evoked and induced event-related EEG signals enable improved

Figure 5: State space mapping results. [4]

The dimensions are the five major frequency bands [alpha, beta, delta, gamma, theta],
the level ratio of ITC, and the strength of ERSP.
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understanding of the brain’s pathophysiology in a non-invasive manner. The precision of
the surmised locations is not assured, but the methods provided locations that matched
with previously known areas of interest. If specific regions are intended to react to
specific stimulus then correlations between the ITC, ERSP, and frequency results may
lead to a more substantial model of event related dynamics in time. However, not enough
data is presented to evaluate the merit of this claim, but it does appear plausible given
the direction of the work.

3 Feature Selection Based on Mutual Information: Criteria of Max-
Dependency, Max-Relevance, and Min-Redundancy

Feature selection plays a critical role in accurate modeling the observed biological states
which serves to minimize classification error within and across data sets. In the previous
work the results matched across multiple subjects’ EEG waveform activity, suggesting
that their novel approach was able to replicate results from different users using the
same methodology. This is one way to confirm that present feature set is applicable to
the task at hand, however this method of verification is not always available.

The ability to classify data correctly beyond the scope of what is presently understood
requires insight into the nature of the data itself. Domain knowledge may help, as it did
in the earlier paper, yet they still relied on the effectiveness of the first 20 components
returned by their ICA algorithm. The algorithm assures that the returned features will
be good, but does not guarantee they are the best 20 features. In order to truly find
the best features in a given set, the features that minimize the classification error of a
given class c are the goal.

The problem is that to optimize against that parameter, minimum classification error,
the entire process of feature selection followed by classification must take place. Given
that the observation space, RM with M features, of data of interest can be quite large,
this iterative method takes too much time to be productive. In addition, each step
introduces more degrees of freedom that must be accounted for when determining how
to optimize the features which increases the complexity of the feature search.

To find a subspace containing m features that optimally models a given class, c, mini-
mum classification error can be replaced with the maximal statistical dependency of the
target class. This is one approach taken in this paper, but there are many approaches
to searching an observations space such as the aforementioned maximal dependency,
maximal relevance, or minimum redundancy. What one method does well, the others
will struggle with so understanding the nature of the data and the classification goal can
elevate one over the rest.

Maximal dependency exposes features that are most dependent on the data, maximal
relevance highlights only features which share large amounts of mutual information with
the target class, and minimum redundancy finds features that have the smallest mutual
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information with other features. This makes dependency match well with models in
the initial data set, but it leads to bias given that features will be dependent upon each
other. If one misses, many will likely miss as well. Relevance on high mutual information
with the target class has the same pitfall as the relationship between features is never
analyzed. Redundancy doesn’t take the target class into account so it is easily undone
by noisy data that misrepresents the true behavior of the targeted class.

In Peng et al.’s work, they introduce the minimal-redundancy-maximal-relevance (mRMR)
criterion that is applicable to continuous and discrete data sets show in Figure 6. The
goal is to find promising features by balancing measures of relevance and redundancy
in an effort to make robust, but comprehensive feature sets. This new selection method
is compared against Max Relevance and Max Dependency feature selection methods to
show it exceeds present classification levels. They are all passed through three classifiers
(naive Bayes, support vector machine (SVM), and linear discriminate analysis) working
over four sets of data (handwritten digits, arrhythmia, NCI cancer cell lines, and lym-
phoma tissues) to validate the results across continuous and discrete data through leave
one out cross validation and ten-fold cross validation.

3.1 Feature Selection

3.1.1 Mutual Information

Mutual information is a metric to detail the reduction in uncertainty about an unknown
random condition given knowledge about a related, but also random condition. This is
expressed in (3.1) with continuous random probabilities of two random variables x and
y. When attempting to match features of Sm, a feature set S with m features, to a
given class c a high value would be best served as it indicates a large gain in knowledge
on the state of c, useful for classification purposes. Conversely, if two random variables
have low mutual information they are relatively independent of each other. This linear
independence is used in the context of the first work to find features that are independent
of their surroundings and thus more likely to be linked to a stimulus. Depending on the
two random variables being compared, a given class c to a feature from a set Sm or
two random features from Sm, the algorithm can attempt to remove probabilistically
common elements or detect probabilistically unique components.

I(x; y) =

∫∫
p(x, y) log

p(x, y)

p(x)p(y)
dx dy. (3.1)

By itself mutual information scores do not indicate how successful a given classification
scheme will be once implemented. Rather, mutual information scores indicate a decrease
in the uncertainty of one random variable given knowledge about another random vari-
able. To understand the limits imposed by the features Fano’s Inequality (3.2) can be
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used to show the lower bound on the error of a given feature set. Fano’s Inequality pro-
vides the ideal limit of error, pe, given the probabilities of a system of random variables.
Originally conceived to address the average information lost in a noisy communication
channel due to error in categorization by the receiver. If the set of vectors to be commu-
nicate are more distinct, more independent of each other, then more noise will be needed
to trigger information loss. Conversely, if the vectors are very similar, less independent,
minimal noise will be able to obscure the information. Of course, achieving this bound
target error rate is up to the classifier which is discussed in the third paper.

pe ≥
H(C,F )− 1

logN
=
H(C)− I(C;F )− 1

logN
(3.2)

Figure 6: The four data sources with their testing method. [3]

Notice the discrete and continuous time data sets are tested using different methods,
10-fold CV and LOOCV.
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The resultant pe bounds the lower end of the probability of error in relation to: the N
number of classes, F the feature set under test, C as the class label and H the resultant
entropy. From this approach an understanding of the potential utility of the features
can be surmised during feature selection. Given enough data, accurate estimates of
the probability density functions of the features can be generated. Ideally the initial
data captures all possible variations of the features to be classified, but in practice this
is seldom the case. There are problems with large data sets in that (1) they become
computational intensive and (2) they can become strongly biased towards the training
set.

3.1.2 Maximal Dependency

Max-Dependency (3.4) selects a feature set S with m features that possess the highest
dependency on the class c, the target of the search. Dependence (3.3) is best expressed as
two random variables, X and Y , producing a conditional probability or joint probability
that exceeds the individual probability of a given variable. The protocol to search for
these features is to evaluate the mutual information, seen in (3.1) where x and y are
two random variables, of all the features against the target class and select the feature
with the highest probability density. Typically this involves computing the probabilistic
density over the space of the original data and then growing until all m features have
been found.

P (X | Y ) > P (X).

P (X&Y ) > P (X).
(3.3)

max D(S, c), D = I({xi, i = 1, ...,m}; c). (3.4)

This sequential search (3.5), after finding the first feature, seeks to find features that
produce the largest increase in mutual information given the present conditions of the
set S. Here the search equation for the mth feature is shown in terms of the previous
m− 1 features. The initial equation is taken from 3.1 and then expanded to account for
the addition of the mth feature through xm. Te eventual equation to evaluate the newest
feature is dependent on an integral that covers each of the previous features resulting in
an m+ 1 ordered integral since the class c must also be integrated.

I(Sm; c) =

∫∫
p(Sm, c) log

r(Sm, c)

p(Sm)p(c)
dSm dc.

=

∫∫
p(Sm−1, xm, c) log

p(Sm−1, xm, c)

p(Sm−1, xm)p(c)
dSm−1 dx dc.

=

∫
...

∫
p(x1, ..., xm, c) log

p(x1, ..., xm, c)

p(x1, ..., xm)p(c)
dx1...dxmdc.

(3.5)
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This does not take into account the raw increase in formation of each feature as the
search must adapt for the features already selected, thus masking redundancy of the
selected features. This is seen in the difficulty computing multivariate probabilities for
p(x1, . . . , xm) and p(x1, . . . , xm, c) because they are reliant on having enough samples to
find the true densities of each. If features are related to each other it will be difficult
to know how accurate the resultant probability is in terms of modeling the data. The
likelihoods of each case, xn, must be found from within the data itself, but this does
not guarantee an accurate model of the data or the class. If all of the examples of the
target c are not used to build the target, then it will be deficient in modeling the target
conditions.

Of course, results can still be achieved because the model will give the best approximation
of the class or the features themselves. Given the complexity of the features and classes
in multivariate data limited data sets are a common problem and they often produce
deficient covariance matrices as there are not enough observations to decouple all the
features. A more direct solution could be achieved by computing the inverse of the
covariance matrix to find mutual information, but the problem is ill-posed due to the a
proper covariance matrix.

3.1.3 Maximal Relevance

max D(S, c), D =
1

|S|
∑
xi∈S

I(xi; c). (3.6)

An alternative to the Max-Dependency criterion is an approach based on maximum rele-
vance (Max-Relevance) where each feature is scored according to its mutual information
over all the data satisfying (3.6). In this manner each feature is compared against the
class target c to find each mutual information value. This provides a mapping of how well
each feature functions against all the others. Not taken into account are any dependencies
or redundancies amongst each feature. Features possessing minimal redundancy (Min-
Redundancy) can be found through computing the mutual information amongst all fea-
tures and scaling it proportionality against the magnitude of the full feature set satisfying
(3.7). This redundancy score can be used to mitigate the strength of Max-Dependency
scores producing the minimal-redundancy-maximal-relevance (mRMR).

min R(S), R =
1

|S|2
∑

xi,xj∈S
I(xi;xj). (3.7)

3.1.4 Minimal-Redundancy-Maximal-Relevance

Individually Min-Redundancy and Max-Relevance are robust feature characteristics with
short-comings. Min-Redundancy seeks to find the ‘rarest’ of features, but makes no
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claim as to how applicable they are to the data as a whole. Max-Relevance provides
insight into the strongest features, but risks bloating the feature set and biasing it
against the most common feature-class combinations. The criterion developed in (3.8)
that combines these two schemes “minimal-redundancy-maximal-relevance” (mRMR)
pits the two against each other to find balanced features.

max Φ(D,R),Φ = D −R. (3.8)

By taking the difference between the two, features with high relevance are penalized for
their redundancy. Removing repeated features with high relevance makes the feature
set more robust by diminishing any bias associated with repeated features, it helps
ensure feature balance. Building a set of features that cover all conditions in the data
is important to modeling the class since most data sets contain too few observations
instead of too many. This means something is always left uncharacterized by the feature
set and often biased against when only using of the combined criteria. Min-Redundancy
does not take into account how strongly the features match the class, it measures how
spread the features are amongst each other. Max-Relevance ignores repetitive features
that leads to a bias of feature in capturing the range of class conditions.

max
xj∈X−Sm−1

[
I(xj ; c)−

1

m− 1

∑
xi∈Sm−1

I(xj ;xi)
]
. (3.9)

The ensuing section reviews classifiers and feature wrappers, so it is important to address
how a forward-wrapper would apply to mRMR (3.9). The initial feature is chosen when
m = 1 which can be resolved directly through (3.8). Incrementally adding features
requires operating over the feature set X − Sm−1, where X is the full set and Sm−1
are all the prior selected features. The max mutual information score returned implies
which of the unselected features is to be added next where the redundancy, shown as the
summation, covers only the present feature set. As such, new features are penalized for
being redundant with any and all features already chosen. This should effectively drive
the resultant mRMR to a negative value as features are chosen; effectively a natural
pruning mechanism assuming all features aren’t independent.

3.2 Classifiers and Wrappers

3.2.1 Naive Bayes

Naive Bayes is a child of a classifier based upon Bayes Rule, the probability of an event
given conditions potentially related to said event. The probability of Y given a random
variable feature vector Xn with n attributes show in equation 3.10. If there are multiple
conditions, X1, X2, X3, to be met for the probability they evaluate as well by making
more dependencies with P (X = x1,X = x2,X = x3 | Y = yi) in place of given
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probability of P (X | Y ). This operates assuming that the attributes may overlap and
this will impact the probability of others.

P (Y = yi |X = xk) =
P (X = xk | Y = yi)P (Y = yi)∑
j P (X = xk | Y = yj)P (Y = yj)

. (3.10)

Naive Bayes assumes that all of the attributes are conditionally independent to lessen the
amount of data needed to generate models of the conditional probabilities. If attempts
are made with only a Bayes Rule classifier, 2(2n− 1) observations are required to model
the probabilities accurately. Operating under the condition of conditional independence,
where each attribute is proven to be independent of all others, only 2n observations are
required to build probability models. The resultant equation ()3.11 provides a more
direct method of evaluating the probability of a given class, Y , given a set of features,
Xn.

P (Y = yk | X1...Xn) =
P (Y = yk)

∏
i p(Xi | Y = yk)∑

j P (Y = yj)
∏

i P (Xi | Y = yi)
. (3.11)

3.2.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a supervised learning approach that builds Gaus-
sian models, with means µ and variances Σ, of the labeled classes to use the distances
between classes in the n dimensional space as a feature discriminator. The operational
equation (3.12) takes a vector X = x1...xn of data and maps it into a transformed space
Y . This transformed space makes it easier to linearly separate the classes contained in
the data by shifting them into a one dimensional space from whatever dimension, n, the
class features occupy.

Y = wTX. (3.12)

Fisher’s LDA solution is the general basis of this approach and finds the best w trans-
form through equation (3.13) where SB represents the between class scatter and SW
represents the within class scatter. Scatter is equivalent to variance and defined in
equation (3.14). Using the modeled class statistics, most commonly implemented as
Gaussian distributions, the optimal separation matrix w∗ can be determined for the
transformation.

w∗ = argmax
[ wTSBw

wTSWW

]
. (3.13)
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Si =
∑
x∈wi

(x− µi)(x− µi)T .

SW =S1 + S2.

SB =(µ1 − µ2)(µ1 − µ2)T .

(3.14)

To resolve the probabilities various distance measurements are implemented between
the classes taking into account the covariance and mean of each class and often utilizing
prior probabilities if known.The distance determination equation and the extension of
mapping LDA into multiple classes is not the focus of the, but is presented to illustrate
the foundational mechanics of the separation scheme.

3.2.3 Support Vector Machines

Support Vector Machines (SVMs) are an advanced application of LDA as they are able
to optimize the location of a hyperplane in n-dimensional space between two classes.
This hyper-plane enables the classifier to resolve data that is not linearly separable, but
is limited to binary classifications of one versus all. The operational equation (3.15) for
the support vectors follows from LDA. Instead now there is a bias term b to go with
the weights w and the random variable input x. The goal is produce a result past the
thresholds of 1 or -1 which corresponds to two learned classes; SVM is another supervised
algorithm.

f(x) = wTx+ b. (3.15)

If there is prior knowledge of the data, a kernel function can be applied to the data
to aid in separating it with a hyper plane, Φ(x) = k(x). This initial transform occurs
before the SVM cycles through possible hyperplanes to find the two planes, one for each
set of data, that provide the best boundary between the two. The kernel function plays
a large roll in allowing SVM to tackle problems LDA is unable to address, but only with
prior insight into the data.

Optimization of the classifier occurs when the distance between the two hyper-planes
as large as possible. This needs w minimized given distance between the two planes is
represented in equation (3.16) when found between a line equation (3.15) and a point
(0, 0).

22



Distance =
|Ax0 +By0 + c|√

A2 +B2
.

Distance =
|wTx+ b|
||w||

.

Distance =
1

||w||
.

(3.16)

The distance between the two planes is double, 2
||w|| given the surfaces are at 1 and -1.

With these two functions, equation (3.17) a quadratic constrained optimization must be
solved that maps towards the optimal value of w. The norm of w is replaced with the
square of itself to remove the square root function imposed by the norm function, and a
convenience term is added as well.

argminw,b

1

2
||w||2.

yi(w
Txi − b) ≥1 for any i = 1...n.

(3.17)

This optimization is carried out in software so the ensuing steps are not detailed as
they would not provide further insight given the context of this paper. Peng et al do
not specify if a kernel was used which is why there is no further analysis of kernel
applications, plus it drifts from the targeted scope of finding features from within the
data itself. The optimization of classifiers is not the focus of this work.

3.2.4 Wrappers: Backwards & Forwards

To define the feature set through mRMR a two-step process is used in the paper. First
an incremental mRMR selection process is carried out to collect the first n features from
the data via cross-validation. Each of the cross-validation sets are compared against
each other in terms of the error produced during classification, called en. This error
should remain small in mean and variance over a given range of the sets, Ω, wherein
the minimum error can be found. This minimum error set will be used as the assumed
optimum feature set.

Once the feature sets are found, compact subsets of the sets must be built by searching
the set for the best features. With the mRMR approach this carried out naturally by
the process of incrementally adding features to the original set. Other methods, like
Max-Dependency require a wrapper (feature selector with a direct goal of minimizing
the classification error, naive Bayes classifier) to prune the feature set. The fact that
mRMR does not directly optimize the classification error makes it a ‘filter’, like Max-
Relevance. Filters provide the benefit of being less costly to implement than a wrapper
for finding the features.
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The wrappers considered in the paper focus on forward selection and backward selection.
Recall that the mRMR approach is a forward selection that evaluates each additional
feature as it added into the larger set. Forward approaches attempt to build up a
feature set that incrementally adds new features, Sn+1, as long as the new features
produces equivalent or better classification than the current set, Sn. In this manner
additional features are added to make the set cover the largest search space as possible.
In opposing fashion, backward selection attempts to prune redundant features where the
new classification error is no worse than the current value. These methods both work
well, but tend to produce different sets of features. Ideally these should provide one
constant path to the critical feature set, but that is not always the case.

One way to address which of the resultant feature spaces, through the wrapper selection
method, is better is finding the set that proves to be recursively more characteristic (RM-
characteristic). A RM-characteristic set will perform better with a wrapper because the
range over which the classification error, ek, is controlled is larger than the competing
set. This lends to a more stabilized feature set, but this is hard to achieve given it is not
tolerant of overcoming local minimum. It is entirely possible a combination of two or
more additional features could improve the resultant error rate, but with the requirement
that ek+1 < ek if may be hard to add a slightly worse feature to resolve to the stronger
second feature. The paper suggests allowing a tolerance on the score improvement for
each additional feature. If each additional feature keeps ek+1 < ek, then ρ = 0, but if
10% fail the check ρ = 0.9.

3.3 Results — The Strength of the mRMR Metric

With four distinct data sets and three classifiers being fed three unique sets of features
the test platform is robust and illustrates the strengths and weaknesses of each feature
set. The error rate, misclassification of data, is the optimization target and is what all
parameters are evaluated against. As noted in Figure 6, the parameters of each data
set vary in terms of classes present, samples present, and variables per observation. In
every metric:

• time to select features seen in Figure 7,

• error rate with minimal features seen in Figure 8,

• error rate with large feature sets in Figure 11,

• and across all classifiers in Figure 12

the mRMR metric outperforms the other approaches tested. Regardless of the data
being continuous, Figure 9, or discrete, Figure 10, mRMR appears to be the superior
feature selection criteria shown in Figure 12.
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Figure 7: mRMR Classification speed on continuous data. [3]

Figure 8: mRMR versus MaxRel error rates. [3]

Each algorithm is compared using (a) Naive Bayes, (b) Support Vector Machines, and
(c) Linear Discriminate Analysis operating on the Arrhythmia (ARR) data.
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Figure 9: Error rates of the continuous data. [3]

Using only Lymphoma and NCI cancer cell lines data across all classifiers.

Figure 10: mRMR versus MaxRel error rates versus number of features. [3]

The classifiers tested are (a) Naive Bayes, (b) Support Vector Machines, and (c) Linear
Discriminate Analysis operating on the handwritten digits (HDR) data.
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Figure 11: mRMR versus MaxRel error rates versus number of features. [3]

The classifiers tested are (a) Naive Bayes with 10-fold CV on HDR data, (b) Support
Vector Machines with 10-fold CV on ARR data, and (c) Naive Bayes with LOOCV on
NCI data, and (d) Linear Discriminate Analysis with LOOCV on LYM data.

The detailed results of error rates given the forward and backward wrappers fail to
clearly distinguish which approach is optimal. This is not limited to mRMR, but also
impacts Max-Relevance which shows a clear avenue for improvement moving forward.
Even at the level of improvement seen with using mRMR the refinement of the features
still plays a critical role in reducing the classification error. Incorrect implementation
of mRMR is susceptible to being equal to or worse than other schemes as noted that it
achieves a worse error rate than Max-Relevance when applied to the NCI data in the
Forward wrapper using LDA and an equivalent error rate applied to backward wrapper
with SVM on the LYM data.
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3.4 Discussion — A Statistical Basis of Feature Selection

The end result, Figure 12, shows near complete dominance by the mRMR algorithm
with either wrapper when compared against Max-Relevance, both of which are classified
as ‘filter’ feature selectors. In fact the percentage of improvement of mRMR over other
approaches is not consistent with any of the wrappers or classifiers. While it appears
mRMR is superior to the other classifiers and feature selection methods on these four
data sets, the reason why is unclear. There are many instances where additional features
in the mRMR approach begin to increase the error shown in Figures 11-b, 8-b, and 8-c. It
is possible there is a ‘sweet spot’ in terms of the number of features to be found in terms
of the data sets or possibly the mRMR algorithm, but no work is done to determine the
cause of these observations.

When compared with the results of the Max-Dependency feature set in Figure 11, mRMR
performs slightly better across all the classifiers. Error rates of the mRMR approach are
able to keep decreasing potentially because the additional features are specific to certain
target classes, which Max-Relevance and Max-Dependency are unable to capture. How-
ever, not enough information is provided to contextualize how these additional features
are helping the classifier. It is possible that mRMR is better at detecting and including
rare features for poorly modeled features. As the authors provide no insight into the raw
feature sets produced in each method, there is no way to be certain of what is driving
the classification error reduction.

A possibility is that more mRMR features, really more features in general, will lead
to a smaller classification error at the expense of becoming biased toward the training
set. The methods for generating training and test data are ten-fold cross validation and
leave out out cross validation because the original data sets are small covering samples
of 2000-HDR, 420-ARR, 60-NCI, and 96-LYM. Comparing against the feature numbers
show in Figure 11, NCI is given 50 features with only 60 original samples of 9 classes
and LYM approaches zero error with nearly 40 features generated from only 96 samples

Figure 12: Error rates for a given data set, classifier and wrapper. [3]

28



of 9 classes.

With this in mind, the true improvement is how well mRMR does with as few features as
possible. Evaluating the results at only 10 features, which matches the highest number of
distinct classes seen in the data (the HDR has the ten hand-written digits), shows mRMR
is superior in nearly ever classifier-data combination. In this capacity the algorithm
is a marked improvement over the alternatives as comparing min error rate without
the context of required features does not provide insight into application across data
sets.

The end result is a very strong approach to aggregating features for improved classi-
fication regardless of classifier type. The method supplants the two it is based out of
mathematically and in practice. Regardless of the data or the classifier, the mRMR fea-
ture sets performs the best, but there is minimal insight into predicting the performance.
In many cases using the forward or backward wrapper produces unique results when all
other parameters are constant. Future work in understanding any interplay between
the feature sets to pinpoint the reasons for improvement would be beneficial to under-
standing the strength of the subtraction based mRMR in comparison to the author’s
suggested quotient mRMR or even to Max-Relevance and Min-Redundancy.

4 Modeling Electroencephalography Waveforms with Semi-Supervised
Deep Belief Nets: Fast Classification and Anomaly Measurement

Thus far the papers have presented how features are paired with biological knowledge
and how features are found and optimized. In both cases the goal is reduce the dimen-
sionality of the data by applying a subset of knowledge about the data. The previous
work touched upon the impact classifiers have and how they impact the success of a
given feature set. It was seen that good features, mRMR, perform well across classi-
fiers, but that performance is hard to track from one classifier to the next. The work
in “Modeling electroencephalography waveforms with semi-supervised deep belief nets:
fast classification and anomaly measurement” by Wulsin et al focuses primarily on the
application of various classifiers: decision trees (DTs), support vector machines (SVMs),
k-nearest neighbors (KNNs), and deep belief nets (DBNs). By feeding three sets of data
to each classifier they determine how quickly the classifiers can function while validating
their accuracy against the group at large.[1]

This study focuses on the need to diagnosis known classes in real time and presents a list
of the clinically found objective features in Figure 13. A neurologist presented labeled
data, shown in figure 13, of spike and sharp waves, generalized periodic epileptiform
discharge (GPED) and triphasic waves, periodic lateralization epileptiform discharge
(PLEDs), eye blink artifacts and background activity from 11 patients undergoing hy-
pothermia treatment after cardiac arrest. Their objective is to be able to find these
features again in real time as they are all clinically significant. Early detection of such
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clinically significant features can help staff monitor patients in real time for anomalies,
essentially any of the features noted aside from background or eye blink artifacts.

The features for the classifiers come from the annotations recordings by clustering specific
hand-chosen features from Table 1 with a KNN classifier where k = 3. The other two
feature sets are derived from the raw data and a 20 component PCA detailed further
in Section 4.1. The three data sets are fed into the four different classifiers to find
the processing time and accuracy for each classifier-feature combination, similar to the
approach taken in Peng et al. A tool to generate a heap map of feature likelihood
detection is overlaid against the known annotations to see how a real time detection
system would fare against a clinician. In general the DBN classifier performs faster than
its counterparts with similar accuracy, but takes considerable time to properly training
before it can be deployed on data.

Figure 13: Neurologist-specified features of interest. [1]

Spike & Sharp Wave, GPED & Triphasic, and PLED are considered anomalous features
while monitoring a patient.
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Table 1: EEG Hand-Chosen Feature. [1]

Area
Normalized decay

Frequency band power
Line length

Mean energy
Average peak/valley amplitude

Normalized peak number
Peak variation

Root mean square
Wavelet energy
Zero crossings

4.1 Feature Selection

4.1.1 Domain Knowledge: Matching the Waveform

The eleven hand-chosen features in Table 1 were tested individually to ascertain inde-
pendent effectiveness at classification in a KNN classifier of k = 3. Once ranked, the
features were added sequentially from the strongest to the weakest to create 11 group-
ings of potential features. Grouping one had the strongest feature, grouping two had
the two strongest features, and so on until all features were accounted for and then the
classification performance of each grouping was compared using KNN with k = 3. The
performance of these groups improved with each additional feature until the addition
of the zero crossing feature. This final grouping of ten, without zero crossing, was used
as the feature set in the analysis of the annotated data. The ten hand-chosen features
actually represent 16 data features as the Frequency power band is broken into three
segments, 1.5-7 Hz, 8-15 Hz and 16-29 Hz, while the Wavelet energy is split over four
segments, 4-8 Hz, 8-16 Hz, 16-32 Hz, and 32-64 Hz. [1]

4.1.2 Statistical Knowledge: Feature Decomposition

These features, along with the raw data, and a 20 component PCA analysis are used as
the three fundamental feature sets fed to the classifiers. The samples are split further
into ten sub-partitions for cross-validation during classifier training. The raw data,
raw256, contains the 256 samples of each channel-second normalized over 0 to 1. The 20
chosen PCA components are also normalized over 0 to 1, these 20 eigenvectors account
for 92.75% of the variance across all sub-partitions. The hand-chosen feature set, feat16,
extracts 16 features from each sample and normalizes over the range 0 to 1 with the top
and bottom 5% being truncated to 0 or 1.
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4.2 Restricted Boltzmann Machines — An Overview

Restricted Boltzmann Machines, Figure 14, are generative stochastic artificial neural
networks that can be trained in either a supervised or unsupervised fashion. Each node
functions as a boolean representation of the underlying data with the visible layer units
vi as the inputs and the hidden layer units hj as the comparators of the visible layer and
outputs. The interconnections between the layers is a matrix of weights, W = (wi,j),
that can be used to evaluate the state of a given set of node conditions, v, h as seen
in equation (4.1). They deviate from their predecessor, Boltzmann Machines, in that
there are no interconnections within each layer. This forces the hidden layer to interpret
connections across input nodes, which is a model very similar to how the brain itself
organizes information processing.

The conceptual idea of a RBM network is that unique combinations of inputs will trigger
specific outputs. Since the system is binary an initial layer of 2000 visible units, given
the system in Figure 15, can represent 22000 possible inputs. Since the layer cannot
communicate with itself to inhibit or excite within a given layer, the ensuing layer,
the hidden layer must piece together what the activation of the visible layer’s state
represents. The probability is favorable that the data given to the visible layer does
not represent 22000 unique classes so the hidden layer will find that the visible layer is a
finite number of classes which causes there to be redundancy amongst the hidden node
activation patterns. Placing a layer on top of the first repeats the process and if the
second layer is smaller in order than the first, the data will naturally be refined into a
smaller set.

To ensure the visible layer permutes the data fed to it into distinct patterns, each hidden

Figure 14: Layouts of Boltzmann Machine and Restricted Boltzmann Machine.

Notice the RBM lacks the intra-node connections.
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Figure 15: Functional layout and training of a DBN. [2]

This work highlights the progressive steps, and classification accuracy when apply BDNs
to images.

node needs a unique bias , bj , to ensure that some activations with each input. Initially
a random bias is assigned and coupled with unique weights, wi,j , for the links between
visible and hidden layers variations in the data will provide different variations in the
output of the RBM which is acting as an autoencoder in this capacity. In order to recover
data from the hidden state back to the visible state, the visible state needs its own biases,
ai, this is important for allowing classification and reconstruction of the original data,
visible in the unrolling and fine-tuning in Figure 15.

E(v,h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i

∑
j

viwi,jhj . (4.1)

To ascertain what a given hidden and visible state mean for encoding or decoding, their
boolean vectors (v,h) need to be evaluated in terms of their energy configuration with
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equation (4.1). The energy function is sourced from Hopfield nets, but the main concept
is that energy of these states wants to converge to a lower level. This resembles the
second law of thermodynamics, and entropy concepts, where the system works to come
to rest at the lowest energy state possible which puts them at equilibrium making them
stable. By computing the energy of given hidden and visible vectors the direction of
change of the RBM can be understood and if it reaches a minimum then the vectors
correspond to a found state. These binary nodes are represented as sigmoid functions,
equation (4.2), as a summation of their bias and input vectors.

P (hj = 1) = Sigm
(
bj +

∑
i

viWij

)
. (4.2)

Given an input vectors (v,h), the probabilities of all the hidden states can be determined
through (4.3). Raising the energy to e ensures that resultant values are bounded given
the large summation operations on the visible and hidden nodes. This helps converge
on lower energy states when searching for a minimum state as sequential plots of the
energy level raised to e show a substantially small slope for values less than zero, but an
increasingly large slope for values greater than zero. When dealing with thousands of
summations this helps prune out states are that far removed from the target state.

p(v,h) =
1

Z
e−E(v,h). (4.3)

The Z term corresponds to the partition function by summing over all the potential
pairs of visible and hidden nodes. This weights the probability given how likely all the
paths are to produce the given hidden states from the presented visible states. In a sense
it is adjusting the strength of the present data set, shown in (4.4). This value should
not evaluate to zero, which implies that the probability is guaranteed regardless of the
present node states. As the bias values can be negative or positive for each node, and
the linking matrix w values are used the function always evaluates to a positive non-zero
value.

Z =
∑
v,h

e−E(v,h). (4.4)

p(v) =
1

Z

∑
h

e−E(v,h). (4.5)

Given an input for each visible node, the network’s probability for that input vector
can be determined by summing over all the possible hidden vectors with equation (4.5).
If this input vector is substantive of a targeted class, the energy of active nodes can
be lowered and the energy of inactive nodes can be raised to train the layer. This will
alter the partition function as well as low energy paths may be increased if they don’t
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agree with the present vector making it more likely that the present vector, or one very
similar to it triggers an appropriate hidden layer configuration. This condition is how
the system can be trained, via the log probability of the difference between the modeled
data and the real data shown in equation (4.6).

∂ log p(v)

∂wij
= 〈vihj〉data − 〈vihj〉model.

∆wij = ε(〈vihj〉data − 〈vihj〉model).

(4.6)

The error between the model and the data is used to trigger updates to the weights
linking the layers, w. Every component of w is updated, even those not active during
the process of modeling the given input v. This prunes connections between visible
and hidden layers and forces them to find mappings as other connections strengthen
due to repeated use, just like neurons in the brain. Implementation of this algorithm is
automated, but control over the learning rate ε is critical to ensure the process converges.
When learning on the weights, it is necessary to compare a histogram of the weights as
they are updated to ensure the learning rate is roughly 10−3 of the mean weight. As
weight should be initialized from a zero-mean Gaussian distribution, ε is most likely to
be on the order of hundredths.

Equation (4.6) is also applied to update the bias values when the partial derivative is
taken with respect to a or b. As b is related to classification of the data it should
be trained first and a being associated with reconstruction relies on the results of b if
training as specified in Figure 15. Their learning rates can be larger than for the weights,
but there is not a rule of thumb since the system is already operating close to ideal with
assumed proper weights.

Pulling the process together, the given input data v present with an associated output
h from which an overall probability can be determine through (4.3). The resultant
derivative of the log probability of p(v) returns the optimization parameter equation
(4.6). For the data present, the vectors need only be held high to a value of 1 for all
indexes to obtain an unbiased response in (4.7). The probabilities are computed using
the logistic sigmoid function, σ(x) = 1/(1 + e−x) to provide a binary result for the
conditional state of each node.

p(hj = 1 | v) = σ(bj +
∑
i

viwij).

p(vi = 1 | h) = σ(aj +
∑
j

hjwij).
(4.7)

If the partial is taken with respect to a or b instead, then the update rate to the biases can
be computed and implemented in the next iteration of training. The factor ε represents
a learning rate the user can control prior to the algorithm’s activation. The trouble
arises when it comes to finding unbiased samples to be used for the realization of the

35



model. The original solution required Gibbs Sampling to permute a selection of the given
visible layer and use that to seed a process by which a new hidden layer is generated.
This process requires each entry in vector v to be selected iteratively until all have been
updated in accordance with their probability.

To mitigate this time sink, the use of a training vector can be used for the visible layer
from which the states of the hidden units can be generated. This reconstruction hid-
den layer, from the test vector, is used to build the corresponding reconstruction of
the visible layer by use of (4.6) when vi is set to 1. Now the reconstruction estimation
takes the place of the model in (4.6). It is strongly advised to incorporate some itera-
tions of the Gibbs Sampling to develop Contrastive Divergence where the the resultant
reconstruction would be generated through n iterations labeled as such via CDn.

Gibbs Sampling, equation (4.8), works to develop a unique state from randomly iterating
through the system to obtain a deserved sequence of observations that are unbiased. As
the input vector v is given, it cannot be used for the model to calculate the training
update in equation (4.6). Instead a new vector needs to be found that also satisfies
some part of a randomly selected subset of the found hidden vector h. It start by
picking a random state of the visible units and then calculating the resultant hidden
units activity. This search continues until a hidden vector is created that could be made
given the probabilities of the known hidden state vector and thus is created from an
unbiased visible state vector.

∂ logP ((v))

∂Wij
≈ 〈vihj〉0 − 〈vihj〉k. (4.8)

4.3 Classifiers

Each algorithm is run under various conditions to ensure a fair showing of capabilities
and faults. The results are taken from best case operation scenarios where the lesser
configuration results are not reported. The optimal configuration is found via the ten-
fold cross-validation which leads to the best F1 value (4.9). Where F1 combines the
sensitivity and precision together represent the harmonic mean giving a rating between
the two values when they differ that is tied to the weaker of the two scores. If the scores
are the same value, the F1 will be identical, but as the values drift farther apart the
distance between them drives the score to the lower value.

F1 = 2
sensitivity · precision

sensitivity + precision
. (4.9)

Of primary interest is the approach to training and developing the DBN layers and
weights. The search parameter in the network is the number of nodes per layer, but
four layers is chosen given the available computational resources despite the parent work
being based on only three layers. It is stated that additional layers improve the accuracy
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of the algorithm, which is the reason for the increase in layers proven in Le Roux et al.
[9]

The network is developed by training on the plethora of unlabeled data for each layer
of the Restricted Boltzmann Machines (RBMs), labeled pretrainning in figure 15. With
each layer being developed incrementally, the output nodes (hidden) become the visible
nodes to the next tier of RBMs, but the first layer does take in the true visible data.
Once all the layers are trained they are ‘rolled out’ or linked together and allowed to
further update their weights through any desired scheme, usually forward-propagation
or back-propagation. This enables the data to tune itself without labels since the initial
pretrainning layers can be reversed to reconstruct the input from the classification.

4.3.1 Decision Trees

DTs create a hierarchical tree structure that is optimized with the Gini diversity index at
each branch. Each attribute of the given data is processed to determine the strength of
the Gini diversity index, which evaluates how likely it is for two items from the set R will
be of the same class with replacement. This requires knowledge about the probability p
of each item in the set. In equation 4.10, a lower value indicates high diversity so that
feature should be higher up in the tree as the top of the tree will be the most traversed,
those nodes need to be the easiest to evaluate.

IG = 1−
R∑
i=1

p2i . (4.10)

The pruning criterion used in Wulsin’s work was limiting the minimum number of sam-
ples in a node prior to splitting. The tree’s binary structure allows any point to be the
starting node once the Gini index is used to map the tree. A high, or low, diversity index
does not make the best decision surface it it is not splitting the data into equally large
sets. Ideally the splits would be 50/50, but all that can be specified are the minimum
sizes for a split which were set at [2,4,6,8,10,12,14,16] during the search.

4.3.2 Support Vector Machines

Previously discussed in section 3.2.3.

4.3.3 K-Nearest Neighbors

K-Nearest Neighbors (KNNs) are a nonparametric approach to classification. This tech-
nique is supervised because it assigns each class a mean across all the dimensions of
the features. This mean is used to determine where new points will be classified by
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Figure 16: Configuration of DBN during training process. [1]

DBN layouts: (a) RBM model with visible layers vi, hidden layers hi, visible biases
c, hidden biases b, and symmetric weights W , (b) Stacked RBM layers to implement
a feed-forward network that breaks down the data via encoding and then reconstructs
the input via decoding, and (c) an alternative representation of classification once the
network has been sufficiently trained to produce classifications from the final layer.

comparing all new points to their k nearest neighbors which vote on the new points
label. Distance between class centers and new points can be calculated by a variety
of measures, most common for continuous variables is Euclidean distance and discrete
variables use Hamming distance.

Prior knowledge can be brought into play by choosing an appropriate distance metric.
As Euclidean distance only relies on the mean values of the classes it is best if data is
sparse. However, with sufficient data a metric like Mahalanobis distance can be used if
there are enough data points to make a full covariance matrix. Similar to SVMs kernels,
KNNs performance can be manipulated given proper domain knowledge and a health
sample size.

4.3.4 Deep Belief Networks

The intent of the research is to compare the above classifiers to DBNs and determine their
effectiveness for real time classification. They are a layered neural network that learns
patterns in high dimensional data through progressively decreasing sized layers that lead
to one ‘label’ layer. The learning can then be reversed from the label layer to build the
resultant feature. The strength of this process comes from the Restricted Boltzmann
Machines acting as the connected neural network. The layers are trained one at a time
and then stacked together to fine tune the full algorithm via back-propagation. Figure
16 shows a brief overview of the individual layer structure followed by its deployment as
a a full system.

Wulsin trains his network first on the unlabeled data by performing layer specific RBM
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optimization. Once the layers are set, they are linked together and the weights are
further adjusted via back-propagation on the same unlabeled data. With the network
essentially primed, it can now be optimized with the labeled data in fine-tuning back-
propagation training. This is found to produce the best results and aligns with the
results of Hinton’s work that DBNs work best when able to start their convergence from
a reasonably correct set of weights and biases. The final step is shifting the labels to
account for the DBNs sensitivity to class imbalance to improve detection of less common
classes, which account for the majority of classes as background is 91.6% of the overall
samples.

The F1 measure is used to drive the optimization comparing sensitivity to precision.
Each classifier is setup to run as one-against-the-others which means these measures are
initial recording specific to a single class. To find the mean of a given classifier across
all classes, the results are taken over each of the ten partitions and then averaged across
the given classifier. The resultant measure provides an F1 score for each classifier over
each of the three data sets. This masks the ability to discern where the improvement
in classification is happening when comparing classifiers, a similar situation from the
previous paper’s work.

To account for the interest of real-time processing, 100 trials of each classifier for each
data set were run. The average time was used to determine the relative speed of each
classifier. To determine how effective different feature types, raw256 versus feat16, are
at seeding the search the non-background classes were compiled together to test the
DBNs ability to distinguish between anomaly and background. The RMSE between
the conditionals of the two classes were used to generate a heat map for likelihood of
anomaly detection. This heat map would then be shown in ten second windows where the
original channel-seconds overlap by 62.5 milliseconds to give a ‘live’ update of anomaly
detection.

4.4 Results — Real Time Detection

Conclusively DBNs are not the fastest for classification time nor are they the most
accurate over the majority of datasets. However, their averaged F1 score, over 100 trials,
and computation time make them at least as good as the KNN or SVM algorithms on
average. As shown in the figures, the KNN, SVM and DBN algorithms vie for F1 score
with each ranking first on a different data set. The downfall of the others is that their
computation time varies with each data set, while the DBN produces a very consistent
classification time.
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Figure 17: Mean classification times of each classifier for given data. [1]

Figure 18: Histogram distributions of class-conditional probabilities. [1]

The two data sets are (a) feat16 and (b) raw256. Solid backing signifies background
features and hatched signifies non-background features.

The results, Figure 18, for finding the RMSE of the feat16 and raw256 data sets show
that the null hypothesis that the differences in the two errors between the median RMSE
values of the background and non-background samples is not significant ( p� 0.001). It
shows that the DBN returns better results when operating on the raw data as opposed to
the feature based data. Plot b of Figure 18 shows the hatched, non-background classes,
have a different distribution than the solid, background classes, despite them being fully
overlapped in plot a. This is a critical step for vetting the functionality of the intended
real time detection heat map, Figure 20, based upon the RMSE of each class.
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Figure 19: F1 scores of each approach. [1]

4.5 Discussion — Classifier Effectiveness

The BND waveform classifier was noted to be a first of its kind and remains compet-
itive with other novel approaches of in use at the time. Their work succeeds in bring
competitive diagnosis into real-time across data sets. GPEDs and triphasic waveforms,
along with PLEDS had not previously been incorporated into a detector prior to this
work which adds to the clinical utility of the resultant classifiers. The only drawback of
this work is that time it takes to fully train the algorithms to perform. The DBNs took
from days to more than a week to fully develop and the KNN and SVM approaches took
on the order of hours to days. Understandably if the system can be assured to function
at a high level the training time is justifiable, but could be greatly reduced if tailored
to one specific patient. The sample data for this study comes from a variety of subjects
which increases complexity and total sample count. Adapting a present a system could
also be achieved quickly assuming the new subject’s median values are aligned with the
weights of the present algorithm. Hinton cautioned that systems do not resolve well if
they are not seeded with reasonably estimates of weights and biases.

An interesting benefit of the research highlights that all the algorithms performed within
range of their optimal results with raw data when compared to feature based data.
This suggests raw data may be the best option for the algorithms to operate on when
performing supervised learning. While not in opposition to the work of Peng et al, it
keeps the debate open about which methodology is best for developing robust feature
sets. The PCA seeded algorithm actually performs the worst overall, but the authors
noted they did not test all possible variants of the classification algorithms. It is likely
that with finer tuning, as was done to the DBN algorithm, their results could be improved
at the risk of potentially over training.
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Figure 20: Classification accuracy heat map.[1]

The RMSE informs the background color, shifting to red when it is most likely to detect
a feature of interest.

5 Conclusion

Makeig’s work illustrated that the static state of the brain is critical in understanding
responses from controlled sensory stimulus. Prior work saw the stimulus response as only
ERPs and failed to link them with other similar brain state events to form a complete
diagram of how a brain response to auditory and/or visual stimulus. A combination of
features, ITC, ERSP and frequency, rooted in physiological knowledge enabled them to
improve the classification and accuracy of stimulus response. Determining if the ERPs
were the true response or a byproduct of the response by the brain to other influences
sheds light on the way signals propagate throughout the brain.

It underscores the difficulty in using sensors that are mixing all the generated signals
together. Critical headway was made by using ICA to spatially filter the raw electrode
recordings to determine location and timing of various stimulus responses addressing
the issued of mixed signals. These mappings naturally cluster over a range of patients
and conditions to produce a definitive guide for what to anticipate given the state of
ERSP, ITC and frequency measurements. Understanding what type of response matches
a given input provides a way to establish a better model from known inputs and known
outputs through a very dynamic system.

In this case, a better model of the brain could lead to understanding how other features
compare and on what basis they are able to improve classification. With a proven link
between inputs and outputs it should be possible to develop transforms to model the
brain and use these models to compare across subjects. The other works show varying
success with different feature schemes, but there is nothing specific to the chosen features
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aside from improved classification accuracy. Properly developed models should be able
to leverage domain knowledge to indicate how the those improved schemes’ features are
physiological different from others in the set. If the results cannot be mapped to a known
biological process it shows glaring problems in neuroscience or a failure of the feature to
properly identify the class condition.

To improve classification, methods for finding strong features were reviewed in Peng’s
work in the development of mRMR. Here a new features was tested against its predeces-
sors on four data sets over a range of frequently used classifiers. The proposed mRMR
feature showed statistically significant improvement over its competitors, but it did not
universally win out. In fact its results were not even consistent with their being a defini-
tive application in terms of ‘with SVMs always use a forward wrapper’, because the path
to the lowest classification error seemed to shift with each classifier and data set. The
nuance of building the feature set forward (via addition of features) or backwards (via
pruning of features) came up split with error rates ranging from tightly bound (identical
in some cases) to very loose (nearly 100% increase in error).

While the proposed feature creation algorithm is superior to the competition, the limited
consistency of results leaves much to be understood about the approach across each
presented data set. It may be that each data set requires a unique approach, but this
would undermine its use if each state/person combination required extensive training to
discern the best application of mRMR. This issue was outside the scope of the paper,
but the work failed to show how the mRMR features differed in direct comparison to
the alternatives.

This leads into the work of Wulsin where an effort is made develop a robust classifier
that can succeed well in a real-time environment with extensive variability. A five class
classifier is developed that successfully processes EEGs streams in real time (inside of
a second) while maintaining effective detection rates comparable to commonly used ap-
proaches. This results in the best ‘features’ being the raw data for each of the classifiers,
DTs, SVMs, KNN, and DBNs. Attempts to improve upon the raw data with a PCA or
a hand-drawn feature set results in diminished results across the classifiers. Indicating
that the features themselves are not the limiting factor to interpreting the data, but the
chosen classifier.

Wulsin’s data may be misrepresenting the strength of features given that the sample
size is 11 patients and that the learning is supervised with tightly controlled labeled
data. The advantages of knowing precisely what the targeted class is and allowing for
large amounts of training time ranging from a few hours to over a week were not present
in the other works. In truth, being able to detect EEG anomalies inside of a second
is impressive, but appears impractical if it takes 24 hours of data and 5 days to train
the detection algorithm. This is similar to Peng et al’s resulst that showed excellent
classification as the number of features began to approach the number of classes in the
data. Given large amounts of time and sufficient computational power most problems
become trivial, but Peng et al strove to show that mRMR always evaluated quickly and
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always performed as well as if not better than its competitors. Two criteria unable to
be achieved in Wulsin’s work. Features may not provide the best results, but they may
provide the best results when given limited resources.

The eventual realization is that all three facets of methodology for discerning the data
present in an EEG can be expanded upon greatly in the future. First, the selection and
cultivation of features is maturing, but at the expense of hours spent by clinicians to
prime the algorithms. Then the algorithms themselves are now taking longer and longer
to implement the training process due in part to more complex algorithms, but also due
to the increasing complexity and amount of data on hand. Wulsin made no attempt
to test the bounds of his detection, but the F1 scores show difficulty resolving both
sensitivity and accuracy which could be a problem in the original annotations or in the
algorithm. It is hard to determine which is at fault without also putting the clinician
through testing.

Secondly, an alphabet is coming into focus through work based in high volume as Wulin’s
paper illustrates with its over 800,000 samples. The high sample count enables effective
unsupervised training to calibrate his DBN to a point where it produced reasonable
results. This is followed up by detailed supervised training to fine tune with labeled
data and is credited with putting the effectiveness to classification performance not seen
with only supervised training data. This lends credence to the notion that the original
annotator could be a limiting factor if the performance with only labeled data isn’t able
to complete with a combined training paradigm.

This ultimately comes back to Peng in understand how the qualities of the data relate to
one another. The mRMR criterion starts with features possessing high Max-Relevance
scores and penalized them for being overly redundant. Ideally this penalty helps cover a
wider range of cases within each class regardless of the causes of those rare events. This
could potentially make mRMR able to better classify noisy signals, but the work does
not discuss the quality of the data in terms of anomalies like Wulsin’s work.

All of these approaches fail to develop ways to adapt if the features are rated highly, but
ineffective at during classification. Linear independence and distance from a common
probability density exhibited by background waveforms provide the most computational
sound way to resolve information from EEGs. However unlike speech which can present
with multiple distinct speakers, the brain is presenting with one speaker operating with
multiple languages. Each language is important, but feature overlap between them can
be clouding the resolution since numerous highly rated features must now compete in
a classifier to explain phenomenon. If the classifier knew something about the class
in question, as seen in Makeig’s work, the classifier could actively ignore features not
related to its query. Wulsin dodges this with the SVM classifier by making five versions
of it, one for each feature, but the DBN was able to sort all the features through one
classifier.

The ability to match signals lacking contextual information is the eventual goal of a
search-by-signal database, but first searching with context must be achieved. It is clear
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that specific aspects of context are understood, but uniting that understanding with
feature selection and classifier operation is still developing. All of the works presented
speak towards these issues highlighting developments that provide insight in the under-
lying scientific processes, both biological and mathematical, that make it possible to
glean insight into the realm of EEG recognition.
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