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ABSTRACT

Applications and Statistical Modeling of Electroencephalograms using Identity
Vectors

by

Christian Radcliffe Ward

Interpreting electroencephalograms (EEGs) is the domain of trained and experienced

subset of clinicians (epileptologists and neurologists). Attempts made through sta-

tistical modeling and Machine Learning (ML) algorithms have yet equal their human

counterparts. This can be attributed inconsistent inter-rater and intra-rater clinician

agreement, the complexity of acquiring signals from the brain, and the variation in

people and brain disorders. The knowledge and time required to accurately annotate

every EEG recording is not possible given a clinician’s daily responsibilities.

Many supervised ML algorithms have been developed with the intent of offloading

the annotation process from clinicians. Trained on data sourced from clinicians, these

algorithms can only hope to mimic the performance of clinicians. The development

of unsupervised ML algorithms struggles to overcome the need of building statistical

models from large diverse datasets. However, the creation of the Temple University

EEG Corpus (TUH Corpus) coupled with the success of Identity Vectors (I-Vectors)

in speech recognition suggest an unsupervised approach may be possible.

Adapting I-Vectors for EEGs will provide insight into the statistical nature of

the EEG features, datasets, and classifications. Comparing I-Vectors against other

ML algorithms will provide an understanding of how I-Vectors classify EEGs. Using

discrepancies between the algorithms it should be possible to unlock the properties

of I-Vectors, that proved powerful on speech data, for EEG data. This could lead

to novel ways of annotating and understanding EEG recordings without the direct

supervision of trained clinicians.
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CHAPTER 1

Introduction

“Qui custodiet ipsos custodes?”

Juvenal’s Satire VI

Electroencephalography is a tool for studying the brain. In clinical settings neu-

rologists use it to diagnose conditions such as epilepsy and stroke [1]. It is also used

to indirectly study neural responses from various stimuli and neural control in ap-

plications such as brain-computer interfaces (BCIs) [2]. More recently, the advent of

relatively inexpensive commodity-grade EEG headsets [3] has expanded the field to

include areas such as gaming, neuro-modulation, and mindfulness training [4].

With the introduction of digital EEG technology, researchers seek to create digital

signal processing tools that can identify or predict neural activity [5]. In clinical fields

the technology assists neurologists in reviewing long recordings [6], communicating

with patients [7], and processing artifacts [8]. The benefits of these digital tools

stem from their multidimensional statistical models [9, 10, 11]. Outside the hospital,

researchers have been able to advance BCIs[12] and seizure prediction[13] with the

help of these tools.

Historically, computer-based EEG interpretation has been moderately effective,

despite large quantities of research [14, 15]. One problem in interpretation is that

brain function (and by extension an EEG recording) is highly variable, requiring very

large sample sizes in order to create robust statistical models [16]. The most powerful

statistical methods generally require even larger samples sizes to assure convergence

[17]. Until recently it has been difficult to collect and store such large EEG datasets.
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Modern digital data collection methods, in clinical and research settings, have

made ‘big neural data’ feasible [18]. However, these datasets must be annotated

prior to being useful for training statistical models. Annotated data is produced

when an expert reviews the recordings by marking which segments of the recordings

correspond to known phenomena [19]. These annotations can be at the macro scale

(such as ‘seizure’) or the micro scale (such as ‘sharp spike wave’).

Not surprisingly, EEG annotation is manually intensive and therefore rarely cost

effective for clinicians to perform at a fine-grained level [20]. Furthermore, there is

only moderate agreement, even among well-trained clinicians, on the correct way to

annotate simple events such as various types of spike waves [21, 22, 23, 24]. Building

supervised ML techniques that mimic clinician performance using annotated1 data

lacking strong consensus is difficult [5]. The difficulty increases when building unsu-

pervised ML techniques that operate on unlabeled data [20, 25].

Despite the majority of research focusing on supervised ML, an unsupervised ML

method may best suited for interpretation of EEGs. Unsupervised approaches are

decoupled from clinicians because there is no need for labeled data. Clinicians are

capable annotators, but even in their area of expertise they have biases which manifest

in poor inter-rater agreement when aggregating annotations. As the use cases of EEGs

grow, they advance beyond what clinicians typically evaluate making them unable to

provide sufficient annotations. With these constraints in mind, the goal of this work

is to introduce I-Vectors as an unsupervised machine learning method for EEGs.

1.1 The Landscape of Electroencephalograms

Before outlining the aims of this work, a brief background is provided to ensure

an understanding of the relationships between EEGs, algorithms and clinicians. We

review how algorithms and clinicians are trained for annotation and classification

1In the ML community it is more common to call this type of data labeled.
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highlights their interdependence and individual short-comings. Specific attention is

paid to how clinicians, as individuals and groups, produce annotations which fuel the

development of new algorithms. Meanwhile, applications of algorithms are expand-

ing beyond the annotation expertise of clinicians, often into areas outside of clinical

settings. With the accumulation of larger and more varied datasets it is necessary to

re-evaluate the approaches used in annotating and classifying EEG recordings.

1.1.1 Clinician Development

Clinicians undergo extensive training often culminating in a fellowship to specialize

in the treatment of epilepsy, sleep disorders, or intensive care. These specializations

require the ability to interpret EEG recordings 2 for which the clinician can be cer-

tified through the American Board of Psychiatry and Neurology, Inc. (ABPN). The

American Academy of Clinicians (AAC) works with the ABPN to ensure clinicians

are adequately trained, but cautions that ‘[N]ot all hospital credentialing boards re-

quire sub-specialty training to allow individuals to interpret EEGs3. Sub-specialty

certifications are limited to topics such as brain injury, neuromuscular issues, and

epilepsy.

Beyond this, clinicians refine their skill on the patients they encounter through

the practice of medicine. Principle to their practice is their ability to accurately

annotate EEGs recordings. Annotations focus on documenting the activity of the

brain via signals recorded from strategically placed electrodes extracranially, on the

scalp, or intracranially, on the surface of the brain [26]. The process of annotating

EEG recordings is part of the certification process, but the Epilepsy Foundation

2Taken from: https://medicine.yale.edu/neurology/education/fellowships/epilepsy_

eeg/
3Taken from: https://www.aan.com/uploadedFiles/Website_Library_Assets/Documents/

4.CME_and_Training/2.Training/3.Fellowship_Resources/3.How_to_Apply_for_a_

Fellowship/Epilepsy\%20Fellowship\%20FAQ.pdf
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contends that ‘EEG training for clinicians is inadequate’4. In spite of this, clinical

annotations remain the best tool for assessing the behavior and state of a brain [27].

Despite all their training, clinicians are not without their faults [21]. Firstly, their

ability to annotate accurately is often surpassed by the amount of data produced

from tests. This leads to annotation consuming a disproportionate amount of their

work hours. Secondly, their formal education ensures they are in agreement on termi-

nology and its manifestation [22]. However, performance in consensus-bases studies

suggests there are disagreements over which waveforms are of interest to each clini-

cian [21, 23, 24]. These disagreements are most apparent when comparing a clinician’s

performances on different disorders. Their consensus scores for sleep recordings [24]

differ from those of seizure recordings [21] and cardiac recordings [28].

Beyond the type of data, pairwise clinician similarity (Cohen’s κ statistic) is mod-

erate (0.41-0.60) at best [21] and group performance varies from slight (0.0-0.20) to

almost perfect (0.81-1.00) [28]. This suggests clinicians identify different, but valid,

indicators of disorders. Ultimately this produces multiple divergent, but correct, sets

of annotation from one dataset. While not problematic for diagnosing disorders, it

makes it difficult to develop ML algorithms when there are multiple ‘right’ answers.

1.1.2 Clinical Annotations

The ability to correctly annotate EEGs is a fundamental component of EEG based

research. In order to validate the performance of algorithms, clinicians must provided

annotated data. These datasets are annotated through the lenses of the clinician’s

specialization and the patient’s presumed diagnosis. As discussed previously, even

when annotating the same data, clinicians struggle to come to consensus about its

contents. Figure 1.1 shows the results of seven clinicians annotating an hour long

segment for seizures and periodic discharges (PDs). This makes it difficult to reuse

4Taken from: http://www.epilepsy.com/article/2014/12/eeg-training-clinicians-

inadequate

4



Figure 1.1: In Halford et al. [23], seven reviewers were asked to annotate
for seizures and PDs. The annotation results of the hour long recording,
Segment 21, show that six reviewers labeled seizure events, five labeled
PDs, and one labeled nothing. The quantity of annotation varies as does
the spatial alignment between between reviewers.

previously annotated data because it focuses on specific conditions instead of being

universal.

To further complicate matters, studies often produce their own datasets because

they find existing datasets lack annotations or subject information necessary to ad-

dress their research questions. This process is especially unforgiving on supervised

ML techniques. They are entirely dependent on being trained with a gold standard

of annotations, unlike their unsupervised counterparts that do not require annotated

data. Thus reliable annotators are a necessity for the majority of EEG based research

carried out regardless of the area of interest.

Figure 1.2 illustrates the variance in waveforms that fall under a common anno-

tation label. Not all of these annotations are related to medical conditions, as eye

blinks and background are often seen as noise while generalized periodic epileptiform

discharges (GPEDs), periodic lateralized epileptiform discharges (PLEDs), spike and

sharp wave complexes, and triphasic waves represent the waveforms of interest. The

American Clinical Neurophysiology Society (ACNS) defines an exhaustive list of EEG

5



Figure 1.2: Annotations used for the work of Wulsin et al in [14]. Notice
the placement of the spike does not need to precede or succeed the sharp
wave. GPED and PLED typically occur over a range of channels making
them context dependent.

terms which are outlined in [28]. Clinicians are well versed in the terminology, but

struggle in their ability to accurately match waveforms with appropriate labels[29].

The waveform examples from Wulsin et al. [14] are drawn from a seizure dataset.

However, the waveforms are not unique to seizure recordings and could also be found

in any of the other active EEG research fields such as attention/workload measure-

ment [30], bio-metric identification [31], BCIs [32], evoked response potentials (ERPs)

[33], and sleep stage classification [34]. Each field focuses on different facets of an

EEG recording and may have distinct waveforms. Other sources for distinct wave-

forms include subject related traits, such as their age [24, 35] and genetics [36].

In summary, the fundamental technical challenge of training robust algorithms for

automatic EEG interpretation is the diversity of annotated data. Seizure data differs

from ERP data which differs from sleep data making it difficult, if not impossible, to

find clinicians capable of accurately annotating all of it. Without a diverse set of clin-

ician sourced annotations, algorithm based solutions can not progress. This has led to

6



creation of data specific ML algorithms that struggle to match clinician performance.

Instead of universal ML classifiers capable of exceeding clinician performance.

1.1.3 Algorithm Development

The majority of ML algorithms applied to EEG recordings are built to target

specific conditions: seizures [14], stages of sleep [34], and evoked responses [33]. There

are few attempts to produce general EEG classifiers [37], but pre-processing of EEG

data to remove artifacts is widespread [38]. Pre-processing is necessary despite many

algorithms operating on clinically recorded data, which highlights the difficulty in

dealing with artifacts. A comprehensive solution faces difficulties in terms of the

nature of the data (physical activity, stress level, task based trials) and the condition

of the subjects (normal, abnormal and awake or asleep).

These single-task solutions suggest the technology is capable, but they fail to in-

crease our ability understand EEGs. A system trained on one dataset is not assured to

perform equivalently on another dataset drawn from the same experimental protocol

[39]. This often forces algorithms to accept more variance in processing the data to

achieve acceptable performance across datasets, such as signals coming from a region

of the brain instead of specific electrodes. With this approach, inconsistencies in the

origins of signals are mitigated with spatial filters enabling comparisons across the

various electrode configurations.

Nearly every EEG condition presents with characteristics primed for dimension-

ality reduction. Seizure algorithms typically process data in windows on the order of

10s of seconds [40]. Bio-metric algorithms utilize channel subsets to verify a subject

[41]. BCIs use spatial filters to target the regions of the motor cortex [42]. ERPs

focus on the occipital region where recognition of stimulus is triggered [43]. These

techniques are rooted in knowledge gained from the study of EEGs which makes them

domain knowledge.
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ML algorithms are deployed to help us learn about a given datasets, but not all

algorithms are equal. In the case where nothing is known about the data, unsuper-

vised ML algorithms must be used to build classifications by modeling its statistical

properties. However, in the presence of domain knowledge or a priori knowledge,

supervised ML algorithms are more effective. Possessing accurate insight into the

data helps mitigate bias and error in experimentally collected datasets because less

modeling is necessary. The realm of EEGs is no different which is why the ability

of clinicians to produce accurate and robust annotations is so important. Supervised

algorithms will learn their biases, but unsupervised algorithms struggle to handle

depth of EEG data in terms of application and quantity.

The speech processing community developed an unsupervised learning technique,

I-Vectors, to produce an unsupervised technique as powerful as supervised one. I-

Vectors are able to learn decision surfaces for the accent, age, content, gender, and

language of a speaker [44]. Through a series of data modeling utilizing Gaussian

Mixutre Models (GMMs) that produce a Universial Background Model (UBM) cap-

turing the variability of the training data in a total variability matrix (TVM), it is

possible to reduce the dimensionality of various sized segments of data into robust

discrimination vectors, I-Vectors.

1.1.4 Algorithm Applications

BCI, seizure, and sleep data represent a critical set of applications for EEGs, but

do not make up the majority of events in the EEGs recordings. An overwhelming

amount of any EEG recording is labeled as background. These are signals which

clinicians routinely leave unlabeled because they do not contain waveforms relevant

to their clinical questions. However, background signals contain information relevant

to a subject as documented by the EEG bio-metric community [41]. There are many

lesser conditions that manifest in a subject’s EEGs recordings such as emotion state
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[45], pain [9], and mental focus/workload [46] which a recording annotated for BCI,

seizures, or sleep would not contain.

Given the divergence of research interests there are numerous sub-fields of algo-

rithm development pertaining to specific EEG experiments. Some efforts focus on

addressing artifacts and noise, while others pick at specific conditions like seizures or

ERP, and a few work on generalized analysis of attention/focus and bio-metric classi-

fications. A brief overview of the aforementioned EEG applications is presented, but

is not exhaustive. The intent is to help contextualize where EEG research presently

stands with respect to applications and tools.

Seizures A substantial portion of work in this field focuses on correctly identifying

and locating seizures [47, 48, 49, 50]. By isolating seizure events researchers can

focus on the properties of the seizure for the purposes of classification and waveform

modeling [14, 51, 52]. The knowledge gained in this process makes it possible to

predict seizures in real-time [5, 13]. Seizure events are typically high energy and

frequency wavefroms with synchronization across channels [23].

Sleep Studies Sleep state classification labels the transition from wakefulness to

random eye movement (REM) sleep. Sleeping EEG recordings are often cleaner due to

lack of movement artifacts which improves their clarity for clinicians and reduces pre-

processing for algorithms [54]. Despite this and a closed set of distinct stages, sleep

stage classification suffers from inter-rater agreement problems[24]. Sleep spindles and

K-Complexes serve as the main indicators of sleep along with pronounced changes

in band Power Spectral Density (PSD) [55]. While seizures often manifest during

sleep, other issues can also be addressed such as sleep apnea[34] and overall brain

functionality/health[56].
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Figure 1.3: A segment of an EEG recording taken from a subject at
the onset of a generalized seizure. Note that after the seizure starts, ac-
tivity is not uniform across all channels. Image sourced from Tatum and
Tatum[53].

Bio-metrics Multiple studies have focused on the unique nature of EEGs relative

to individuals irrespective of disease and disorder [57]. The results of such work

suggest that individuals have distinct EEG fingerprints [58, 59, 60] which also posses

inheritable qualities [59, 61]. A major theme in bio-metrics is understanding how

different brain states impacts these fingerprints. The work of Rocca et al showcases

brain distinctiveness when using a common testing state of resting eyes closed [31],

spectral coherence as discrimination feature [62], and techniques to reduce the feature

set into sparse mappings [63]. Some approaches overlap with other applications by

invoking response potentials [64], focusing on specific brains states of sleep [65], or

restful states with eyes open and closed [66]. Even the longitudinal stability of bio-

metric EEGs is tested [67] to determine viability for long term applications.

Brain Computer Interfaces BCIs technology finds ways to get information into

and out of a brain. The most advanced applications of this are restoring functionality

to those unable to use their body [68, 69]. This requires algorithms robust to changes
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Figure 1.4: A segment of an EEG recording taken from a subject in
the second of phase sleep. Note the present of sleep spindes, black arrow,
across multiple channels. Image sourced from Tatum and Tatum[53].

in subjects, but sensitive to spatial and temporal facets of EEG recordings [43, 70].

Development of subject invariant algorithms has led to disparate training protocols

with transfer learning using multi-subject models[71] and zero-calibration training

being subject specific [72]. This leads to a similar problem as sleep, where the wave-

forms are well understood, but their manifestation across populations complicates

their performance.

Evoked Response Potentials BCI is a broad term and could possibly include

ERPs, but ERPs are a stimulus response and not a voluntary action. A well docu-

mented case of ERP is the P300 signal that triggers in the pariatal/occiptal region

300 milliseconds after seeing an image of interest [7]. This signal is commonly used to

enable subjects to communicate via P300 spellers. These spellers flash the alphabet

before a subject waiting for a letter of interest to trigger an ERP which allows them

to build words [73]. This approach allows a brain to communicate without the need
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of a body, but also applications for testing processing time of visual and auditory

stimulus response [74].

Figure 1.5: A 2D mapping of the electrodes and their group averaged
waveform (solid lines). The standard deviations of the channel averaged
are given as the dashed lines. Image sourced from Karamzadeh et al.[74].

Brain State/Workload Analysis of involuntary conditions address the state of

a person’s brain which can refer to the emotional state, disease state, or atten-

tion/workload state. Those afflicted with Alzheimer’s [75], alcoholism [76], and men-

tal disorders such as attention-deficit/hyperactivity disorder (ADHD) and Bi-Polar

disorder [77] present with distinct EEG features. Knowing these conditions can man-

ifest in the EEG recordings provides context for the how the known underlying bi-

ological changes alter a subject’s EEGs. This is exemplified by studies measuring

how stress impacts cognitive function [78] and a brain’s workload during attention

dependent tasks [46].

1.2 Research Proposal

A clinician’s primarily focus is on treating patients. Asking clinicians to produce

perfectly annotated recordings to support algorithm research is not in the best in-

terest of their patients or their productivity. Attempting to use algorithms to drive

12



advancements in annotation is a circuitous problem when they rely on the annotations

from the clinicians. Therefore, if clinicians do not have the time to annotate large

sets of data and their annotations are not always in agreement, how will advances be

made?

The most direct solution is to find a way to annotate recordings without involving

clinicians. As discussed there are ML based solutions, but there is minimal consensus

on which approach is best. Despite the success of ML algorithms, fundamental prob-

lems exist that they cannot overcome. These include the quality of the recording,

enough annotated data of the condition, an acceptable feature set, and consistent

channel layouts. The core issue is identifying what characteristics of the EEG are

relevant to the task. In most instances some prior knowledge is applied to reduce

the dimensionality, and thus the uncertainty, in the ML algorithm. This forces a

reliance on the annotations produced by clinicians, despite the quality and quantity

of annotations often being are disparate of each other.

Annotations are critically important for supervised ML algorithms. They are

presently the dominant ML approach to classifying data which means clinicians con-

trol their performance through their own annotations. To alleviate this constraint

unsupervised ML algorithms must be developed that are capable of equaling the per-

formance of their supervised counterparts. The benefits of equivalent performance

would be significant as unsupervised ML enables training on large diverse datasets

without the need of clinicians. Countless hours of data in need of annotation could

be labeled producing a steady supply of data for training supervised ML algorithms

and clinicians. By using I-Vectors for this process it may also be possible to uncover

novel phenomena in the data similar to their use on speech signals.
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1.2.1 The Research Aims

The goal of this work is to lay the foundation for an unsupervised ML system that

classifies and clusters EEG recordings. Preliminary work indicates it is possible for

I-Vectors to perform subject verification and sort data by similarity5. These results

are promising, but are not enough to justify the adoption of this technique. Little

will be gained if it cannot determine what makes such classification and clustering

possible.

In addition to understanding how the system operates on EEGs, it is necessary

to prove I-Vectors can offer comparable performance to existing standards. In terms

of waveform and brain state classification this includes both ML algorithms and clin-

icians. However, given the advancement of ML algorithms the ability to cluster and

verify subjects is related only to algorithms. Clinicians do perform similar tasks, but

they use resources beyond EEG recordings to make their assessments. Thus clini-

cians again provide a standard against which algorithms are measured, despite their

inability to come to those standards from raw EEG data.

With the goals of classification and clustering via explainable statistical properties

inherent in the data, three questions can be posed:

Research Aim 1: How are EEGs statistically differentiated through the modeling

process of UBMs, TVMs, and I-Vectors?

Research Aim 2: How does I-Vector classification and clustering compare to other

applicable ML techniques?

Research Aim 3: What characteristics of EEG data do I-Vectors take advantage

of in their discrimination? Is this process inherently well suited for addressing EEG

classification?

5See chapter 4’s preliminary experiment results.
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By answering these questions, insight into the nature of I-Vectors and EEGs tech-

nology will be advanced. This is because the majority of work with I-Vectors has

focused on speech signals which are better understood at the physiological level. The

lack of standardization in processing EEG signals compared to speech signals requires

that the proposed experiments be conducted to control for the increased dimenson-

ality given the lack of domain knowledge.

1.2.2 The Research Motivation

The reason to carry out this work is the clinical and academic need for annotated

EEG recordings. A Catch-22 exists in that the best supervised ML techniques require

a strong foundation of knowledge, consisting of labeled data, to produce results on

par with trained clinicians. Without a peer-reviewed training dataset algorithms are

unable to adequately annotate unlabeled datasets. The algorithms are beholden to

the bias of the clinicians. Clinicians are biased by their training and experience, of

which will never be comprehensive for all use cases of EEGs.

This lack of universality means ground truth data must be produced for the train-

ing of supervised algorithms and clinicians. While clinicians would be the ideal source

for this data, their time is better spent with their patients and they lack consistent

inter-rater agreement. As supervised ML approaches are reliant on annotated data,

their performance suffers when they are trained on data that comes from unreliable

sources. This suggests a third approach, unsupervised ML, is needed to support the

continued development of supervised ML algorithms and clinicians.

Unsupervised ML is not without its drawbacks, largest among them a dependency

on an equitable distribution of data. Fortunately the availability of EEG is the

easier to address than the availability of accurately annotated EEG data. While

there have always been numerous publicly accessible datasets, the existence of the

TUH Corpus suggests there many be enough data available to adequately train an
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unsupervised algorithm. It is through these databases and advanced unsupervised ML

techniques it is possible to deepen our understanding of EEGs because the approach

is mathematical and free from external sources of bias.

Part of expanding our EEG knowledge centers on formalizing how the data should

be processed. A substantial amount of research focuses on finding the best feature-

algorithm combination for given classification tasks. This is due to the disparate

nature of the conditions, subjects, and study protocols. I-Vectors are built on UBMs

and TVMs that strive to constrain the relationships between the natural modes of

the data while providing dimensionality reduction. This makes I-Vectors an enticing

option at encapsulating the disparity between datasets while producing transparent

decision surfaces.

From these decision surfaces it should be possible to expand our knowledge of

EEGs through the statistically modeling that produces I-Vectors. The ability to si-

multaneously classify and cluster datasets provides the ability to explore the impact

of variations in features and training data. Accepting the imperfect nature of unsu-

pervised ML means that imperfect results are accepted and encouraged. These edge

cases should provide insight into the functionality of I-Vectors as they are deployed

onto a new type of data. From these insights relationships between EEG data and

features should all be possible helping close the loop on EEGs annotations.

1.2.3 The Research Experiments

The Aims of this work will be addressed with three sets of experiments: Care,

Principal, and Comparison. Upon completion of the experiments, the process of pro-

ducing I-Vectors from EEG data should be well understood along with what proper-

ties of EEG and I-Vector make this approach viable for producing annotations in an

unsupervised manner.
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Core Experiments The purpose of the Core Experiments is to determine opti-

mal operating parameters for applying I-Vectors to EEGs. This addresses RA 1 by

measuring the significance of specific features, channels, UBM mixture sizes, and the

TVM training process. Sweeping through each parameter sequentially results in a

set of parameters optimized for the specific dataset while providing general trends for

each parameter. The statistical decomposition of each dataset and I-Vector develop-

ment process provides background and baseline results enabling comparisons against

the other experiments.

Principal Experiments In order to validate I-Vectors as an option for classifica-

tion and clustering of EEG data their performance must be compared against a suite

of ML algorithms. The algorithms will be evaluated through their sensitivity and

specificity and when applicable their ability to cluster. In a sense these experiments

mirror the inter-rater and intra-rater clinician evaluations. These Principal Exper-

iments address RA 2 through a series of leave one out cross validation (LOOCV)

experiments based on subject and channel classifications6.

Comparative Experiments Datasets built from classification outliers will be used

to model the edge cases of each algorithm. The epochs and their associated I-Vectors

will be evaluated for the distribution of their features to resolve RA 3. Using the

knowledge gained from the previous experiments it should be possible to modify

the feature sets and training data to alter the classification results of the I-Vectors

and other algorithms. If performance gains are consistent across algorithms it would

suggest novel understanding of EEG data has been gained. Otherwise, the shifts

in performance would suggest there are facets of EEG data that lend themselves to

I-Vector.

6There is a need for some labeling as not all the algorithms for comparison operate in an unsu-
pervised manner.
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CHAPTER 2

Background

Scarecrow:

The sum of the square roots of any two sides of an isosceles triangle is equal to the

square root of the remaining side. Oh joy! Rapture! I got a brain! How can I ever

thank you enough?

The Wizard of Oz:

You can’t.

This chapter introduces the nature and use of EEGs in clinical and research set-

tings. Clinical EEGs are used by clinicians to make diagnostic decisions in accordance

with their education and training. In research settings algorithms strive to replicate

the performance of clinicians through statistical modeling guided by clinician an-

notated data. Together these two groups are increasing our ability to discern the

meaning of EEG signals.

This dissertation will examine the suitability of I-Vectors as a mathematical tool

for allowing researchers to replicate clinician performance on EEGs. I-Vectors have

shown promise with respect to classification and clustering of speech signals in terms

of accent, age, context, gender, and language via its feature transformation process.

This type of discrimination would be beneficial to understanding the phenomena that

produce EEG waveforms. The I-Vector technique is introduced in depth along with

the necessary criteria to evaluate it against other algorithm based discrimination

techniques.
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2.1 Electroencephalograms

An EEG records the electrical activity of the brain. The captured voltage signals

represent the firing of neurons involved with all aspects of a brain’s functionality.

Through the use of EEGs we can see how the brain functions on an operational

level [45], interprets stimuli [60], and changes due to diseases and disorders [76]. The

applications of EEGs are primarily limited by the ability to link recorded activity to

the underlying physiological condition.

A clinician’s ability to annotate EEG recordings utilizes their knowledge of the

relationship between waveforms and physiological conditions. An accurate diagnosis

cannot be made from waveforms only as the clinician must consider the subject’s

history and the recording conditions of the EEG. In many cases spatial and temporal

properties must be considered when assess for specific conditions related to different

regions of the brain and similarities between waveforms.

Depending on application, EEG signals require radically different signal processing

techniques for separating or decoding them. For example, whereas seizure and sleep

waveforms are distinct and easily separable [1], EEG signals in BCI applications are

typically subtle and require custom spatial and/or temporal filters [33]. This changes

the discrimination techniques when dealing with BCI to spatial and temporal features

[70, 79]. Auditory and visual stimulus response [7] have distinct spatial patterns as

well adding to the diversity of BCI waveform morphology [72].

To distinguish spatial and temporal features, EEGs are partitioned via channels

and epochs. As discussed previously, the channels are a representation of the elec-

trodes, shaped by filtering and montages. Epochs segment the data as a function of

time, typically on the order of seconds. Clinician and algorithm based approaches

both rely on these techniques, but in different ways. Clinicians will review EEGs
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using epochs on the order of tens of seconds [24, 80], while algorithms operate on

epochs of seconds [14, 72].

One of the main diagnostic applications of EEGs is the classification of seizures

[14]. Seizures represent excessive electrical activity within a region of the brain which

manifest as high energy waveforms. The study of sleep is also an active research area

given the occurrence of seizures during sleep and sleep’s impact on brain health [81].

When recording for seizure and sleep activity a substantial amount of background ac-

tivity is also captured. This enables enables an analysis of overall brain function, like

the presence of ADHD in children[82]. Adult EEGs also provide insight into numer-

ous conditions such as alcoholism [76], Alzheimer’s Disease [75], brain development

[83], emotion [45], and stress [78].

In a research setting, BCIs promote a deeper understanding of brain functionality

by allowing those with disabilities to communicate [7] and regain functionality [68].

BCIs highlight the ability of algorithms to classify waveforms beyond the capabilities

of clinicians. These computer-driven methods enabled the development of novel ap-

plications in clinical monitoring, video games [32], and bio-metrics [84]. All of these

use real-time classification which is not in the purview of clinicians. Specifically, bio-

metrics provide the ability to dissect the facets of EEG that differentiate one person

from another. This is a level of discrimination that clinicians cannot attain and serves

needs far beyond clinical settings in hospitals.

Moving EEGs outside of hospitals has expanded the potential applications of

EEGs[3]. It is easier to produce EEG datasets for experiments, but even with these

advances there are few publicly available datasets. Those datasets available having

varying levels of documentation and labeling related to conditions, subjects, and

tasks. In addition, the sampling rates and number of channels have no definitive

standards which furthers the disparate nature of the recordings. Recording in non-
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clincial environments often increases the likeliehood of artifacts, but even under ideal

clinical conditions artifacts are still present requiring pre-processing[38, 8].

The following sections focus on the process and techniques of collecting EEG

signals from a brain. Electrode configuration and montages are two important tools

clinicians use when making a diagnosis from a recording. They provide flexibility to

the clinician, but hamper the ability of algorithms to validate themselves on similar

data. The experimental datasets are also introduced to highlight the difficulties of

working with publicly available data.

2.1.1 Properties of Electroencephalograms

An EEG is comprised of multiple surface/scalp electrode channels capturing the

continuous signals generated by the brain. These signals represent the aggregated

neuronal activity of the cortical neurons in immediate proximity to each electrode.

Each channel maps to a specific electrode that is placed on the scalp, extracranially,

or in the case of intracranial electroencephalograms (iEEGs) directly on the brain’s

surface. Electrode placement for extra-cranial recordings follows a standardized lay-

out, Figure 2.1, based upon relative distances [85]. Intra-cranial electrodes are high

density electrode grids that are placed directly on the brain region of interest. This

increases the complexity of the electrode and the data collected which excludes them

from this work, but there is no theoretical reason I-Vectors could not operate on such

signals.

The electrode configuration dictates the number of channels in the recording.

To visual these signals clinicians view them indirectly as montages, a differential

electrode configuration. Montages, Table 2.1, can be configured to be referential

to a common ground electrode, neighboring electrode, or a contralateral electrode.

These configurations aid in the diagnostic process by calling attention to patterns
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Figure 2.1: The 10-20, 10-10, and 10-5 layouts for EEG electrodes utilize
a proportional unit of measure for the distribution of electrodes. The
first number represents the distance of the electrodes from the nasion and
inion and the second represents the space between subsequent electrodes.
With this approach adding electrodes does not change the location of the
previous electrodes. Image sourced from [86].

of behavior in the recording. Below are three sets of montages for a system with

eighteen channels1.

Montages serve to improve the clarity of each channel. Theoretically they do

not impact the content of the channels, but evaluating such a claim is beyond the

immediate focus of this work. Filtering of the channel data, before or after inclusion

in a montage, is necessary to separate signals into the five standard EEG frequency

bands, Table 2.2. Signals between 2Hz to 80Hz represent the spectrum commonly

1Taken from: https://www.acns.org/UserFiles/file/EEGGuideline3Montage.pdf
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Table 2.1: Table of EEG Montages

Channel
Longitudinal

Bipolar
Transverse

Bipolar
Referential to
Ground(Ear)

1 Fp1-F7 F7-Fp1 F7-A1
2 F7-T3 Fp1-Fp2 T3-A1
3 T3-T5 Fp2-F8 T5-A1
4 T5-O1 F7-F3 Fp1-A1
5 Fp1-F3 F3-Fz F3-A1
6 F3-C3 Fz-F4 C3-A1
7 C3-P3 F4-F8 P3-A1
8 P3-O1 T3-C3 O1-A1
9 Fz-Cz C3-Cz Fz-A1
10 Cz-Pz Cz-C4 Pz-A2
11 Fp2-F4 C4-T4 Fp2-A2
12 F4-C4 T5-P3 F4-A2
13 C4-P4 P3-Pz C4-A2
14 P4-O2 Pz-P4 P4-A2
15 Fp2-F8 P4-T6 O2-A2
16 F8-T4 T5-O1 F8-A2
17 T4-T6 O1-O2 T4-A2
18 T6-O2 O2-T6 T6-A2

viewed by clinicians2. For many conditions the frequency range of activity is critical

in signal classification. Motor activity signals dominate the alpha band [88], while

the stages of sleep affect all but the gamma band [34].

2.1.2 Available Datasets

There are a number of publicly available EEG datasets 3. These datasets are

developed for specific studies independently of each other resulting in a wide variation

of data content and format. Their data formats range across European Data Format

(EDF), Matlab formatted files, and raw text files. The data content differs in terms

of electrodes, sampling rates, and the studied phenomena.

2While this is the dominant spectrum of interest, research using iEEGs indicates activity at
higher frequencies (>500Hz) may contain relevant discriminatory data related to seizures [87].

3The University of California San Diego maintains a website, https://sccn.ucsd.edu/~arno/
fam2data/publicly_available_EEG_data.html, indexing many of the publicly available datasets.
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Table 2.2: Table of EEG Frequency Bands

Band Name Frequency Range (Hz) Attributes

Delta 1-3
Brain health,

deep sleep

Theta 4-7
ADHD rhythms,

relaxation

Alpha* 8-12
motor activity,

alertness

Beta 13-30
anxiety,

focus

Gamma 31-80
REM sleep,

stress

*When dealing with motor cortex signals it is common to encounter the
Mu band (9-11Hz) which resides within the Alpha band.

This work applies to the PhysioNet EEG Motor Movement/Imagery Database

(PhysioNet) dataset and the TUH Corpus dataset. These datasets have been stan-

dardized to utilize the same 20 channel Trans-Cranial Parasagittal (TCP) montage.

In addition the TUH Corpus dataset contains annotations from multiple sources pro-

viding robust labeling of events. This helps control for variation between the BCI

focused PhysioNet dataset and predominantly seizure focused TUH Corpus dataset.

Temple University Hospital EEG Corpus

The TUH Corpus dataset contains over 25,000 EEG studies and their associated

neurological evaluations taken from Temple University Hopsital (TUH) in Philadel-

phia, Pennsylvania [18]. Each patient’s records present with different electrode config-

urations and sampling rates. The curated corpus uses a common 22 channel montage,

TCP shown in Figure 2.2, for all subjects with a static sample rate of 250Hz.

The dataset contains longitudinal results of patients receiving continuing care at

the hospital. These include multiple same patient sessions in a given day or sessions

spaced out over a number of years. TUH treats patients of varying backgrounds (age,
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Figure 2.2: The TCP Montage channels (red) used by the TUH EEG
corpus is overlaid on the PhysioNet channel layout. Each montage link
(orange) is assigned an index for storing the montage channel (gray) data
in the corpus. The proper 10-20 channel names (black) are provided for
the montage channels.

gender, diagnosis) providing breadth to the data. Recording profiles at TUH range

from 23 to 32 electrodes with sampling rates of 250Hz, 256Hz, 400Hz, or 512Hz [18].

Computerized EEG analysis is complicated by the fact that even small variations in

electrode placement can hamper generalizations between subjects. This problem is

exacerbated when datasets from disparate sources are combined.

PhysioNet EEG Motor Movement/Imagery Database

The PhysioNet data contains 109 subjects following computer prompted mo-

tion/motion imagery trials at the New York State Department of Health’s Wadsworth

Center [42]. The recordings present 64 electrodes following a 10-20 layout sampled
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at 160Hz. From this base layout, the data is converted to the same 22 channel TCP

montage used by the TUH Corpus.

Each subject performs two calibration trials (resting eyes open and resting eyes

closed) and twelve task driven trials. The four tasks consist of opening/clenching the

(1) left or (2) right first and opening/clenching both (3) fists or (4) feet as a physical

and imaginary movement. A trial consists of 30 tasks that alternates between rest

and motor tasks. The calibration trials last for one minute and the motor trials last

for two minutes, providing 26 total minutes of subject data. The data is publicly

available through the PhysioNet website [89].

There are 12 total motion tasks representing three groups. These groups consist

of 4 repeated trials creating natural cohorts of grouped trials: {3, 7, 11; 4, 8, 12; 5,

9, 13; 6, 10, 14}. Figure 2.3 shows the layout of tasks within each trial and their

associated grouping. The major experiments utilize these trial level cohorts and the

unique 109 subjects to develop I-Vectors for discrimination on the trial and subject

level.

2.2 Applications and Classification of Electroencephalograms

The techniques used by algorithms and clinicians to classify and cluster EEG data

are unique. An algorithm’s foundation is informed by the knowledge of clinicians via

their annotated data. A clinician’s knowledge comes from their experience treating

patients and their formal education. The algorithms are dependent on the clinicians’

annotations to build their knowledge base, making them susceptible to clinician bias.

Clinicians are skeptical of algorithm performance because it does not match clinical

performance. As algorithms attempt to improve their classification they are compet-

ing against experts in a field that is still being understood. Progress is slow because

it is difficult for algorithms and clinicians to be confidant in the reasoning of their
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Figure 2.3: Each subject from the PhysioNet data set completed 14
trials. Two of these trials (TR1 and TR2) are one minute calibrations
trials of resting eyes open and resting eyes closed. The remaining 12 trials
are two minute recordings of a predefined sequence consisting of a task
state and resting state. With four tasks states, each task is repeated three
times producing four groups of task related trials. These trial groups
provide the basis for cohort retrieval on the trial level.

classifications. This makes it difficult to produce accurate testing datasets given the

competing views on what are accurate annotations.

Clinicians annotate EEGs recordings to diagnose their patient. Typical clinical

recordings are 20 minutes or more depending on the nature of the assessment. Each

recording is accompanied by a detailed EEG report [26]. These reports must docu-

ment the subject, the testing carried out, and address the clinical questions4. The

interpretation of an EEG recording is the main criteria when affirming a diagnosis, but

must be supported by evidence indicating the recording is normal or abnormal[19].

This annotation and reporting process relies on the clinician’s ability to review

segments of the full recording for waveforms relevant to the clinical questions. A

4Clinical questions are posed prior to testing by the clinician. They serve to inform the clinician
about the patient, their condition, and what outcomes are possible. As an example, if a patient
has seizures while sleeping it would be necessary to determine the location of these seizures, their
severity, and how such seizures compare to other patient populations. These would all be questions
answered through EEG recordings.
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clinically relevant interpretation of the patient’s condition may not be forthcoming

without reviewing the reports of other tests and/or subjects [26]. This meta-analysis

across subjects is a clustering process informed by medical records and annotations.

However, the EEG reports focus on determining if the results inform the clinical

questions or not [19]. This does not require all relevant phenomena to be annotated,

as only enough data must be collected to affirm a position. As such a clinician’s

ability to cluster could be hampered by their ability to annotate, which is suggested

by tracking a clinician’s ability to reproduce classifications [90].

In contrast, an algorithm’s approach to annotation is much more broad. Depend-

ing on the desired outcome, algorithms can perform a normal/abnormal classifica-

tion [6], annotate specific epochs [14] or combine these approaches to classify EEG

recordings [34]. Each of these classification techniques is a subset of the classification

approach used by clinicians. Performance of these algorithms is measured against

gold standards generated from training data annotated by clinicians [14, 24]. The

goal is develop algorithms capable of mirroring clinical performance which limits the

strength of the algorithms to the strength of the clinicians.

Depending on the output of these algorithms, they are capable of clustering EEG

recordings in a way clinicians cannot replicate. The ability to infer similarity of wave-

forms, epochs, and entire recordings across subjects is important in the development

of robust BCI [71] and bio-metric applications[41]. In this area algorithms exceed

the ability of clinicians by shifting how EEG recordings are evaluated through novel

channel and feature selection [63, 64, 66].

Specifically, bio-metric algorithms can determine the similarity of one subject to

another [41, 61]. This makes bio-metric subject verification the closest analog to

I-Vectors, but they are not limited to subject comparisons. Instead they offer the

ability to discriminate on multiple facets of the data without needing the same extent

of bio-metric pre-processing [91]. This makes their application to EEG recordings
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interesting as I-Vectors may be capable of bridging classification between algorithms

and clinicians.

Defining Similarity via Cohen’s Kappa

It is difficult to produce annotated sets of EEG recordings without clinical support.

To ensure the accuracy of these sets it is necessary to have multiple clinicians annotate

the same data to build a consensus-based annotation. This process invites each

clinician’s bias into the annotation process which must be tracked and controlled in

terms of intra-rater and inter-rater similarity scores. These scores provide a sense of

strength of a clinician’s ability and robustness of a dataset as a function of agreement

evaluated as Cohen’s Kappa (κ).

Table 2.3: Table of Cohen’s Kappa

S1
A B

S2
A q w
B z x

Given two raters and their tallies for class A or B in Table 2.3, their inter-rater

agreement κ is calculated as follows:

κ =
po − pe
1− pe

= 1− 1− po
1− pe

(2.2-1)

po =
q + x

q + w + z + x

pe =
q + w

q + w + z + x
∗ q + z

q + w + z + x
+

z + x

q + w + z + x
∗ w + x

q + w + z + x
(2.2-2)

In the above equation, po finds the percentage of agreement between the two raters5.

Then pe finds the percentage the raters chose the same label, how often S1 chose A

5In the event the two raters are the same clinician, the agreement represents intra-rater agreement
instead of inter-rater agreement.
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and S2 chose A. The calculated expectation of similarity, pe, is used to control for the

outcome of similarity, po. The grades of agreement are quantified as follows: { < 0

poor; 0− 0.20 slight; 0.21− 0.40 fair; 0.41− 0.60 moderate; 0.61− 0.80 substantial;

0.81− 1.00 almost perfect} [92].

2.2.1 Clinician Classification

When clinicians annotate EEG recordings it is important that they use the same

terminology when describing waveforms. Without a shared vocabulary EEG reports

would be ineffectual for diagnostics and documentation[26]. Gaspard et al.[22] tested

49 clinicians’ agreement on terminology by asking them 409 questions about 37 pre-

selected EEG waveforms. This removed the task of finding the epochs of interest

which enabled the experiment to isolate a clinician’s ability to describe the waveform

activity in the epoch.

Each clinician’s background varied in terms of experience (2-15+years) and train-

ing (adult or pediatric neurology). The epochs were sourced from critical care patients

exhibiting PLEDs, GPEDs, seizures, and other rhythmic activity. Each 10 second

epoch was a modified biploar montage filtered for signals between 1Hz-70Hz. From

these epochs, clinicians made categorical assessments based upon the presence of a

seizure and dominant morphologies and ordinal assessments based upon the physi-

cal properties on the signals (sharpness, amplitude, frequency, etc). The overall and

inter-rater agreement of the clinicians is presented in Table 2.4.

In 12 of the 15 categories, the clinicians’ exceeded an agreement of 70% and 7 of

the 15 showed near- perfect (0.81-1.00) κ statistics. The categories with the lowest

agreement and weakest κ statistics were categorical classifications. With only 3 mor-

phologies reporting κ below substantial (0.61-0.80), the results suggest the clinicians

perform well as a group. Yet, those three categories indicate a universal blind spot

that would be passed on to an algorithm built from this annotated data. Since the
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Table 2.4: Each terminology item, aside from Seizure, could be classified
with multiple responses. Fast Activity could be yes, no, or no applica-
ble while Phases were 1, 2, 3, >3, not applicable forcing the clinicians to
articulate their classifications. Agreement specifies the percentage of wave-
forms classified correctly. The κ score indicates the amount of inter-rater
agreement.

Terminology Item Agreement (%)
κ statistic
(95% CI)

Categorical
Seizure 93.3 91.1 (90.6-91.6)
Main Term 1 91.3 89.3 (89.1-89.6)
Main Term 2 85.2 80.3 (79.4-81.2)
Triphasic Morphology 72.9 58.2 (56.1-60.2)
Plus + Modifier 49.6 33.7 (32.4-35.1)
Any + 59.3 19.2 (17.5-20.9)
+ Fast Activity 71.9 65.5 (64.4-66.7)
+ Rhythmic Activity 76.5 67.4 (66.5-68.3)
+ Spike or Sharply Contoured 83.9 81.8 (81.2-82.5)

Ordinal
Sharpness 91.5 84.8 (84.3-85.2)
Absolute Amplitude 96.5 94.0 (93.8-94.2)
Relative Amplitude 71.8 66.4 (65.3-67.4)
Frequency 97.8 95.1 (94.9-95.2)
Phases 89.9 83.0 (82.6-83.4)
Evolution 65.6 21.0 (19.7-22.2)

contents of epochs are known, this show how difficult it is for clinicians to agree on

labeling of known wavefroms.

The cause of these biases may be that clinicians are evaluated on their annotations

indirectly. Their diagnosis is not solely based on the EEG, but also the patient’s

medical history. In Halford et al. [90] the importance of detecting epileptiform

transients (ETs) is critical for diagnosing epilepsy. Failing to annotate some of the

ETs does not change the diagnosis because the clinicians are primed to make a decision

about epilepsy. Individually the 18 tested clinicians are unable to produce a Gwet

agreement coefficient6 over 0.50 with the rest of the group. This indicates a weak

6The Gwet’s AC2 is an alternative to κ statistics for quantifying inter-rater similarity, but is
bounded over the same range [93].
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agreement among the clinicians. Despite varying levels of certification and years of

practice, there are no distinct indicators of what produces a better annotator.

The difficulty in producing accurate annotations with respect to others is a mix-

ture of finding the waveforms and then correctly labeling them. These problems are

documented to various degrees as clinicians were tested for the annotation skills on

critically ill patients [29], patients exhibiting seizures [21, 23], comatose cardiac pa-

tients [28], and sleeping subjects [80]. The following two sections review clinician

inter-rater and intra-rater agreement as a function of the type of EEG data.

Clinician Inter-rater Agreement

The previous section discussed this broadly and with the benefit of the waveforms

being pre-selected. However, when clinicians are asked to annotate longer epochs the

discrepancies shift from clinical knowledge to issues of annotation style. Inter-rater

agreement is the ability of one clinician to agree with one or more other clinicians.

A pedantic instance of this is seen in Figure 2.4 where two clinicians have labeled

a seizure events [23]. In the highlighted section, Rater B identified two discrete events

while Rater A labels them as one event. Each of them notices at least 5 other seizure

events, but their agreement is weakened because of their three misidentified events.

Figure 2.4: An example of how open ended annotation styles lead to
inconsistencies in evaluating the accuracy of inter-rater agreements.
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This example comes from Halford et al.[23] where the agreement of 8 clinicians

was test on 30 one hour Intensive Care Unit (ICU) EEG recordings from 20 seizure

patients. Each clinician was asked to label PDs events, a strong indicator of a seizure,

and true seizure events. The resultant κ statistics for the group were 0.58, moderate,

for seizures and 0.38, fair, for PD. These results highlight the difficulty in finding

consensus by suggesting it goes beyond what their background and experience. There

is a clear issue in how clinicians select waveforms in the recordings, which results in

less data being included in any gold standard.

Gerber et al.[29] conducted a study with a more expansive classification list than

Halford et al.’s by expanding the available labels and varying the amount of available

data. Two data sets, split into epochs of 10 seconds and epochs >20 minutes, were

built from 11 subjects with convulsive seizures, status epilepticus7. The results, Table

2.5, show the clinicians’ consensus is stronger on the shorter epochs (0.04-0.68) than

the longer epochs (0.07-0.44).

Table 2.5: Results of classification using segments of 10 seconds and
> 20 minutes in length. Five clinicians annotated the shorter epochs and
all seven clinicians annotated the longer epochs. The κ statistics for both
datasets are reported along with the raw agreement percent for the 20min
epoch dataset.

Term
10s Epoch

Kappa
20min Epoch

Kappa
20min Epoch

Agreement (%)

Rhythmic/periodic vs. excluded 0.68 0.44 82
Localization 0.49 0.42 66
Morphology 0.39 0.37 69
Frequency 0.34 0.27 78
“Quasi” vs. Not 0.04 0.07 57
“Frontally Predominant” vs. Not 0.40 0.08 68
+ vs. Not 0.12 0.08 62

7Status epilepticus is the categorization of a person’s state when seizures occur close together or
occur for a prolonged duration(>5 minutes).
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The most critical labels (rhythmic/periodic vs. excluded, localization, and mor-

phology) exceed 65% agreement, but only rhythmic/periodic exceeds 80%. This

means that on average each clinician failed to recognize 20% to 35% of what the

other clinicians annotated. Without definitively labeled data it is impossible to de-

termine if the 35% gap is due to false positives or false negatives. Such knowledge

could be used to determine if they were over-jealous or overly-shrewd in their an-

notations. However, it is possible their performance is impeded by alignment issues

similar to those seen in Halford et al.’s work. The results otherwise suggest that the

clinicians agree at a moderate to fair level.

Gerber et al.’s at best substantial inter-rater agreement is inline with Halford et

al.’s and this trend continues in the work of Grant et al.’s work [21]. Their study

evaluated the agreement of 6 clinicians (adult and pediatric neurologists) classifying

7 categories (status epilepticus, seizure, epileptiform discharges w/ and w/o slowing,

slowing, normal, uninterpretable) of waveforms in 150 30 minute EEG epochs. Each

clinician reviewed a unique set of 150 epochs from the full dataset’s 300 30-minute

epochs. Over the 15 inter-rater pairs, their inter-rater κ scores ranged from 0.29 to

0.62 suggesting fair to substantial agreement among the pairs.

Westhall et al. [28] asked 4 clinicians to evaluate EEG recordings for specific

to Prespecified EEG patterns, Background EEG, or Periodic or rhythmic patterns.

Each > 20 minute recording was drawn from a pool of 103 comatose cardiac arrest

patients. For the prespecified EEG patterns the κ statistics ranged from 0.42 to 0.71,

Table 2.7. Meanwhile, the background and periodic patterns produced inter-rater κ

statistics between -0.07 to 0.82, Table 2.8.

Just as the results of Gerber et al. showed strongest performance for critical

waveforms, Westhall et al. does as well. However, performance outside these critical

waveforms is extremely poor in terms of classification agreement and κ statistics.

This may be caused by the increase in classification categories, compared to Gerber
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Table 2.6: Inter-rater agreement for the 15 clinician pairs observed by
Grant. The pair averaged κ score is 0.44 giving the overall agreement as
moderate.

Reader Pair κ score

AB 0.43
AC 0.52
AD 0.37
AE 0.37
AF 0.50
BC 0.48
BD 0.41
BE 0.37
BF 0.29
CD 0.49
CE 0.56
CF 0.62
DE 0.48
DF 0.35
EF 0.42

Table 2.7: Agreement and Kappa statistics using the ACNS classification
labels for inter-rater performance on prespecified EEG patterns.

EEG Waveform Agreement (%) κ statistic

Highly Malignant 75 0.71 (0.55-0.79)
Malignant 63 0.42 (0.34-0.51)
Benign 63 0.42 (0.34-0.51)

et al., Grant et al., or Halford et al, but more likely suggests the clinicians funda-

mentally disagree over the non-prespecified EEG patterns. Where background EEG

or periodic patterns necessary to make a diagnosis it would be difficult to resolve an

understanding from the work of these clinicians.

Clinician Intra-rater Agreement

Clinicians difficulty in producing acceptable κ statistics in inter-rater testing ex-

tends to intra-rater testing as well. In most cases, intra-rater agreement addresses

a clinician’s ability to reproduce annotations on data they’ve previously seen. Ger-
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Table 2.8: A breakdown of the ability of clinicians to adequately annotate
background events and repeated EEG patterns.

Inter-rater Intra-rater
Agreement (%) κ Agreement (%) κ

Background EEG
Continuity 37 0.76 62 0.86
Voltage 47 0.65 75 0.31
Predominant Frequency 3 0.36 30 0.17
Reactivity to sound 42 0.25 82 0.76
Reactivity to pain 32 0.17 69 0.44

Periodic or rhythmic patterns
Periodic or
rhythmic discharges

50 0.56 80 0.55

Prevalence 39 0.49 70 0.58
Typical frequency 6 0.82 55 0.80
Maximum frequency 14 0.74 54 0.68
Sharpness 74 0.73 75 0.58
Absolute amplitude 44 0.42 86 0.59
Stimulus induced pattern 63 0.19 80 0.48
Evolution 13 0.19 76 0.30
Plus Modifier present 19 0.17 84 0.28
Triphasic morphology 61 -0.07 63 0.00

ber et al., Grant et al., and Westhall et al. ran specific intra-rater experiments to

contextualize the inter-rater results.

Gerber et al. evaluated the ability of 5 clinicians to reproduce their results on the

10 second epochs 12 months after the original study. The same epochs were used,

presented in a randomized order, and each clinician ask asked to follow the same

classification scheme as the original study. The resultant κ statistics, Table 2.9, show

the difficulty in a clinician agreeing with themselves. Compared against inter-rater

agreement, Table 2.5, the intra-rater agreement is only marginally better.

The follow-on experiment in Grant occurred 4 months after the initial study. In

this case, the range of intra-rater agreement (0.33 to 0.73) is better than that of the

inter-rater agreement (0.29 to 0.62). However, the intra-rater results suggest clinician
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Table 2.9: The 5 clinicians in the original 10s epoch evaluations, re-
evaluate the same set of data 12 months later. These results represent
how well each clinician agrees with their original classifications.

Clinician
Rhythmic/

Periodic
vs. Excluded

Local. Morp. Freq.
“Quasi”
vs. Not

“Frontally
Predominant”

vs. Not

“Plus”
vs. Not

1 0.79 0.58 0.67 0.30 0.28 0.32 -0.03
2 0.86 0.60 0.55 0.24 0.25 0.38 0.00
3 0.68 0.51 0.15 0.28 0.32 0.45 0.28
4 0.73 0.68 0.58 0.29 -0.08 0.57 0.24
5 0.76 0.46 0.40 0.19 0.28 0.67 0.00
Mean κ 0.76 0.57 0.47 0.26 0.21 0.48 0.098

A is the worst performer. This in conflict with clinician A’s inter-rater agreements,

Table 2.6. The worst inter-rater agreements do not involve clinician A, but rather

clinicians B, D, and F. These results suggest inter- and intra-rater agreement scores

are poor tools for understanding a clinician’s annotation ability.

Table 2.10: The 6 clinicians were tested twice 4 months apart. These
agreement scores represent their intra-rater consensus on 7 classification
categories.

Clinician κ score

A 0.33
B 0.50
C 0.58
D 0.67
E 0.73
F 0.64
Mean 0.59

The trend of intra-rater agreement, Table 2.11, scoring higher than inter-rater

agreement, Table 2.7, is also exhibit by the clinician’s test by Westhall et al.. Re-

peating the original experimental protocol 6 months later produced intra-rater very

high classification agreement, Table 2.11. However, the κ statistic for highly malig-

nant, 0.64, is lower than its inter-rater counterpart, 0.71. So despite each clinician

improving their ability to identify the waveforms, they were unable to identify the
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same waveforms as they did in the previous experiment. This speaks to nature of

clinicians only in search of enough information to affirm a diagnosis or not.

Table 2.11: Agreement and Kappa statistics using the ACNS classifica-
tion labels for intra-rater performance.

EEG Waveform Agreement (%) κ score

Highly Malignant 88 0.64 (0.48-0.83)
Malignant 98 0.93 (0.57-1.00)
Benign 98 0.93 (0.57-1.00)

The other features in Table 2.8 represent less discrete facets of EEG waveforms.

These features require qualitative analysis which increases the difficulty of classi-

fication consensus, exemplified by the abundance of slight and poor inter-rater κ

statistics. Intra-rater agreement shows minimal improvement of κ statistics, while

the averaged intra-rater agreement % is better than its counterpart. This suggests

clinicians are capable of reproducing their work, but remain prevented from doing so

by their innate biases thus limiting their κ statistics.

As a whole these studies indicate clinicians are consistent within themselves, and

their cohorts, when classifying EEG recordings. Yet, that consistency does not appear

to translate into producing gold standard datasets. While the results of each study

offer suggestions as to why such consensus is difficult to reach, there is no single

conclusive factor. The size of the epochs, the category of classification, the duration

of the annotated waveform, and the clinician’s training and experience all impact the

resultant κ statistics produced by clinicians. Their inability to come to agreement

does not diminish their ability to diagnosis, but does limit the quality of data available

to train algorithms.

2.2.2 Algorithm Classification

Clinicians utilize filtering and montages to enhance their ability to interpret EEGs

and ML algorithms are no different. For both the clinician and the algorithm it
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is necessary to select only the range of frequencies relevant to the brain. In that

approach nothing changes, but algorithms require this filtered data to be converted

into features. A clinician would apply a montage to the raw data producing features

via differential electrode pairings. While the features for algorithms is often more

involved.

Each study may utilize a unique feature set [14], borrow from existing work [94],

or take the data in its raw form [95]. The task of feature development is beyond the

scope of this work, but it is important to understand a few concepts related to EEG

features. First, the term epoch is defined as the area in which features exist. Raw

data is turned into features with epochs of n number of seconds. This forces trade

offs between categorizing phenomena occurring rapidly, PDs, or slowly, such as sleep

state. However, it enables data reduction by condensing all the samples in an epoch

into a feature vector. Given the number of channels in a recording, their duration,

and sample rate EEG recordings produce significant amounts of data. Dimensionality

reduction is the other critical role of EEG features as it allows computational solutions

to approach near real-time classification.

Thus features must excel at minimizing the amount of necessary data while en-

suring nothing of significance is ignored. A difficult task which often sees features

sets developed for specific use cases like seizures [13], BCIs [96], sleep [24], and other

behaviors of interest such as alcoholism [76] and ADHD [97]. The combinations of

features and epochs allows each study to focus on their specific goals, but makes a

universal feature set difficult to define.

With each advancement in ML, the EEG community works to adopt the latest

technique to their medium. As each technique matures it becomes another option

for classifying EEGs. This is the goal of using I-Vectors and follows in the path

of techniques like K-Nearest Neighbors (KNNs), Support Vector Machines (SVMs),

Neural Networks (NNs), and GMMs. Often a given a combination of features and data
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may perform better or worse depending on the algorithm. Therefore the performance

of these older algorithms is used to benchmark not only new algorithms, but also

feature.

The following sections reviews algorithms that use statistical models, supervised

algorithms, and unsupervised algorithms. Statistical models form the basis of numer-

ous ML techniques and are frequently used to filter out artifacts via thresholding,

detect ERPs, or interpret common spatial patterns (CSPs). Supervised algorithms

use labeled data and a prior knowledge to build classifiers. Meanwhile, unsupervised

algorithms leverage statistical modeling of large sets of unlabeled data to build clas-

sifiers. All of these approaches can be applied to data generated from sleep, seizures,

ADHD, or BCI EEGs. While I-Vectors will not be tested in all of these areas, the

increasing complexity of detecting artifacts, sleep, and motor control signals presents

a complete picture of EEGs.

Statistical Algorithms

Statistical modeling of known EEG phenomena provides an easy platform for al-

gorithm based classification. The type of modeling depends on the waveform, but

all the classification follows the same binary labeling of inside our outside the model.

These approaches are mathematically straightforward and require minimal data hav-

ing been built entirely on the knowledge of clinicians. This makes them susceptible

to variations in data and thus unreliable on data not accounted for in their initial

modeling.

The use of an ERP known as P300 drives the most basic BCI platform of P300-

spellers. A P300-speller detects response to auditory or visual stimulus enabling a

person to spell words with their brain [73]. This phenomena is ideal for statistical

modeling as it only requires brief training on a given subject to tune feature weights

for acceptable performance [98].
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Guger et al. [98] showed 5 minutes of training were enough to elevate the majority

of the subjects over 60% accuracy, Table 2.12. The training period asked the subjects

to spell specific words and then used Linear Discriminate Analysis (LDA) to tune the

weights of the 8 electrodes. Subjects operated the speller by responding to a single

character being flashed, single character speller, or by alternating flashing of rows

and columns, row-column speller.

Table 2.12

Classification
accuracy (%)

Row-column
speller % of sessions

81 subjects

Single character
speller % of sessions

38 subjects

100 72.8 55.3
80-100 88.9 76.3
60-79 6.2 10.6
40-59 3.7 7.9
20-39 0.0 2.6
0-19 1.2 2.6

This approach is highly effective at enabling communication without requiring

large amounts of data or processing beyond LDA and frequency filtering. The main

drawback is the time required to produce a single letter, 28.8 seconds for row-column

spelling and 54 seconds for single character spelling. The technique itself is also

very specific to ERPs which is not commonly associated with medical abnormalities.

However, statistical models exist for clinical diagnosis, Alzheimer’s Disease (AD) [99],

ADHD [100], and seizures [101].

Seizure classification is a principle driver of EEG research with a focus on seizure

prediction. Chu et al. [13] apply attractor states8 to EEG data in an effort to

improve seizure prediction and detection on two datasets, the Children’s Hopsital of

Boston Massachusettes Institute of Technology Scalp EEG Database (CHB) and adult

8Attractor states are stable states which the data trends towards given its natural behavior. The
concept originated from the work of Scheffer et al.[101], but is beyond the scope of discussion in this
work.
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seizures from the Department of Neurosurgery of Seoul National University Hospital.

The data is split into 20 second half-overlapping channel-independent epochs that

are converted to frequency banded Fourier coefficient features. These features are

evaluated against models of seizure and non-seizure states with a seizure prediction

horizon of 30 seconds.

Predictions on the training data had an average sensitivity of 90.20% and 86.67%

on the testing data. As sensitivity decreased, so too did the average false positives

per hour from 0.476 on the training data to 0.367 on the testing data. The highest

false positives per hour were 1.667 and sensitivity for multiple subjects was 0.0%. The

results suggest a simple model can predict seizure onset, but it is not robust enough

to maintain adequate performance across all 17 subjects.

Another principle focus of EEG research is sleep detection. Warby et al.[24]

compared the performance of six statistical sleep spindle algorithms {a1[102], a2[103],

a3[104], a4[105], a5[106], and a6[55]} to clinicians and non-experts. A sleep spindle

dataset consisting of 32,112 25 second single channel epochs from 110 healthy subjects

was curated to provide testing and verification data. A gold standard verification set

was built from 2,000 epochs evaluated by an average of 5.3 clinicians.

Each of the algorithms applied different flavors of energy thresholding (Root Mean

Squared (RMS), PSD, or Fast Fourier Transform (FFT)) on a bandwidth (9-16Hz)

filtered portion of the epochs. The performance of the algorithms, Table 2.13, was

not in agreement with the gold standard (GS), but the algorithms did agree with

the automated group consensus (AGC). Overall, the algorithms were found to be

the weakest and the clinicians the strongest at classifying sleep spindles. With non-

experts performing better than the algorithms, the work suggests statistical based

algorithms are not ideal for waveform classification.

In Huang et al. [107] it was found that classification of AD against control subjects

was 84% correct using a combine alpha (8.0-11.5Hz) and theta (4.0-7.5Hz) global field
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Table 2.13: The sleep spindle detection agreement, evaluated as F1

scores, shows the relationship between each algorithm and the expert
group gold standard (GS), non-expert group consensus (NGC) and au-
tomated group consensus.

Algorithm GS NGC AGC

a1 0.28 0.22 0.28
a2 0.28 0.30 0.40
a3 0.21 0.17 0.21
a4 0.50 0.46 0.79
a5 0.52 0.49 0.84
a6 0.41 0.37 0.48

potential (GFP), a generalized EEG amplitude. The study evaluated 15 2 second

epochs from 93 subjects to understand the variability in EEG patterns of subjects

with AD, mild cognitive impairment (MCI), and healthy controls. They produced

FFTs from each epoch and decomposed them based upon their GFP across frequency

bands ( delta (1-3.5Hz), theta, alpha, beta 1 (12-15.5Hz), and beta 2 (16-19.5Hz) ).

These features are localized based upon their location: antero-posterior (Loc-X), left-

right (Loc-Y), and superior-inferior (Loc-Z). The results of the study are shown in

Table 2.14.

In addition to AD it is possible to classify ADHD through a subject’s theta beta

ratio (TBR) [108]. Lenartowicz et al. [108] review multiple approaches for distinguish-

ing ADHD patients from controls through the use of temporal and spatial features

and ratios between energy in bands or channels. The studies found a range of perfor-

mance when using TBR as a discrimination metric. Monastra et al. [100] reported an

accuracy of 91% (90% sensitivity, 94% specificity) while Buyck et al. [109] reported

an accuracy of 49-55%.

Detecting ADHD through EEG recordings appears possible based on the TBR,

but Lenartowicz et al. conclude the technique is not reliable enough to be a diagnostic

test. The work of Monastra et al. was carried out in 2001, but advancement in the

field, like Buyck et al.’s 2014 work, indicate variations in ADHD morphology make
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Table 2.14

Band Group GFP Loc-X Loc-Y Loc-Z

Delta AD 13.4(9.3) 12.5(9.8) 1.8(4.2) -5.6(6.0)
C 7.3(2.3) 12.9(8.6) 0.1(4.7) -4.4(5.8)
MCI 10.4(5.2) 12.2(11.3) 1.8(4.6) -6.2(6.0)

Theta AD 15.6(14.6) -2.6(7.6) 2.1(5.2) -0.2(6.9)
C 8.0(6.5) -5.7(7.2) 1.4(5.9) -4.0(5.0)
MCI 10.2(10.8) -3.6(12.3) 2.7(5.5) -2.0(6.3)

Alpha AD 14.1(14.5) -12.6(11.5) -2.1(7.1) 1.7(8.9)
C 31.2(30.2) -21.0(7.3) -0.4(5.4) -3.4(7.2)
MCI 40.1(43.3) -19.9(11.1) -0.1(6.3) -1.7(9.3)

Beta 1 AD 3.7(3.7) -6.2(11.2) -1.5(8.9) 5.2(9.9)
C 3.6(1.9) -12.1(10.1) 2.2(5.8) 1.4(9.1)
MCI 5.2(5.2) -13.9(12.3) 1.3(6.9) 2.5(8.8)

Beta 2 AD 2.1(1.7) 0.3(12.8) -2.3(10.8) 8.3(10.6)
C 2.9(1.7) -8.2(11.8) 1.8(7.4) 4.4(8.6)
MCI 4.2(4.6) -8.8(13.9) 1.0(10.4) 4.8(11.0)

TBR a poor classification metric. Despite clear clinical utility in using EEG recordings

for ADHD diagnosis [110], the condition was not understood well enough to rely solely

on a statistical modeling.

Incidentally, Buyck et al. found that TBR did make an excellent, AUC 0.965,

discriminator for age classification. This shows the difficulty in attempting to find an

ideal feature set for classification as the same features can express multiple conditions.

Detecting, and often correcting, artifacts is an exemplary example of this problem as

artifacts often present with properties similar to waveforms of interest [8].

The most common artifacts (eye blink, muscle artifacts, and eye movements) are

caused by the subject making them difficult to mitigate during recording. Jung et

al. [111] indicate the overlap between artifacts and waveforms of interest prevents

many novel artifact detection techniques from broad application. In their approach,

the performance of independent component analysis (ICA) is compared against prin-

cipal component analysis (PCA). Both of these algorithms are effective methods for
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performing factor analysis which attempts to produce a simplified set of underlying

statistical distributions.

From these decomposed distributions Jung et al. show can be effective, but ICA

produces better results. Both techniques are predicated on the distributions having

linear independence and non-Gaussian distributions. While these assumptions may be

correct for artifacts, it is not assured for all types of EEGs waveforms. Delorme et al.

[112] devised additional criteria9 specific to artifacts to improve artifact classification

building on Jung et al.’s work. They applied six thresholding schemes to raw data

and data processed each with ICA.

Their results, Figure 2.5, showed that applying ICA improved artifact detection

compared to the raw data, specifically on artifacts with larger signal to noise ra-

tios. Despite the increased complexity of the algorithm, performance gains were not

seen in all cases. This suggests that artifact type and detection scheme may dictate

performance especially at lower signal to noise ratios.

The success of these ICA based approaches lead to Fully Automated Statistical

Thresholding for EEG artifact Rejection (FASTER) [8] and Automatic EEG artifact

Detection based on the Joint Use of Spatial and Temporal features (ADJUST) [113].

ADJUST and FASTER both provide a universal artifact detection and rejection tech-

nique applicable to multiple types of EEG data. They were developed in response to

the time it took clinicians to review and clean EEG recordings for common artifacts

such as blinks, eye movements, electromyography (EMG) artifacts, and white noise.

9They compared five methods to determine how best to identify artifacts within a recording. (1)
Exterme values: Artifacts detected if amplitudes exceeded a predetermined threshold. (2) Linear
trends: Least squares thresholding against an average of the activity in an epoch. (3) Data improba-
bility: Likelihood of an observations with respect to all observations from each channel. Each epoch
became a product of likelihoods which should decrease if artifact events are detected. (4) Kurtosis:
Measure the ‘peakedness’ of each epoch’s distribution. (5) Spectral pattern: model scalp topology
in conjunction with frequency spectrum.
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Figure 2.5: Classification performance of thresholding approaches based
upon the signal to noise ratio of the artifact and the signal.

FASTER evaluates a parameter set consisting of variance, Hurst exponent10, am-

plitude range, and channel deviation over five thresholding levels (channel, epoch,

epoch ICA, channel-epochs, and channel average). The process is complex, but they

achieve 60% sensitivity and 97% specificity on the epochs from 47 subjects recorded

with 128 channels, Table 2.15.

Table 2.15: The sensitivity and specificity at the channel and epoch level
for FASTER with respect to different channel configurations.

Channels
Channel

Sensitivity(%)
Channel

Specificity(%)
Epoch

Sensitivity(%)
Epoch

Specificity(%)

128 94.47 98.96 60.24 97.53
64 97.02 98.48 61.83 97.54
32 5.88 96.81 58.64 97.49

10The Hurst exponent is a measure of the changes in lag observed from the auto-correlation of
pairs of points in a time series.
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ADJUST applies ICA on the filtered electrode data. It then uses spatial and

temporal feature extraction to classify and remove artifacts. The process is less

complex than FASTER, but is able to match a clinician’s cleaned dataset with 95.2%

accuracy. They show subject independent artifact defection is possible as the training

dataset (21 subjects) and validation dataset (10 subjects) are comprised of unique

subjects. This contrasts with the failure of ADHD TBR to discriminate over unique

datasets.

Artifact detection and correction continues to be an active research topic, but

the reliance on ICA remains. Mahajan et al.[38] report exceptional performance

using ICA on 12 electrodes followed by modified multiscale sample entropy (mMSE)

and Kurtosis and thresholding. Their eye blink detection algorithm reported 90%

sensitivity and 98% specificity across four subjects.

These results are promising, but come from one dataset focused on classifying

one type of artifact. Classifying a single well defined waveform on a limited dataset

appears to be the extent of these ad-hoc techniques. Attempts at classifying multiple

artifacts across varied datasets with simple statistical modeling fails to provide ro-

bust classification. To develop algorithms capable of matching clinician performance

researchers rely on ML algorithms.

Supervised Algorithms

Supervised ML algorithms build statistical models from labeled datasets. Instead

of applying ICA and thresholding based on the independent components, supervised

algorithms produce decision surfaces for each class of waveform. A decision surface

allows the relationships between the waveform’s features to dictate classification, in-

stead of relying on a features handpicked by clinicians. This provides supervised

algorithms with freedom in feature selection as the clinicians are in control of the

classification label, but not how to make that classification.
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For EEGs classification, classes are modeled from the epochs labeled by clinicians.

The algorithms attempt to emulate the clinician’s classification by making assump-

tions about the epochs and features of the targeted class. This exposes a limitation

of supervised learning: The algorithms must be shown what to classify making their

success dependent on the training data. As such supervised ML classification algo-

rithms of well known phenomena (artifacts, seizure, and sleep) are more prevalent

and robust than those from phenomena less well understood and less documented

like (BCIs, emotions, and workload).

The classification of sleep relies on detecting waveforms unique to the stages of

sleep: k-complexes and sleep spindles. There are also generalized behaviors con-

cerning brain activity that accompany these specific waveforms [80]. Changes to the

dominant EEG rhythms was previously shown to aid in ADHD and age discrimina-

tion. For example, dominant (>50%) alpha rhythms are indicative of wakefulness

when classifying for sleep. Each stage of sleep contains a mixture of unique wave-

forms and shifts in the rhythms of the brain. Stage 1 contains a split (50%\50%)

of alpha and delta rhythms. Stage 2 contains sleep spindles and diminished (<20%)

delta rhythms. Stage 3 sees a resurgence (20%-50%) of delta rhythms. Stage 4 and

REM sleep are classified by dominant delta rhythms.

These discrete states make adaptation of supervised ML algorithms straightfor-

ward. In Schluter et al.[34] the stages of sleep are classified with Decision Trees (DTs)

by bagging11 on an array of physiological data12. The resultant classification of the

33,542 30 second epochs drawn from 15 subjects is shown in Table 2.16. Identifying

wakefulness and REM sleep occurs with the highest accuracy, but the intermittent

11Bagging, bootstrap aggregating, is a technique employed to reduce the variance of ML algo-
rithms. The original data is re-sampled with replacement to produce multiple data sets containing
redundant data.

12Sleep studies frequently collect electrocardiogram (ECG), EEG,EMG, and electrooculography
(EOG). In this work, aside from EEG data, EMG and EOG are used to help classify the sleep
stages.
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stages of sleep are harder to classify. These results incorporate the use of data beyond

EEG suggesting EEG may not be sufficient for accurate classification.

Table 2.16: Confusion matrix of sleep stage classification covering wake-
fulness (W), each stage of non-REM sleep (S1,S2,S3,S4) and REM sleep.

W S1 S2 S3 S4 REM

W 97.0 2.4 0.6 0.1 0.0 0.5
S1 9.1 58.1 20.2 0.8 0.2 11.6
S2 0.5 4.7 91.7 5.5 0.8 0.2
S3 0.0 0.1 20.2 62.8 18.2 0.1
S4 0.1 0.2 1.0 12.6 86.8 0.1
REM 0.7 2.3 3.0 0.1 0.0 96.6

In Radha et al. [81] similar performance to Schluter is seen using only EEG data.

This data comes as 34 features per 30 second epoch from 10 healthy subjects. Two

supervised algorithms, Random Forest (RF) and SVM, classify the epochs into REM

sleep and 3 stages of non-REM sleep (N1,N2,N3). The records are annotated by a

trained clinician providing a reference that allows a κ statistic to be associated with

each algorithm’s performance, Table 2.17. Prior to classification the feature set was

optimized for channel (F4-A1), epoch duration (30), and number of features (20).

Table 2.17: Precision and recall of SVM and RF classification using a
single EEG channel for sleep stage classification. In this study non-REM
sleep is broken into only three stages (N1, N2, N3) making it difficult to
compare to the standard four non-REM stages of sleep shown in Table
2.16.

Sleep
Stage

SVM 1vA
Precision

SVM 1vA
Recall

SVM 1v1
Precision

SVM 1v1
Recall

RF
Precision

RF
Recall

W 0.86 0.51 0.75 0.71 0.78 0.73
N1 0.00 0.00 0.18 0.00 0.52 0.31
N2 0.86 0.83 0.85 0.88 0.85 0.91
N3 0.32 0.70 0.82 0.70 0.83 0.73

REM 0.56 0.55 0.58 0.79 0.69 0.70

Accuracy 0.69 0.77 0.80
κ 0.46 0.61 0.66
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These results confirm that performance is comparable to studies utilizing more

data, like Schluter in Table 2.16. The moderate to substantial κ statistics show that

the algorithms perform well, but it is likely that feature optimization driving perfor-

mance. Since sleep is not a unique phenomena and represents a major changes in brain

activity, the necessity of channel and feature optimization suggests the approaches

are not robust given the depth of knowledge.

Similar to sleep, the behavior of seizures can be categorized into four stages:

normal indicative of a normal healthy state, pre-ictal indicative of a build up to a

seizure, ictal indicative of an active seizure [114], and post-ictal indicative of the time

following a seizure [13]. Accurate detection of these, specifically pre-ictal, can help

improve diagnosis and treatment of epilepsy [5].

Seizure classification is one of he most common tasks automated by algorithms

[5]. There are commercial products available, but their performance is middling at

best [115]. Efforts to improve classification focus mainly on developing better features

beyond the common FFT based frequency band powers [14, 52, 13] and algorithms

[114, 25, 116]. These efforts are predicated on, and thus limited by, the data available

and the quality of the clinician’s annotations.

Wulsin et al.[14] utilize raw data and a diverse feature set13 associated with the

signals to provide a basis for annotation. Part of the work sets out to identify the

strongest features availableto improve performance on the channel-second epochs.

However, the strongest classifications utilize the raw data over the various feature

sets. In addition to the feature analysis, four classification algorithms (DTs, SVMs,

KNNs, and Deep Belief Networks (DBNs)) are evaluated, with SVMs being the top

performer, Figure 2.6.

13area, normalized decay, frequency band power, line length, mean energy, average peak/valley
amplitude, normalized peak number, peak variation, root mean square, wavelet energy, and zero
crossings
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Figure 2.6: Wulsin et al. evaluate algorithm peformance based upon
the F1 measure, where F1 = 2 ∗ (sensitivity ∗ precision)/(sensitivity +
precision). The results are presented to compare the algorithms and fea-
ture sets against each other. The feature sets are comprised of: raw256
represents the raw waveform data, feat16 are the hand selected 16 features,
and pca20 are the 20 features chosen by PCA.

Bajaj et al.[52] applied emperical mode decomposition (EMD)14 features feeding a

Least Squares Support Vector Machine (LS-SVM) classifier to identify seizures in 100

23.6 second channel based epochs from 5 subjects. EMD decomposes the nonlinear

and non-stationary components into intrinsic mode functions (IMFs) making it ideal

for generating features from non-stationary data like EEGs. The two dominant IMFs,

amplitude modulation and frequency modulation, provided sensitivity and specificity

of 100% with average sensitivity and specificity of 94%.

Acharya et al.[114] evaluated six supervised ML algorithms, Fuzzy Sugeno Classi-

fier (FSC), SVM, KNN, Probabilistic Neural Network (PNN), DT, and Naive Bayes

Classifier (NBC), and one unsupervised, GMM. Each algorithm was trained on four

features derived from entropy calculations: Approximate Entropy (ApEn)[118], Sam-

ple Entropy (SampEn)[119], and S1 entropy and S2 entropy[120]. The data from 5

healthy subjects and 5 epilepsy subjects was pre-processed to produced 200 healthy,

200 pre-ictal, and 100 ictal artifact free single channel 23.6 second epochs.

14A detailed review of EMD is omitted, but if interested the work of Huang et al.[117] introduced
technique and its applications.
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Table 2.18: Classification accuracy of entropy based feature sets for
various classifiers.

Algorithm Accuracy (%) Sensitivity (%) Specificity (%)

FSC 98.1 99.4 100
SVM 95.9 97.2 100
KNN 93.0 97.8 97.8
PNN 93.0 97.8 97.8
DT 88.5 98.3 91.1
GMM 95.9 98.3 95.6
NBC 88.1 94.4 97.8

Each algorithm’s performance is shown in Table 2.18. Sensitivity and specificity

are similar across the algorithms, but the best accuracy is achieved by the FSC

classifier. The separability of the trained seizure states (healthy, pre-ictal, and ictal)

produced a p-value less than 0.0001 for each of the features. With only 10 subjects in

the study and strong discrimination from the features, it is hard to assess the strength

of the individual algorithms given the lack of data diversity.

Differentiating the impact algorithms and features have on classification perfor-

mance becomes harder as algorithms increase in complexity. This requires exper-

iments deploying NN to benchmark themselves, as Ghosh-Dastidar et al. [25] did

when testing a novel wavelet-chaos-neural network, Levenberg-Marquardt Backprop-

agation Neural Network (LMBPNN), on seizure datasets. The data was transformed

into band specific features (standard deviation, correlation dimension, and largest

Lyapunov exponent) for each of the 100 single channel recordings coming from healthy,

pre-ictal, and ictal datasets. The 23.6 second epochs were evaluated by supervised

techniques (Radial Basis Functional Neural Network (RBFNN) and LMBPNN), an

unsupervised technique (k-means clustering), and statistical discriminant techniques

(Quadratic Discriminant Analysis (QDA) and LDA using Euclidean and Mahalanobis

distance metrics).
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Each frequency band was evaluated independently and then in various mixed-band

configurations to find the optimal classification. The results provided an exhaustive

analysis of the relationship between algorithm and feature set performance. The

majority of the classification performance is similar so only the maximum accuracy

is reported in Table 2.19. Despite the use of novel algorithms, the features appear

to be the driving force of classification. LMBPNN has poor classification accuracy,

below 50%, when using band-limited (0-60Hz) correlation dimension as a feature, but

superior performance with mixed-band features.

Table 2.19: The table reports the maximum accuracy achieved by each
algorithm given on a single or (*) mixed-band feature set.

Algorithm Maximum Accuracy (%)

k-means 59.3
LDA w/ Euclidean 79.6

LDA w/ Mahalanobis 84.8
QDA 85.5

RBFNN 76.5
LMBPNN 89.9

QDA* 93.8
LMBPNN* 96.7

Finding the right balance of features in terms of quality and quantity is a hurdle

for NN EEG classifiers. Subasi et al. [116] used a small subject set (5 subjects and 4

channel per subject) that produced 500 5 second epochs for seizure classification. The

epochs were labeled by two neurologists to produce a gold standard for evaluation

of epileptic or normal waveforms. Epoch classification was carried out by multilayer

perceptron neural network (MLPNN) with back-propagation, LMBPNN, and logistic

regression on features produced by discrete wavelet transform (DWT). The features

produced by the DWT span 6 frequency bands (0-3.125Hz, 3.125-6.25Hz, 6.25-12.5Hz,

12.5-25Hz, 25-50Hz, and 50-100Hz) that loosely align with standard EEG frequency

bands.
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Table 2.20: Performance comparison of Linear Regression versus

Classifier Accuracy (%) Specificity (%) Sensitivity (%)

Logistic Regression 89 90.3 89.2
MLPNN w/ backprop 92 91.4 91.6
LMBPNN 93 92.3 92.8

The performance of the three algorithms is presented in Table 2.20 with LMBPNN

coming out on top. These results come from one small unique dataset of ten subjects

which leaves doubt about performance on more generalized populations. The common

performance of the three algorithms suggests that feature selection may be more

important than algorithm selection. All of these incongruities reduce the likelihood

of educational advancement in terms algorithms, features, and understanding of EEGs

from this work.

Unsupervised Algorithms

Unsupervised ML algorithms operate in a similar fashion to supervised ML algo-

rithms, except they do not require labeled data. This means unsupervised algorithms

develop classification schemes from the data without any external knowledge. The

decision surfaces they create separate classes found by the algorithm as it maps the

statistical properties of the data. A downside to this approach is that it requires a

large amount of data to build representative models. The distribution of the data is

important as well because the lack of labels means underrepresented events may not

be included in the models despite being significant.

Given the need for larger datasets, the use of unsupervised classification of EEG

recordings is less frequent than supervised classification techniques. Often an unsu-

pervised algorithm is used as a comparison point, Acharya et al.[114] showed GMM

produced competitive accuracy and sensitivity, but not specificity, Table 2.18. How-

ever, Ghosh-Dastidar et al. [25] used k-means clustering and found it performed
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worse than the other algorithms, Table 2.19. As unsupervised techniques are more

dependent on the dataset than supervised techniques, it is not uncommon to see large

variance in performance.

Gabor et al.[121] tested a single unsupervised algorithm, a self organizing map

(SOM)15 NN, for seizure detection on 24 recordings from 22 subjects. The algorithm

was trained to classify seizures on features produced by a wavelet transform using 4

second epochs built from the 10 channels of each recording. A separate feature set

using 8 second epochs was used, but the duration was too long and masked short

seizures.

In total, 62 seizures were captured from the 24 recordings of which the algorithm

detected 56 (90%). However, the average false positives per hour (0.71) produces more

false positives than true positives given the average recording duration of 22.02 hours.

As discussed previously, unsupervised techniques are sensitive to the distribution of

the training data. In this case the age range (<1 to 43 years old), small training set

(5 of the 24 recordings), and epoch duration could be impacting performance.

Not all unsupervised algorithms focus on classifying the data, as some are deployed

for dimensionality reduction. The most common occurrence of this is the use of

unsupervised LDA in areas where clinicians’ skills are weaker such as BCI [37]. LDA

is factor analysis, in the family of ICA and PCA, but its behavior and application

finds it labeled as an unsupervised classification technique.

Vidaurre et al. [37] uses three flavors of LDA to enhance the performance be-

tween BCI training and feedback sessions. The core discrimination technique, LDAI,

is given as changes in the pooled mean (PMean) between the features seen in the

training and feedback data. Expanding on this, LDAII incorporates updates to the

covariance matrix with PMean and LDAIII scales the mean and covariance CSPs.

15A detailed review of SOMs is omitted, but if interested the work of Kohonen[122] formalized
the implementation. This technique attempts to mimic the structure of the brain by parsing the
data in an unsupervised fashion to create a flat, two dimensional, map linking elements of the data
together.
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These techniques were compared against a supervised LDA and mean to determine

the feasibility of the unsupervised techniques.

Figure 2.7: The comparative error rates between the supervised and
unsupervised adaptation techniques through changes in the error rate.
The pink plot shows the difference between a labeled, mean, and unlabeled,
PMean, classification.

The unsupervised techniques were proposed as a simpler alternative to the work

of supervised techniques. Their evaluation therefore depends on the being on par

with the supervised techniques which is shown to be the case in Figure 2.7. The data

for the comparison comes from calibration of 19 recordings of 10 subjects and shows

the supervised algorithms slightly out performing the unsupervised algorithms.

Further testing, with a dataset of 80 recordings from 80 subjects, shows that

PMean based algorithms meet or exceed the performance of the state of the art super-

vised approaches during feedback. The unsupervised technique exhibits robustness as

one class is removed from BCI feedback and outperforms the supervised algorithm in

Figure 2.8. These results are important because clinicians seldom label BCI datasets

and BCI recording sessions are more dynamic than seizure or sleep recording sessions.
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Figure 2.8: Performance on feedback data after training for supervised
adaptation and unsupervised PMean adaptation. The (left) impact of
removing one class from the feedback dataset for the supervised algorithm
(red line) and unsupervised algorithm (blue line). The (right) error rate
between the two algorithms during the online feedback experiments.

2.2.3 Bio-metric Applications

The use of EEG recordings as a means of bio-metric identification is not a new, but

has only recently gained momentum. Initial attempts were able to discriminate EEG

behavior between individuals and between different brain conditions [123]. This work

did not have discrete waveforms to find or frequency ratios to calculate, but instead

relied on direct comparison between subjects. Stassen [124] developed computerized

methods, borrowed from speech recognition, to recognize normal and schizophrenic

individuals based on their EEG spectral pattern. The style of this approach, finding

dominant properties in subject epochs, remains in use today [57].

Advancement of EEGs as a bio-metric tool focuses on the statistical properties

of each subject and is not reliant on clinician input. The independence from clini-

cians brings a need to control the dimensonality of the data which requires finding

novel ways to enhance the distinctions between subjects. This makes bio-metric ap-

plications open-ended as they cannot rely on the decision surfaces used for known

disorders. This use case aligns with the intended application of I-Vectors for differ-
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entiating epochs, channels, and subjects from each other based upon their inherent

statistical properties.

The initial efforts of those like VanDis et al. and Stassen focused on subjects at rest

with eyes closed and open. Similar experiments are still carried out in the the work of

La Rocca et al.[31, 62, 63] in order to optimize the accuracy, channels, features, and

speed of subject verification. Active state recordings have subjects perform mental

tasks such as imagining performing hand movements [125, 66], imagining speaking

syllables [64], or reading text[126].

Active and resting based data emphasizes that the qualities of subject authenti-

cation and identification exist regardless of brain state. Other works have gone so far

as to suggest a genetic basis underlies this separability [65, 36]. While interesting, the

genetics of brain uniqueness expands beyond the scope of this work. By focusing on

the techniques and results of active and resting based data studies comparisons can

be drawn between the structured waveform based annotations of artifacts, seizures,

and sleep.

Resting Recordings

The work of La Rocca et al.[31, 62, 63] focus on developing a novel set spatial and

temporal patterns to improve subject recognition accuracy. Brigham et al.[64] work

on data with imagined activities to test applications of subject identification during

mental tasks.

In [31] electrode sets of 2, 3, and 5 from 56 channels positioned in accordance with

the 10-20 system. Autoregressive stoichastic modeling and polynomial regression are

used to match each 3 second epoch across the 6 standard EEG bands. Performance

varies as a function of electrode set and EEG band with the trend of increasing

electrodes improving performance. Regardless of electrodes, the alpha band provides

the strongest classification accuracy. Peak performance of 98% classification accuracy
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is found with 5 channels using signals across the alpha, beta, delta, and gamma bands.

The best single band performance across 5 channels is 83% using the alpha band.

The follow on work in [63] uses ‘bump’ modeling to reduce the amount of data from

the 10-20 layout into a parametric model. These bumps are filters that enabling sparse

encoding. By generating a vector that controls mapping/weights of the bumps the

vectors act as the features. These vectors are classified with LDA based upon features

generated from groups of three channels drawn from the six standard EEG bands.

The training and testing sets are curated to provide overlapping frames, jointed, and

without overlapping frames, disjointed. This distinction shows the impact of frame

overlapping with the beta band performing best, 95% jointed and 74% disjointed and

the alpha band a close second, 96% jointed and 67% disjointed. Not surprisingly

performance is improved in the overlapping dataset.

In [62] the work is expanded beyond spatial patterns to temporal patterns. Instead

of focusing on specific regions, they direct attention to changes in power spectral

density over 1 second epochs. This forgoes their earlier attempts at reducing the

amount of data to be analyzed and instead produces Gaussian mixture distributions

as feature vectors. These vectors are evaluated via Mahalanobis Distance (MD) for

classification. Using the results for each region of the brain, classification accuracy

reached 100%.

Active Recordings

In Marcel et al.[125] a nine subject dataset is matched based upon their brain

activity performing three mental tasks. These mental tasks require the subjects to

imagine carrying out the following actions: moving their left hand, moving their right

hand, and speaking words with a common leading letter. Epochs of half seconds

with 50% overlap were turned into PSDs based upon their FFT. The resultant PSDs

were spatial filtered over the 10-20 electrode configuration with a surface Laplacian
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function. These features were trained on GMMs to produce baseline models for

subject verification over a range of mixtures. Evaluation scores were reported as half

total error rate (HTER) generated from the false acceptance rate (FAR) and false

rejection rate (FRR).

HTER =
FAR + FRR

2
(2.2-3)

The results, Table 2.21, of the left and right hand authentication of the subjects

suggests performance is improved with an increasing number of Gaussian mixtures.

These results represent the largest data set used, collected over three days. Results

using smaller sets showed the imaging word task performed worse for authentication

than the hand tasks.

Table 2.21: The FAR, FRR, and HTER of imagined hand tasks as a
function of Gaussian mixtures.

Mental Task Num. Gaussians FAR FRR HTER

Left

4 18.6 32.3 25.4
8 23.8 25.15 24.5
16 19.3 19.65 19.5
32 13.7 24.9 19.3

Right

4 18.4 40.5 29.4
8 20.6 29.5 25.0
16 15.0 23.6 19.3
32 13.0 30.15 21.6

In Fraschini et al.[66] phase synchronization is used for identifying subjects. The

PhysioNet resting eyes closed and resting eyes open trials were split into the standard

EEG frequency bands and segmented into 12 second non-overlapping epochs. Finding

the phase lag index (PLI) relationship between all the channels of an epoch produces

distinct mappings between subjects. These topologies are reduced via Eigenvector

Centrality (EC) to produce a feature vector for each epoch. The Euclidean Distance
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(ED) between each feature vector informs decisions of similarity between the subjects

for a given frequency band.

Table 2.22: EER of phase synchronization based subject verification

Band REO EER (%) REC EER (%)

Gamma 4.4 6.5
Beta 10.2 16.9

Brigham et al.[64] explored subject identification using two unique data sets using

the same approach. One data set consisted of Visually Evoked Potentials (VEPs) in

alcoholic and non-alcoholic 120 subjects. The other datset had 6 subjects uttering

two syllables, /ba/ and /ku/. Artifacts were removed from each set and processed

into PSDs of their respective trial lengths, 1 second for the VEP and 10 seconds for

the syllables. Using SVMs and KNNs the classification accuracy of each algorithm

was averaged from 4-fold cross-validation. After artifact removal the VEP data set

contained 9,596 trials for the 120 subjects and 3,787 trials for the 6 syllable subjects.

On the VEP dataset the SVM reported 98% accuracy and KNN reported 93%

accuracy both with a 95% confidence interval. The syllable dataset provided slightly

higher accuracy measurements of 99% with SVM and 98% with NN both at a 95%

confidence interval. The strong performance across both datasets suggests the ap-

proach works well on a fundamental level, but given the small subject size for syllable

dataset further testing should be carried out.

In Gui et al.[126] a more contemporary ML technique, Artifical Neural Network

(ANN) using feed-forward, back-propagation, and multiplayer perceptron, is used to

identify subjects. Their dataset consists of the 6 mid-line channels {Fpz, Cz, Pz, O1,

O2, and Oz} of 32 subjects undergoing VEPs. The channels are bandpass filtered,

0Hz to 60Hz, before wavelet packet decomposition (WPD) produces the final three

features of mean, variance, and entropy for each 1.1 second epoch. Four experiments

are carried out, but only two are of interest in subject classification: (S1) finding a
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single subject from the set of 32 and (S2) matching all 32 subjects against each other

simultaneously. The other experiments consisted of a one versus all classification

(S3) and separating small groups of subjects from each other (S4). For S1 the highest

accuracy of 10% occurred with 5 neurons and the worst accuracy of 5% occurred

with 10 neurons. S2 produced better results with a highest accuracy of 94% with 45

neurons and a worst accuracy of 70% with 30 neurons.

2.3 Identity Vectors

I-Vectors are mathematical models designed to reduce the dimensionality of UBMs

[127]. UBMs reduce a dataset of f -dimensional feature samples into C clusters of

f -dimensional GMMs. I-Vectors can then be created by enrolling distinct samples

into a modeling process involving the UBM and a TVM built from the enrollment

samples. Finally, those I-Vectors are evaluated against each other and testing I-

Vectors, built from testing samples and the TVM, by the l-dimensional distance

between them. For example, this technique can measure similarities between epochs,

channels, individuals, or groups of individuals. I-Vectors were developed originally as

an extension of a speech processing method called joint factor analysis (JFA) which

split utterances into separate models for speaker, channel, and context [128]. In

contrast, I-Vectors collapse those three models into just one. The principal I-Vector

equation is

M ≈ m+ Tw (2.3-4)

where M is the feature space of the data, m is the UBM, T is the TVM and w is

the I-Vector itself. The specific data used to build the UBM m is referred to as the

training data. Once m and T have been defined, they can be used in concert with

alternate enrollment targets of size S and testing data sets M to create data-specific

I-Vectors, w.
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Figure 2.9: Training data is used to construct independent Gaussian
mixtures for the f -features. The modeled feature space is separated into
c clusters, each one a UBM. Taken as a whole these c UBMs provide a
basis for the development of I-Vectors.

A typical application might involve determining whether EEG from a new patient

suggests a diagnosis of epilepsy. First, a large randomized collection of training data

would build a generic UBM, Figure 2.9. Then, sub-populations of enrollment data

from known healthy and epileptic patients would be used to construct enrollment

I-Vectors. Finally, the I-Vector from the new patient would be compared against

the enrollment I-Vectors to determine which population it was more likely to match,

Figure 2.10. Depending on the choice of enrollment and test data, I-Vectors can

automatically search for across channels, times, medical conditions, medications, and

even entire subjects.

A UBM models f -dimensional features by representing them with C independent

Gaussian clusters [129]. In general, increasing the number of clusters captures more

nuance, thereby potentially strengthening any ensuing discrimination. The UBMs

provide dimensionality reduction by taking L epochs with f features each down to

C mixtures of f features. As each feature has a mean m, variance σ, and weight ρ,
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Figure 2.10: Using the UBMs as an initialization, the enrollment and
training data are transformed into I-Vectors. This process is reliant on
the creation of the total variability matrix randomly generated from the
variances of the UBMs and refined by adaptation towards the means of
the UBMs. The resultant I-Vectors are pairwise evaluated to find the CD
between them to rank their similarity.

reduction benefits are seen when L > 3C. The UBMs can be characterized according

to:

Ωc=1...C =


m(c)

σ(c)

ρ(c)

(2.3-5)

Each parameter is a vector of length f representing a given feature. Each I-Vector is

the result of the expectation maximiation (EM) of the available UBM and M .

These I-Vectors are of length l = Cf with many residual elements that must be

removed through the use of LDA. LDA creates a transformation matrix that removes

dependent elements from the data which reduces the length of the I-Vector by one.

This constrains the elements of the I-Vectors by driving them to a length of one

less than the S targets in the enrollment data, thus l = min(S − 1, Z) where Z is
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on the order of 100s. The resultant I-Vector represents a location in l dimensional

space. Within this space the similarity between two I-Vectors can be found via the

CD between them.

2.3.1 Mathematics

The critical component of equation 2.3-4, is the TVM T . An evolution from

the eigenvoice matrix used in JFA, it captures all of the variances present in the

UBMs. Generating T from training data requires an iterative EM approach reliant

on feedback from the produced I-Vector w.

T =


T1

...

TC

 =


A−1

1 ∗K1

...

A−1
C ∗KC

 (2.3-6)

The matrices of A and K represent the updated mean and variance of T . These

updates are driven by w and T along with the static values of N, F̂ , and Σ. The

superscript H represents the Hermitian transpose.

Ac =
S∑
s=1

Ns(t)w
−1(t) (2.3-7)

Kc =
S∑
s=1

F̂c(s) ∗
(
w−1(s) ∗ TH ∗ Σ−1 ∗ F̂c(s)

)H
(2.3-8)

The estimation of w uses T a Cf × Cf matrix. This matrix is formed from the

Baum-Welch (BW) statistics N̂ and F̂ , an l× l identity matrix I, and a model of the

UBM variances Σ. As the models are all independent Σ is a diagonal Cf×Cf matrix

of the true variances from the UBMs where as the BW statistics are estimations of

the mean N and variance F .

w(s) =
(
I + T tΣ−1N̂(s)T

)−1

T tΣ−1F̂ (s) (2.3-9)
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The BW 0th (N) and 1st (F ) order statistics are generated from the evaluation of

the UBMs against the L epochs in the training data. The higher order statistic must

be offset by the preceding orders resulting in a centered 1st order statistic F̂ . Each

statistic models the f features in each of the C clusters resulting in C × f matrices.

Each epoch, e, from the full epoch set L is evaluated to generate initial probabilities

based on Ω for N and F .

N̂(s) =


N1(s)

. . .

NC(s)

 (2.3-10)

F̂ (s) =


F̃1(s)

...

F̃C(s)

 (2.3-11)

F̃c(s) =Fc(s)−Nc(s)mc (2.3-12)

Nc(s) =
L∑
t=1

P (c | et,Ω) (2.3-13)

Fc(s) =
L∑
t=1

P (c | et,Ω)et (2.3-14)

This process resolves a suitable T after approximately twenty iterations of equations

2.3-6 to 2.3-9. Notice that equations 2.3-10 to 2.3-14 are needed only once to generate

T . Creating I-Vectors from the enrollment and testing data follows equation 2.3-4 in

a modified form. The resultant I-Vector w will be a l row vector where l is a length

defined during the creation of the initial estimate of T .

w = (M −m)T−1 (2.3-15)
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The number of I-Vectors produced is based upon the enrollment targets h and testing

queries q, producing data on the order of (h + q) × l. Therefore dimensionality

reduction will not be significant if the data is partitioned such that h+ q ≡ L.

The I-Vectors are finalized after applying LDA to control for dependencies in the

data. This process reduces their length from l to l = min(S − 1, l) elements based

upon the transformation matrix produced by the LDA. There are other approaches

to normalize the I-Vectors aside from LDA which can be reviewed elsewhere [130].

These final I-Vectors can be compared pairwise using CD to determine similarity

between enrollment targets and testing queries.

cos(Θw1,w2) =
wt1w2

‖w1‖ ∗ ‖w2‖
(2.3-16)

2.3.2 Success in Speech

The technique itself is well developed from its use on speech processing problems.

All of this research outlines best practices for working specifically with speech signals

so the main concern is how to adapt to a different data source. Fundamentally,

evaluations of ML algorithms rely on tracking the sensitivity and specificity of each

experiment and I-Vectors are no different. They perform inline with other approaches

achieving over 90% sensitivity and 90% specificity [131].

The deployment of I-Vectors as a tool for speaker recognition/verification[132],

language detection[133], accent detection[134], and speaker age[135] shows the trust

the speech community has in the algorithm. I-Vectors were developed in 2011 at

the Centre de Recherche d’Informatique de Montreal (CRIM) by Dehak, Kenny et

al[130]. Prior to this work the group at CRIM developed JFA for use with speech

data to address speaker and session variability[136]. I-Vectors come about as a natural

extension from JFA which itself borrowed from previous research in mathematics.
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One problem in adapting this work is that speech can easily discern when someone

is talking and thus producing valid data. This cannot be easily replicated with EEG

recordings since background segments are not devoid of information, essentially all

data is data of interest. This naturally leads to an increase in background signals in

EEGs compared to the work see in speech. A sleep study may last for an entire night

only to capture a brief 10 minute seizure. Easy for a clinician to correctly identify,

but difficult for a ML technique to recognize.

2.3.3 Gaussian Mixture Models

Understanding how GMMs produce likelihoods for a given data sample x informs

how each mixture’s λ is produced. The more accurate the parameters of λ are for a

given GMM, the more insightful the resultant likelihoods. However, unless the param-

eters are known outright they must be deduced empirically. One of the more prevalent

techniques for parameter estimation is maximum likelihood estimation (MLE)[137].

The MLE attempts to find a distribution that maximizes each of the T training

vectors X = {x1, ..., xT}

p(X|λ) =
T∏
t=1

p(xt|λ) (2.3-17)

this equation assumes that each component of the distribution is independent 16 This

function is non-linear as the product of all the training vector evaluations allows for

one worsening likelihood to diminish any improvements gained from the remaining

vectors. To avoid this problem, a variant of EM can be used to estimate the parame-

ters for each feature independently. This helps isolate the features, in the event that

they are not independent, and provides the ability to directly improve the overall

likelihood on a feature by feature basis.

16This often turns out to be untrue, but is a necessary assumption to provide a functional solution.
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With this each parameter of λ can be estimated in an iterative manner with the

following equations

w̄i =
1

T

T∑
t=1

Pr(i|xt, λ) (2.3-18)

µ̄i =

∑T
t=1 Pr(i|xt, λ)xt∑T
t=1 Pr(i|xt, λ)

(2.3-19)

σ̄2
i =

∑T
t=1 Pr(i|xt, λ)x2

t∑T
t=1 Pr(i|xt, λ)

− µ̄2
i (2.3-20)

these three equations provide updated values for the weights, means, and variances

that can feed the next iteration of the EM algorithm. The a posteriori probability

Pr is found with the following equation

Pr(i|wt, λ) =
wig(xt|µi,Σi)∑M
k=1 wkg(xt|µk,Σk)

(2.3-21)

2.3.4 Universal Background Models

As mentioned previously UBMs are sets of GMMs created from the features of

continuous signals. The GMMs contextualize the varied speech signal segments as

independent feature distributions regardless of the spoken text [129]. This technique

is suited to the problem of speaker recognition where the goal is to match subjects

irrespective of data content. As this process is reliant on the likelihoods of features

for a given model or subject sample, it can be used in an unsupervised manner to

match and/or separate subjects.

The GMM represents the core component of the UBMs which in turn makes them

critical to the performance of I-Vectors. Sets of Gaussian distributions (M) can be

represented with a mean (µ) and co-variance (Σ) drawn from each measurement or

feature of the D-dimensional raw continuous data [138]. This allows a likelihood
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calculation equation given a D-dimensional sample x to compare against the model,

p(x|λ) =
M∑
i=1

wig(x|µi,Σi) (2.3-22)

where x,µ, and Σ are vectors of length D and wi corresponds to the weight of each

mixture component where
∑M

i=1wi = 1. The calculated likelihood provides an unsu-

pervised estimation of the sample relating to the given model(s).

The λ component of p(x|λ) represents the GMM and associated parameters: wi,

µi, and Σi. While the previous equation does not assign a subscript to λ there would

be U GMMs which comprise the fully formed UBM. Just as each GMM attempts to

determine the underlying states of the data, the UBM requires depth to account for

each class of signal.

As an example suppose one wants to know if the weather on a given day will

require a heavy coat, a light coat, a raincoat, or no coat. If the temperature is below

45◦F a heavy coat is desired and if the temperature is above 70◦F no coat is necessary.

In between these two temperatures a light coat may be necessary, but only if the day

will be windy. At the same time, at any temperature above 45◦F with high humidity

levels should warrant wearing a raincoat.

The GMM representing raincoat would have a large variance for wind and tem-

perature, but a small variance for humidity. The temperature means of heavy coat,

light coat, and no coat would be unique. However, light coat and no coat would have

a similar mean and variance for humidity and overlapping distributions for wind.

Meanwhile, the heavy coat model would be insensitive to anything aside from tem-

perature.

The weather conditions (humidity, temperature, and wind) become the three fea-

tures modeled by the GMMs. Once four, or more, models are created they each

categorize the required jacket. This full set becomes the UBM that provides a basis
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for evaluation of each day’s weather. Given a weather report, the UBM would provide

the likelihood of each jacket being the correct answer.

To calculate the likelihood for a multivariate normal distribution the follow equa-

tion is used, represented as the function g(x|µi,Σi) from the prior equation,

g(x|µi,Σi) =
exp
{
− 1

2
(x− µi)′Σ−1

i (x− µi)
}

(2π)D/2|Σi|1/2
(2.3-23)

From these equations estimations of underlying modes of the data can be found

from which to build a suitable model. Two important assumptions are made in this

process, the first is that each Gaussian mixture is independent of the other mixtures

and the second is that the underlying modes can me adequately modeled with normal

Gaussian distributions. These mixtures are therefore representing a unique hidden

set of generators/states that create the resultant signal. Given that the number of

hidden states is unknown, GMMs may produce mixtures with marginal weights or

mixtures with redundant attributes.

Maximum A Posteriori Parameters

With a UBM in place it is possible to tune the model toward specific subjects. The

estimation of a subject specific model from a UBM is called maximum a priori (MAP)

estimation[138]. Just as with a UBM, the statistics (weight, mean, and variance) of

the subject are found from their data S = st, ..., sT . These expectations are derived

from the prior model found from the UBM, but operating on the subject specific

data.

ni =
T∑
t=1

Pr(i|st, λprior) (2.3-24)

Ei(s) =
1

ni

T∑
t=1

Pr(i|st, λprior)st (2.3-25)
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Ei(s
2) =

1

ni

T∑
t=1

Pr(i|st, λprior)s
2
t (2.3-26)

These are then able to adapt each i mixture’s weight, mean and variance. The amount

of adaptation is based on the expectations and a chosen relevance factor rρ.

ŵi =
[αwi ni
T

+ (1− αwi )wi

]
γ (2.3-27)

µ̂i = αmi Ei(s+ (1− αmi )µi (2.3-28)

σ̂2
i = αviEi(x

2) + (1− αvi )(σ2
i + µ2

i )− µ̂2
i (2.3-29)

The adaptation coefficient is most often constant for all three statistics, but given

unique labeling allowing for decoupling if necessary.

αw,m,vi =
ni

ni + rρ
(2.3-30)

These new statistics not only provide subject specific models, but present a new set

of models for discrimination. An example of this process is shown in Figure 2.11.

The models themselves can be compared against each other to determine similarity

in addition to evaluating them against new data samples.

2.3.5 Joint Factor Analysis

JFA is a specific application of factor analysis17 built by the speech community

to separate an utterance M into information related to the speaker V , the commu-

nication channel U , and residual noise components D. The vectors y, x, z provide

controlling weights to the matrices V, U,D[139].

M = m+ V y + Ux+Dz (2.3-31)

17Factor analysis represents a field of math capable of separating signals into sub-components.
Perhaps the most familiar tools in this area are ICA and PCA.
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Figure 2.11: Results of MAP estimation when speaker data, red trian-
gles, is applied to a UBM, gray mixtures.

The common model components, m, are a UBM built on the training data. Typically

this is referred to as the speaker- and channel-independent supervector as the mod-

eling process targets commonalities across the training data. If the training data is

curated with intent to include only one channel type, all landline recordings instead of

landline and mobile phone, then channel-independence is not assured. Additionally,

if the recording sessions take place over a period of time then the UBM begins to

account for session-independent features.

The sizes of the three matrices {V, U,D} are dependent only on the space of

the data. The rows of each matrix must be equal and contain enough variation to

encapsulate all of the speakers’ data. Naturally the rows should not meet or exceed

the aggregate amount of data used during training. A one-to-one system negates all

of the advantages offered by JFA, there would be no dimension reduction or factor

separation.

Just as the number of rows reflects the variation in the training data, the number

of columns reflects an assumption about the number of voices, channels, and residual

effects in the recordings. The eigenvoice matrix V represents all speaker-dependent
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components. If there are too many or too few rows in the matrix it will poorly map

the voice space leading to decreased performance. This applies to the eigenchannel

and residual matrices as well. As the size of these matrices impact performance it

becomes necessary to optimize the rows of each matrix in some manner. Various

metrics exist [140], but the nature of this process is beyond the scope of this work.

Solving for the eigenvoice, eigenchannel, and residual components matrices re-

quires an iterative approach under an assumption from most to least influential. The

process is mathematically the same as solving for the TVM. The difference is that

when solving for V it is assumed that U and D are zero. As each matrix is deter-

mined, it is incorporated into equation 2.3-13. Therefore solving for V is the same as

solving for T , but the solutions for U and D must adjust for the previously calculated

matrices.

When solving for U the BW statistics must now take into account the channel

chan and the subject s. This adds another dimension to the matrices and is dependent

on separating the data by subject and channel. Thus L must be divided into time

samples specific to subject-channels.

Nc(chan, s) =

L∈(chan,s)∑
t=1

P (c | et,Ω) (2.3-32)

Fc(chan, s) =

L∈(chan,s)∑
t=1

P (c | et,Ω)et (2.3-33)

Then Fc must account for the factors within V .

m̂ = m+ V ∗ y(s)

F̃c(chan, s) = Fc(chan, s)− m̂ ∗Nc(chan, s) (2.3-34)

The updated Nc and Fc can be inserted into equations 2.3-10 and 2.3-11 respectively.

Which allows the U and x to be substituted for V and y in the remaining equations.
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This is then repeated a final time to address what is left once speaker and channel

factors have been removed.

Û = U ∗ x(chan, s)

F̃c(s) = Fc(s)− m̂ ∗Nc(s)−
∑
chan∈s

Û(chan, s) ∗Nc(chan, s) (2.3-35)

Again from this point the solutions for D and z are found in the same manner as

before and substituted for V and y. With all the factors determined, the score for

given target (tar) and test subjects can be evaluated.

score =
(
V ∗ y(tar) +D ∗ z(tar)

)H ∗ Σ−1∗(
F̂ (test)− N̂(test) ∗m− N̂(test) ∗ U ∗ x(tst)

) (2.3-36)

This score represents a linear distance between the target and test subjects. De-

pending on how the data is segmented the subjects could represent distance between

words, phrases, or complete sentences of speech. There are many ways to control the

discrimination process based upon the structure of the data and how channel factors

are defined.

2.3.6 Total Variability Matrix

After the development of JFA it was discovered that the iterative modeling process

was not perfect at separating speaker, channel, and residual effects[130]. In fact the

eigenchannel space was collecting information related to the subject when operating

on specific utterances. JFA was still considered state of the art, but its performance

could be challenged by the total variability space. This space, formally the TVM, is

produced by using the first iteration of JFA to generate a low-dimensional speaker-

and channel-dependent matrix. As this matrix is the key component in generating

I-Vectors a detailed decomposition of its construct and applications is necessary.
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The initial form of the T is f × C, GMMs by features, shown in equation 2.3-37.

These parameters are dependent on each other and the training data. The speech

community uses a definitive feature set [141], Mel Frequency Cepstral Coefficients

(MFCCs), which evolved over time to become the gold standard [142]. This makes

determining the number of features straightforward. Settling on an acceptable number

of mixtures for the GMM is more difficult given the trade-offs between classification

and computational performance[143, 144].

In many studies the number of mixtures is on the order of a base 2 number, often

being set to at least 2048 mixtures[145, 131]. The optimization for the number of

mixtures is dependent on the best performance, but limited by the dimensions of the

training data. Given a number of subjects S each providing u utterances the number

of mixtures C would need to be less than S ∗ u to prevent over-fitting.


M1

...

Mf

 =


m1

...

mf

+


T1,1 . . . T1,C

...
. . .

...

Tf,1 . . . Tf,C

 ∗

w1

...

wC

 (2.3-37)

Critically, the TVM is not implemented to mimic utterances, but to map them

instead. The technique allows I-Vectors to be the weights controlling the inclusion

of a column of features. In this manner it is possible that one column may contain

the dominant features of a low pitched voice and a high pitched voice. If each of the

C columns of T represent a unique component of the speakers, then the I-Vector w

would be binary. More likely is that the characteristics are spread across mixtures

since emergent properties of speech are parameterized via the MFCCs.

Advancing this approach to EEGs may produce a reasonable algorithm for dis-

crimination, but also allow for understanding why the discrimination occurs. This is

entirely dependent on the chosen features, which are well established for speech, but

still open for EEGs. Using a non-linear variation of MFCC maintains the parameter-
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ization providing a closed set of features. With features bounded, experiments can

then focus on finding an optimal size GMM for the UBM of EEGs.

Working down this chain, further incremental improvements can be made while

gaining insight into the discrimination and grouping of EEGs in an unsupervised

algorithm. While speech already knows the principal modes of their data, how to

separate consonants, vowels, words, genders, and ages, such techniques do not meet

the needs of the EEG community.

2.4 Machine Learning Algorithms

The breadth of potential algorithms, supervised and unsupervised, is too great

to review in this context. Instead, a review of algorithms referenced in comparative

works as well as those critical to the validation of I-Vectors will be reviewed. While

all the algorithms can operate on the same features, their outputs tend to be unique.

Their ability to classify, and in some cases cluster, and their training protocols are

two defining characteristics of each algorithm.

For completeness a brief discussion of factor analysis (FA) is also included given the

frequent use of LDA in supervised and unsupervised techniques. This also provides

space to discuss PCA and ICA which will be used in deconstructing the relationships

between I-Vectors, TVMs, and EEGs epochs.

2.4.1 Factor Analysis

At a base level I-Vectors reduce the dimensionality of data by finding the most

influential features in the given training dataset. In a general sense this is similar to FA

which is used to perform blind source separation (BSS), the decomposition of a signal

into a linear representation of statistically independent components [137]. While this

is the goal, it is difficult to assure linear independence of all the components. As such
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the techniques are imperfect given the premise of being blind to the true nature of

the data.

Two commonly used techniques to achieve BSS are PCA and ICA. From these

algorithms more advanced techniques, LDA and QDA, are capable of separating the

components of different known classes. They are not able to operate blind, or unsuper-

vised, as they require knowledge of the classes to define class dependent components.

Knowing the dependent components they can then resolve the class independent

components in an effort to discern the decisions surfaces between the classes. QDA

operates in a more generalized space allowing for separation of two or more classes

compared to LDA defining separability of a single class from the dataset.

Principal Component Analysis

PCA finds the dominant components in a set of data by maximizing the variance

of the given features [146]. For a set of data X composed of p columns of features and

n rows of observations there exists a vector w capable of maximizing the variance of

a given feature.

V =
XTX

n
(2.4-38)

σ2
w = wTV w (2.4-39)

Here V represents the covariance matrix of the data matrix X which is used to find

the eigenvectors that become w. As eigenvectors are orthogonal to each other, they

are each uncorrelated components and produce the p principle components of the X.

There are at most n principle components representing unique weightings of the

p features. To find the true number of components, q, the number of zero or near

zero eigenvalues, ez = p− q, must be found. This linearly independent q-dimensional

space represents the true decision surface of the observations. From these operations
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it becomes possible to define the critical features and unique observations from the

data itself.

Independent Component Analysis

ICA separates individual signals from collected by multiple receivers, commonly

known as BSS [137]. The given example would be a cocktail party with an equivalent

number of microphones and speakers. By using ICA, it is possible to isolate each of

the speakers using the data from all of the microphones. This example is referred

to as the Cocktail Party Problem and exists in many research areas including EEG

recordings.

A dataset contains the sequential samples, t, from each recording device and

assumes there is a transformation matrix, A, that turned the source signals, s, into

the captured output X.

X =


x1(t)

...

xn(t)

A =


a11 . . . a1n

...
. . .

...

an1 . . . ann

 s =


s1(t)

...

sn(t)

 (2.4-40)

X = AS (2.4-41)

From this output, the features of the recorded signals must be whitened before the

individual signals can be found. Whitening is a process that transforms the data into

a matrix. z that is uncorrelated, but not assured to be independent. The approach is

similar to PCA in that it requires eigenvalue decomposition to produce the whitening

matrix, V . The matrix E is found from the eigenvectors of X and the diagonal
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matrix D contains the associated eigenvalue for each eigenvector.

z = V x (2.4-42)

V = ED−
1
2ET (2.4-43)

z = V As = Âs (2.4-44)

Now the transformation matrix, Â, contains only orthonormal components instead

of the previous correlated components. This process is necessary as it constrains the

solution sets when solving for the independent components.

The kurtosis of a signal is one of the many ways to solve for the independent

components after whitening. As the kurtosis supports the additive property, it pro-

vides a natural process for optimization the non-Gaussian portions of the signal. The

expectations, E, of the random variable y’s second,variance, and fourth moment are

used to find the ‘tailedness’ of the distribution. With a normalized distribution the

expectation of the variance would be 1, but for Gaussian distributions kurtosis would

always be zero because the fourth moment is always 3(E{y2})2. This is why the

independent components must be non-Gaussian otherwise they cannot be separated

out.

kurtosis(y) = E{y4} − 3(E{y2})2

kurtosis(s1 + s2) = kurtosis(s1) + kurtosis(s2)

kurtosis(αs1) = α4kurtosis(s1) (2.4-45)

When all the random variables are normalized the variance of y is equal to 1 which

bounds the solution by the unit circle. This simplifies the solution to finding a vector

that produces the largest amplitude of kurtosis for the given distribution. These

kurtosis based dimensions indicate projections of non-Gaussian distributions which
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is where the suspected independent signals reside.

|kurtosis(y)| = |q4
2kurtosis(s1) + q4

2kurtosis(s2)| (2.4-46)

There are other techniques for discerning the projection space of non-Gaussian dis-

tributions, Gram-Schmidt, ML estimation, or negentropy, which focus separating

independent non-Gaussian distributions. In all instances the mixing matrix A is cho-

sen to be square to simplify the mathematics. The only constrains on the process,

regardless of approach, are on the data being statistically independent and that the

underlying signals are non-Gaussian distributions. These both require prior knowl-

edge of the signals in the dataset otherwise the results of ICA will be similar to those

of PCA, orthogonal uncorrelated feature vectors.

Linear Discriminate Analysis

LDA uses the mean and variance of each class in the data to build decision surfaces

between the classes. This is achieved by maximizing the distance between the means

SB and minimizing the variances SW of the features associated with the classes K.

Original developed by Ronald Fisher, often called Fisher’s Linear Discriminant, it

seeks to maximize the discriminant factor J(w) by finding the vector w [17].
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Given two datasets containing ni observations of each class, a decision surface w

can be found.

X1 = {x1
1, ...,x

1
n1
} , X2 = {x2

1, ...,x
2
n2
}

mi =
1

li

ni∑
j=1

xij

SB = (m1 −m2)(m1 −m2)T

SW =
K∑
i=1

ni∑
j=1

(xj −mi)(xj −mi)
T

J(w) =
wTSBw

wTSWw
(2.4-47)

This can be expanded to handle multivarate data by expanding the definitions of SB

and SW . Here m̄ represents the mean of the observations ni across all classes in the

training set. Then a sufficient w can be found by maximizing J(w) which occurs

when w is an eigenvector of S−1
W SB.

SB =
K∑
i=1

ni(mi − m̄)(mi − m̄)T

SW =
K∑
i=1

ni∑
j=1

(xij −mi)(xij −mi)
T

Classification based off LDA requires an additional step to set thresholds for each

class with respect to the resultant eigenvalues produced by w · x. Through this

metric many approaches can be used to distinguish between the K classes in the

multivariate data such as individual or one-versus-all classification.

The multivariate approach often assumes a common global covariance matrix SX

to ensure that S + W−1SB is diagonalizable. This assures that the eigevenvectors

will be caused by the features within the data. To approximate a global covariance

matrix the pooled within-class covariance matrix is scaled by the degrees of freedom
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between the observations and classes.

SX = (n−K)−1SW (2.4-48)

This results in K − 1 eigenvectors as diagonalizablity of a matrix does not ensure

unique eigenvectors. In general, LDA is frequently used to perform dimensonality

reduction similar to PCA based upon the eigenvalues associated with each eigenvec-

tor. Even without reviewing the eigenvalues, LDA always produces one less feature

dimension than classes to force discrimination upon the next eigenvector axis.

2.4.2 Algorithms

Numerous algorithms were introduced while reviewing the applications of EEG

recordings. The following section highlights the more common algorithms used in ML

and those to be compared against I-Vectors. From training datasets the algorithms

are able to classify unknown samples by providing a likelihood of a match or a discrete

label if given labeled data. These introductions serve only to address the nature of

the algorithm, unsupervised or supervised, the process of discrimination, and show

the input parameters and type of classification produced.

Gaussian Classifiers

Once created, GMMs can be used as the basis for discrimination. As discussed in

section 2.3.3, the data is broken down into a series of estimated Gaussian distributions.

These distributions strive to model classes defined by the data. To identify new data,

a likelihood score is generated based upon the distance between each model and the

new data sample. Calculating the distance, and thus likelihood, can be done in a

number of ways. Assuming the distributions are Gaussian in nature, the following

equation provides the likelihood the point belongs with the model.
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Here x is the location in d dimensional space with a known mixture modeled by

its mean µ and co-variance Σ.

likelihood(x, µ,Σ) =
e−

1
2

(x−µ)T Σ−1(x−µ)√
|Σ|(2π)d

(2.4-49)

This general form produces the likelihood a sample x could come from a given mixture.

The end result becomes a set of likelihoods of the known classes from which to draw

a classification label. However, there is no assurance of a data sample exceeding 50%

likelihood of any of the classes.

This classifier functions based on the modeled distributions. If the GMMs are

created via EM or another clustering method the entire process is unsupervised.

However, it is possible make the process supervised by knowing the class means and

variances in advance or using labeled data to manual cluster the data. The evaluation

of a likelihood based upon a distribution is a fundamental technique used by many

ML algorithms. It serves as a natural comparison point for I-Vectors as a preliminary

step in their development is to produce GMMs.

Naive Bayes Classifier

NBCs make use of probabilities to classify based on discrete conditions. The

classifier is built out from Bayes’ Theorem which describes the probability of an event

occurring given the current conditions. This approach requires knowledge about the

events that inform the probabilities making it a supervised algorithm. The two class

form of a NBC is

P(A|B) =
P(B|A)P(A)

P(B)
(2.4-50)

which provides the likelihood of A given B. In this equation P(A) and P(B) represent

the independent probabilities of events A and B and the probability of B given A is

given as P(B|A). This expands to multiple conditions T by taking into account the
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likelihoods of each possible condition with

P(Ai|B) =
P(B|Ai)P(Ai)∑T
i P(B|Ai)P(Ai)

(2.4-51)

The expansion of the unitary case shows that as the number of conditions increases

probabilities for each condition with respect to each class are needed. In a sense the

conditions could be features representative of classes or the classes themselves.

The approach is a natural tool for evaluating any modeling technique that pro-

duces discrete probabilities assuming they are all independent. Since this cannot

always be assumed the technique’s performance is dependent on adequate feature

selection and class separation. The outcome is a probability of the test event or class

occurring that is bounded on (0%− 100%).

K-Nearest Neighbor Classifier

A KNN classifier uses labeled datasets to assume the class of an unknown sample.

This approach is similar to using GMMs, but KNN can only operate with labeled

data. Given the k closets neighbors class, the unknown sample is labeled as the

highest counted class. The algorithm relies on mapping distances between the data

points in their f dimensional feature space [147].

Determining the distance between unique samples provides flexibility in handling

non-Gaussian distributions. Unlike GMMs classifiers and similar to NBCs, this al-

gorithm operates directly on the data and not through a model when fed training

data. The trade-off becomes having enough data and selecting a sufficient value of

k to produce acceptable classifications. The previous two algorithms relied on the

statistics drawn from the training data, but KNN is directly dependent on samples

in the training data.
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Support Vector Machines

Another kernel based classifier, SVMs, creates a hyperplane between a target class

and all other data. The use of a kernel allows linear and non-linear decision surfaces

to be transformed onto a hyperplane for discrimination. This hyperplane maximizes

the distance between a target cluster and a non-target cluster [148]. Development

of the technique stemmed from considering two normal distributions N1 : m1,Σ1 &

N2 : m2,Σ2 and an target location x.

Fsq(x) = sign
[1

2
(x−m1)TΣ−1

1 (x−m1)− 1

2
(x−m2)TΣ−1

2 (x−m2) + ln
|Σ2|
|Σ1|

]
(2.4-52)

In this case Fsq(x) resolves to a positive sign indicative point x is inN1 and a negative

sign for N2. From this initial equation may variations developed to address non-

normal distributions and how to simplify the equation by approximating Σ1 ≈ Σ2.

Results of SVMs are a binary one-versus-all classification. This provides no way

to produce clusters of data nor known the strength of the classifications. As with the

other classifiers it builds the hyperplane used for separation from a labeled training

set, making it a supervised classifier. As it seeks to maximize the space between

clusters additional data is most beneficial when it represents boundary conditions of

each class.

Hidden Markov Models

Unlike the previous classifiers, Hidden Markov Models (HMMs) take into account

the temporal aspects of the data [149]. Just as KNNs and SVMs operate directly on

the feature vectors so too do HMMs. However, they do so with regard to their previous

classification state making them sensitive to temporal features. Their organization

is similar to a multi-layer finite-state machine (FSM) where states feedback on one

another. An input layer reads feature data from a sequence of samples which drives a
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variable amount of hidden states in the hidden layer. The hidden layer then produces

a classification via the output layer. Both the input states and output states are

defined by the training data and its labels, but the hidden states can be chosen freely.

Training these models is usually a supervised process. A matching labeled output

sequence is required for each training input sequence. Once trained, the model can

be used to determine how likely a given input or output sequence conforms to the

training data. For speech this would be taking a spoken sequence and resolving

the utterances into phonemes or, in reverse, a sequence of phonemes could be used

to generate utterances. In both cases the HMM is attempting to resolve the path

through its network with the highest likelihood.

This approach can be adapted for unsupervised learning, but the result will be

clustering and not classification. Without the presence of labeled output, the states

of the HMM must be assumed. These states become the classes the data will separate

into for classification and their properties must be estimated. Optimization of the

network, via EM or similar, enables the estimated class properties to be refined to

produce a HMM most likely to produce the data sequences.

Dirichlet Process

A Dircihlet Process (DP) allows for distributions of distributions to be built

in an unsupervised manner. The process produces random variables GK as sub-

distributions from the full dataset’s distribution G0 given a concentration parameter

α. In this manner an unlimited number of distributions can be produced from a
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closed dataset containing T1...TK partitions18 of the data Θ[150].

G ≈ DP(α,G0) (2.4-53)[
G(T1), ..., G(TK)

]
≈ Dir(αG0(T1), ..., αG0(TK)) (2.4-54)

Generating new distributions in this manner assures that the average distribution

properties are maintained. Those distributions with large α will contribute more

heavily, but have a greater likelihood of exemplifying the full dataset’s true distribu-

tion. Through iterative measures it is possible to produce distributions that separate

into naturally defined classes based on the dataset alone.

The clustering of the data occurs via the atoms at each level. An atom is a model

of the statistical patterns of some phenomena in the data. At the lowest clustering

level only atoms relevant to that level are present, but the next highest level contains

these atoms plus their own atoms. Building up towards the highest clustering level

means collecting all the atoms along the way. By sharing the atoms across the dataset,

it becomes possible to then map similarities based upon the mixture of these atoms

at each level [151].

The version used in Wulsin et al.[49], Heirarchical Dirichlet Process (HDP), allows

distributions to be drawn across multiple levels of the data at once. This exemplifies

the use case of a DP for clustering data on multiple levels with minimal prior knowl-

edge. Wulsin built clusters at each level of the data (subject, seizure, and channel)

so the knowledge was about the structure of the data and not the contents of the

data. This is similar to I-Vectors as features are clustered in the GMMs and then the

resultant samples are clustered based on the feature models.

18A partition of Θ defines a collection of subsets whose union is Θ. A partition is measurable if it
is closed under complementation and countable union.
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Artificial Neural Networks

By applying the functional structure of brain neurons, an algorithm that behaves

as a NN can be trained to perform non-linear classification. Each node in the network

takes in information from the preceding layer, evaluates an equation to determine its

state, and then contributes this activation to the ensuring layer. The connections

between nodes have their own weights and the number and depth of layers is based

upon the needs of the network. The algorithms referenced thus far included DBNs,

RBFNNs, MLPNNs, and MLPNNs represent a small sample of breadth of NNs.

Depending on the type of data and intended classification goal one NN may per-

form better than another. The trade-offs between the algorithms stem from the

characteristics of the data related to the number of classes and any temporal rela-

tionships. At the crux of these algorithms is the need for a large diverse amount of

labeled data. Like other algorithms, they learn directly through each sample of data

which enables them to be non-linear classifiers. The training methodology is driven

by reducing the error in the training dataset through adjusting the weights connecting

the nodes and the biases of activation in each node. The complexity of the problem

to be solved is often matched by the complexity of the NN.

Of interest to the development of I-Vectors is a Long Short-Term Memory Neural

Network (LSTMNN) adaptation capable of quantifying the similarity between two

inputs [152]. By training on ranked input vectors, in the case of Mueller et al.

[152] sentences, the algorithm can learn to produce a discrete similarity score. This

approach is highly dependent on the initialization parameters and the quality and

quantity of training data available given the need to operate on variable length input

vectors that represent the same classification.
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CHAPTER 3

Methods

Those who fail to plan, plan to fail.

Attributed to Benjamin Franklin

Presently there is no active research being conducted on the integration of EEGs

and I-Vectors. This means there is minimal guidance on how to adapt I-Vectors for

use on EEG data. While the ultimate goal is subject and condition discrimination,

optimization of the I-Vectors process must be carried out first. To adapt I-Vectors

to work with EEGs three types of experiments will be performed: Core Experiments,

Principal Experiments, and Comparison Experiments.

The Core Experiments will address the operational mechanics of I-Vectors with

respect to what is an untested data type, EEG recordings. There is considerable

variation among EEG recordings including the diversity of the subjects, variations

in recording conditions, and characteristics of the recording itself. To mitigate the

impact of these, the core experiments are carried out on identical training, enrollment,

and testing datasets. This should mitigate issues with the data allowing to focus on

the process of creating I-Vectors. The results will provide a baseline for developing

an optimal set of parameters for producing I-Vectors from EEG data by sequentially

testing each development parameter.

The Principal Experiments will validate the performance of the developed I-Vector

process. Once internal best case parameters are found, the performance of the al-

gorithm must be evaluated against alternative methods of classification. This serves

to benchmark the technique, but also provides contrasting evaluations to identify
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strengths and weakness in data classification. The weakness in unsupervised learning

is that learning from its results are difficult unless there is a known link between

the results and the data. Using other unsupervised algorithms provides necessary

feedback for understanding where edge cases may exist in the datasets despite being

unlabeled.

Finally, the Comparison Experiments will analyze how the I-Vectors are able to

provide a robust feature vector capable of discrimination across multiple levels. The

limits of similarity evaluations (subject characteristics and condition characteristics)

will be reviewed based upon the results of the Core and Principal Experiments. With

small tightly controlled datasets, in contrast to those of the Principal Experiments,

it will be possible to track the influence of the raw data on the UBMs, TVMs and

resultant I-Vectors. Through these experiments it should be possible to determine

why I-Vectors offer improved classification and clustering performance relative to their

counterparts.

3.1 Research Outline

The goal of this work is to develop I-Vectors as a suitable classification and clus-

tering technique for EEG recordings. This requires (1) finding the optimal operating

parameters for generating I-Vectors from EEG recordings, (2) comparing the tech-

nique to other commonly used EEG classifiers, and (3) explaining the comparative

performance in terms of the strengths and weaknesses of I-Vectors as a modeling,

classification, and clustering technique for EEG recordings. Each aim is driven by

the use of a uniquely curated dataset. As the technique is an unsupervised ML al-

gorithm, control over the datasets is the most direct way to influence the creation

of I-Vectors. This is especially true after resolving the ideal operating parameters in

accordance with RA 1. While RA 2 applies to multiple algorithms, the datasets are

still the critical component driving the experiments.
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3.1.1 Research Motivation

EEG recordings are rich with knowledge about their subject. Current classification

techniques focus on the discrimination of specific components of the subject or the

subject’s condition. This mirrors the use cases of clinicians who diagnosis disorders

and diseases based upon known EEG characteristics. These approaches are effective

at treating patients, but leave a substantial amount of information undocumented in

each EEG recording. Directing the diagnostic power of I-Vectors, as evidenced on

speech data, to EEG data should enhance our ability to understand the human brain

and thus the diagnostic skill of clinicians and algorithms.

3.1.2 Compositions of Datasets

Working with an unsupervised ML technique and unlabeled data requires robust

datasets. Isolating specific components of the I-Vector generation process requires

datasets constructed to address their specific functionality. UBMs treat the dataset

as a singular entity so switching channels of one subject with another has no impact

because the overall data content has not changed. Such a change would impact the

subject I-Vectors as they are an aggregate of the channel data, but would not alter

the individual channel I-Vectors. These relationships constrain, but also highlight,

the way in which the dataset itself impacts the process.

A 100 subject subset of the TUH Corpus, consisting of 50 normal and 50 abnormal

recordings, and the 109 subject PhysioNet dataset form the basis of the experimental

data. This allows for three major datasets: the TUH Corpus dataset, the PhysioNet

dataset, and a Combine Dataset built of the TUH Corpus and PhysioNet datasets.

Each major dataset will be tested as a subject and channel classification dataset. In

addition these six datasets will be further refined into a Partitioned Dataset that is

organized by trials. The trials will slice the channel and subject datasets into fourths

which is necessary for the LOOCV shown in Table 3.1.
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3.2 RA 1: Optimal Operating Parameters

Determining the operating parameters requires a series of experiments iterating

through the controllable parameters of I-Vector generation process. Each of these

parameters will be swept one at a time over a range of values to find the optimal

setting.

• the number of the UBM mixtures

• the number of EM iterations used to generate the TVM

• the allowable dimension of TVM rows

• data segmentation: full subject, full channel, and trials (partial subject and

partial channel)

• feature influence

The impact of each parameter can be seen in different facets of the algorithm, so each

one can be evaluated independently of the rest.

First, the significance of allowable UBM mixtures will be determined by produc-

ing UBMs of sizes {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096} for each

dataset. The process of generating a UBM is independent of how the data is par-

titioned, so each UBM must only be built once. Each mixture will be evaluated

based upon the performance of its Gaussian Mixture Model-Universal Background

Model (GMM-UBM) classifier through verification testing1. The quality of data

modeling by each UBM will also be evaluated in terms of percentage of full dataset

coveraged and percentage of overlapping mixtures.

The second set of experiments will assess the ability of each UBM to produce a

sufficient TVM through EM. The implemented iteration process is suggested to have

1Verification testing is when the training and testing datasets are the same.
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10 to 20 iterations, but that pertains to testing done on speech data. Therefore a

more definitive iteration count is necessary for EEG data. The rate change of the

matrix condition number along with the percent difference in mean, row variance

and column variance of the TVM will be used to determine an acceptable minimum

number of iterations. Development of the TVM is dependent on the BW statistics

of the enrollment data creating an additional degree of freedom in addition to the

UBMs.

Understanding the training process of the TVM then allows the third parameter,

the number of rows in the TVM to be explored. Based upon the number of entries

in the enrollment data the final number of TVM rows is limited to prevent a direct

mapping between a given row and an enrolled target. This is achieved through LDA

so the initial number of rows provides flexibility in the eventual transformation. The

number of rows will range across {10, 50, 100, 200, 400, 800, and 1600}, but will not

exceed the total f ∗ c for the chosen UBM where c is the number of mixtures and f

is the number of features per mixture. I-Vector classification performance before and

after LDA will be used to track the influence of number of TVM rows.

The influence of data organization and features must be measured through the

classification performance of the I-Vectors. Assessing the performance of full and par-

titioned subject/channel dataset classification is necessary to provide performance

benchmarks for feature influence and the comparison experiments. Once created,

the UBM and TVM can be permuted to factor out specific features. In doing so it

becomes possible to track the influence of each feature on classification and cluster-

ing performance. Using the optimal UBM and TVM combination will provide an

understanding of impact of features for each dataset.
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3.2.1 Core Experiments: Optimal Parameter Settings

The Core Experiments provide the basis for all future comparisons by evaluating

thedatasets on the channel and subject level. For each experiment the training, en-

rollment, and testing does not change so all results can be attributed to the parameter

under investigation. These experiments are estimated to take 5 weeks which is largely

attributed to the run-time of the larger datasets’ parameter sweeps.

The first experiments require each dataset to produce I-Vectors as the UBM mix-

ture size is swept. There are ten datasets to evaluate: full subject, full channel,

four partial subject and four partial channel. Each of these will produce equal error

rates (EERs) and CDs for their I-Vectors. In addition, GMM-UBM evaluation will

report back its own EER for each UBM providing a worst case comparison point for

I-Vector performance. Determining the optimal mixture number will be based en-

tirely on the reported EERs from the I-Vector evaluations. The best mixture counts

for each dataset and in a generalized case will be recorded and used in subsequent

experiments.

The second experiments focus on the development of the TVM through EM of

the statistical characteristics of the datasets. Each of the optimal mixture sizes will

undergo a prolonged EM to allow for the discovery of a local, or global, minimum

error. This process will track percent differences of the row and column variances,

the matrix condition number, the mean squared error (MSE), and the EER of the

resultant I-Vectors for each iteration of EM.

The fourth experiment focuses on the number of allowable TVM columns. The

number of rows in the TVM is a function of the number of features and UBM mixtures,

but the number of columns is initially user controlled. Eventually the number of

columns becomes the number of elements in the I-Vector making this process the a

critical step in dimensonality reduction. The only constraint is that the number of
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rows should not equal nor exceed the number of rows. Thus limiting the testable

range of by the number of mixtures in the UBM.

Upon completion of these experiments, the final task is to assess the impact of

the 26 chosen features. Through sequential removal of each feature from the dataset,

UBM, and TVM new I-Vectors andEERs can be produced to track their influence.

This should only need to be performed on the optimal UBM and TVM for each

dataset. A review of the ordinal ranking of I-Vectors may be useful to assess clustering

performance on the channel and subject level across each dataset.

3.2.2 Core Experiments: Justification

To determine an optimal setting for the number of mixtures produced by the

GMM process, each training data set will be swept over a range of mixture sizes. A

similar experiment was performed as part of the preliminary research, but it used one

data set and only tested up to 1024 mixtures. With the Core Experiments additional

datasets will be used and the range of mixtures will be increased to: {2, 4, 8, 16, 32,

64, 128, 256, 512, 1024, 2048, 4096}.

In essence, the mixtures are thought to be the features of data. If the number

of underlying features is know prior to TVM creation then generating an adequate

TVM would be simple. However when the underling components are not known,

the process to create a TVM is unsupervised which introduces additional uncertainty

forcing a wide net to be cast for the GMM creation process. To discriminate against

S subjects, the thought would be that at least S mixtures must be produced. Early

experiments showed this was partially correct depending on the search scope and the

type of data being processed.

When reviewing the PhysioNet results, Figure 4.5, it was noted that the EER

for subject-trial discrimination improved once the cluster size exceed the number

of unique trials. So within a subject the trials were the strongest decision surface,
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however the same response was not seen in the subject or trial independent results,

Figure 4.4. A trend of increasing mixture size leading to improved performance is

suggested, but there is no significant improvement when the number of mixtures

exceeds the number of subjects or when the number of mixtures exceeds the number

of trials.

From these results alone it is not clear which mixture size is best nor do they

agree with the suggestion that mixture size is a proxy for underlying features. These

are the reasons the experiments on mixture sizes are carried out again, but this time

with a larger data and more varied dataset over an increased range of mixtures. To

capture differences between the data sources, each subject will be run as an individual

experiment along with a comprehensive experiment using all subject data.

3.3 RA 2: Comparative Algorithm Performance

The results of RA 1 provide the necessary framework to compare I-Vector clas-

sification against other established techniques. Classification testing is limited to

subject and channel matching as those are the only labels. This shifts classification

away from identifying specific waveforms toward a general similarity classification.

Following from RA 1, each algorithm will undergo verification testing on all of the

datasets. Then each datasets will be partitioned into fourths to allow for exhaustive

LOOCV. The nature of I-Vectors requires a more nuanced approach to cross valida-

tion, shown in Table 3.1. The other algorithms will follow along by using only the

testing and training data combinations while ignoring the enrollment data.

Results of all testing will produce EER portraying the sensitivity and specificity

of each approach. Where applicable, the ordinal ranking of matches will also be

compared to assess the clustering of each technique.
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Table 3.1: The combinations of the split dataset (A, B, C, and D) to
be used in the training and evaluaton of I-Vectors for the Principal Ex-
periments. The example shows the number of variations for one distinct
patchwork dataset in training, enrolling, and testing to produce a novel
set of I-Vectors.

Iteration Testing Data Enrollment Data Training Data

1 A B C,D
2 A C B,D
3 A D B,C
4 B A C,D
5 B C A,D
6 B D A,C
7 C A B,D
8 C B A,D
9 C D A,B
10 D A B,C
11 D B A,C
12 D C B,C

3.3.1 Principal Experiments: Algorithm Comparison

Comparing the performance of I-Vectors against other algorithms is necessary to

set realistic goals for future development. These experiments will focus on the Par-

titioned Datasets which were thoroughly tested by the Core Experiments. However,

this time data will be withheld from each algorithm for the purposes of creating

training and testing sets. The alternative algorithms will be GMM-UBM, Gaussian

Mixture Model based Hidden Markov Model (GMMHMM), SVMs, DP, and Siamese

Neural Network (SNN) classifiers.

Each algorithm will report an EER related its classification ability. Where pos-

sible, likelihoods related to classification will be used to determine the confidence of

classification and be used to generate clusters of similar matches. Performance will

be evaluated on an experiment by experiment basis and as an averaged performance

over the 24 experiments, for each training/testing and channel/subject combination.

This results in 144 experiments which should take 10 weeks to complete.
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3.3.2 Principal Experiments: Justification

Part of organizing LOOCV on the evaluation dataset is to enable other algorithms

to classify the data given the unique sequence for producing I-Vectors. By sourcing

results from multiple algorithms, edge cases of superior and inferior performance will

provide a level of labeling otherwise unavailable. There are often instances where one

algorithm will excel on a dataset all others struggle with, but this often indicates

more about the data than the algorithms. Operating on unlabeled data increases the

risk of encountering such a problem, but this is one way to at least identify problem

datasets.

At the same time it provides a platform to benchmark performance of I-Vectors

against approaches well known to those in the EEG community. Algorithms such as

GMM-UBMs, GMMHMMs, and SVMs are commonly found in EEG literature. More

novel techniques, like HDP and SNN, would also need to be vetted against these

standardized tools. All of these algorithms would be evaluated by producing an EER

and a likelihoods of classification.

3.4 RA 3: Driving Factors of I-Vector Performance

The results of RA 1 and RA 2 provide a framework for breaking down how I-

Vectors classification operates on EEG based data. Drawing from the classification

results of each algorithm, a royalty dataset consisting of the true negatives and pos-

itives and a impostor dataset consisting of the fasle negatives and positives.2 It is

likely that the royalty dataset will be large, so the most frequently occurring true

negatives and positives will be used. Two neighbor datasets will be created based

2From the preliminary experiments I-Vector that exhibit royalty and impostor characteristics
were discovered. Thus it is assumed they will exist in other datasets and can be leveraged to
understand the characteristics of the data.
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upon the closest sample, in terms of distance in the feature space of the common

channel/subject, to act as a control for the royalty and impostor datasets.

The goal is find similarities and differences within and across each dataset that

are responsible for the discrimination results of I-Vector and their counterparts. Each

dataset will be evaluated for the distance between epochs and I-Vectors, distribution

and influence of features, and likelihood of epoch occurrence based upon the de-

termined distributions. Breaking down the statistical properties of the royalty and

impostor epochs should give rise to relationships that explain the performance of the

I-Vectors.

With such information it should be possible to tune a feature set that shifts,

positively or negatively, the performance of I-Vector classification in a deterministic

manner. If similar performance changes can be caused in the other algorithms this

would suggest a fundamental understanding of the relationships present in the EEG

datasets. Repeatedly performing the Principal Experiments is too time consuming

so all tuned feature sets will operate on the combined royalty, impostor, and neigh-

bor datasets called the tracking dataset. Thus each algorithm’s performance can be

tracked with respect to control and experimental data points, highlighting an un-

derstanding of the feature space. However, understanding the features alone is not

sufficient to advocate for I-Vectors as an improved way to classify and cluster EEG

datasets.

The final component of RA 3 focuses on why the dimensonality reduction and

UBM to TVM transformation process best articulates these feature behaviors. Based

upon the dataset distribution analysis, each individual dataset will be processed with

ICA or PCA to identify the critical components of the features in each group (royalty,

impostor, and neighbors) and as a whole. The tracking dataset will be evaluated

following the protocol of the Core Experiments to provide baseline statistics for future

comparisons.
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Using the statistical patterns from the Core Experiments and the tracking dataset

the performance of the tracking dataset will attempt to be controlled by inserting

linking epochs. Given that royalty epochs exist, there should also be linking epochs

that are able to extend and bridge the distributions inherent in the EEG data. While

it is possible that some of the royalty epochs may be linking epochs, it is more likely

that linking epochs will be equidistant to multiple classifications making them poor

exemplars of classification. Their position as edge cases between feature distributions

makes them integral to the development of I-Vectors as they create the decision

surfaces driving compromise within the TVM.

3.4.1 Comparison Experiments: Epoch and Feature Impact

The Comparison Experiments are built from the aggregate results of the Core

Experiments and Principal Experiments. For each algorithm a distribution the of

true negatives/positives and false negatives/positives will be used to identify the

severity of the incorrect classifications for each classifier and for the dataset at large.

Each dataset (royalty, impostor, and neighbors) will be compared against various

types of distributions (binomial, geometric, normal, etc. ) using Kullback-Leibler

Divergence (KLD) to characterize the behavior. Based upon the agreement to a

normal distribution or multi-variate distribution PCA or ICA will then be used to

isolate the dominant components of each dataset.

In conjunction with the properties of the datasets, their individual feature epochs,

and paired I-Vectors, well be mapped with distance measurements to build a similarity

mapping between samples. This is necessary to produce the neighbor datasets, but

also for providing a reference point from which to compare experiments into features

and dataset tuning. In the feature space distance between epochs will be found using

ED and MD and CD for the I-Vectors. The relationship of how the UBM and TVM

transform features into I-Vectors can then be tracked by these distance metrics. In
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conjunction with the results of FA, it should then be possible to produce novel subsets

of features to alter classification performance.

Together these experiments provide information to breakdown the impact of fea-

tures on the development of I-Vectors. Testing the curated feature sets through the

other algorithms should provide proof of understanding on the feature level. However,

this assumes their performance can be controlled and aligns with the improvements

seen in the I-Vectors. This would require re-running the Core Experiments with

curated feature sets that caused statistically significant changes in the I-Vector clas-

sifications. It is hard to anticipate how diverse these feature sets will be, but 4 weeks

should be ample time as only the datasets that produce the most and least false

negatives and positives are used for each algorithm.

The final experiment involves constraining operations to the tracking dataset. By

performing the Core Experiments on the tracking dataset and comparing the out-

comes to the original results it should be possible to identify the different between

the two datasets from a statistical perspective. It is assumed there will be a mismatch

between the two, but that the addition of specific epochs, linking epochs, can align

the feature space of the tracking dataset to that of the combine dataset. With the

knowledge gained at this point, it should be possible to find linking epochs in the

datasets or create them synthetically if they do not exist. The inclusion of specific

epochs that improve classification and clustering of I-Vectors, but offer minimal im-

provement to other algorithms, would suggest the UBM and TVM transformation

provides an intrinsic understanding of EEG data. These final experiments would

likely take 6 weeks of work.

3.4.2 Comparative Experiments: Justification

At the heart of any ML technique are the features driving the discrimination and

how those features impact results. As this work is using only cepstrum coefficients
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the focus will be on which sets of these 26 features are driving the discrimination

on the subject and subject-channel level. These specific features were shown to be

effective when used by HMMs [153], but must now be understood for their impact on

I-Vectors.

By sequentially removing features from the epoch data, UBM, and TVM it be-

comes possible to generate variations of I-Vectors from one training set. Starting with

all 26 features and ending with a single feature will provide the influence each feature

has on all the features remaining and all the features missing. Given enough resources

it would be better to perform an exhaustive feature set search, but that is not prac-

tical. Despite this it may be necessary to perform something beyond sequentially

removing features if there are indications that the features are not independent.

There is the possibility of producing synthetic features to prove the significance

of linking epochs. This process was developed in the preliminary experiments for

small feature sets, but lacked the necessary direction to be influential. The overlap

of mixtures within the UBM is the ideal location for a linking epoch, however there

is no assurance of a real epoch occupying this space. If such epochs could be readily

found, it would most likely not be necessary to produce a TVM as the linking epochs

could be converted into I-Vector providing classification thresholds.

3.5 Evaluation Metrics

The primary methods of evaluating epochs or their associated I-Vectors produce

either a distance or a statistical likelihood. Depending on the classifier used there any

likelihoods may be withheld leaving only a classification. This is part of the difficulty

in evaluating ML algorithms for their ability to make decisions. However, I-Vectors

do not have this problem as they provide a robust way to reduce the dimensionality

of the data in a step-by-step process. The tools used to evaluate the behavior and

discrimination ability of features and algorithms is presented here for completeness.
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3.5.1 I-Vectors

The main evaluation metric for the I-Vector process are the distances between

known and unknown data. When two I-Vectors represent the same segment of sub-

ject data, their CD is found to be 1. As the I-Vectors separate, being from the

same subject, similar subjects, or unrelated subjects, the scores decrease eventually

reaching -1. There are many factors that can impact the weights of the individual

elements such as Within Class Covariance Normalization (WCCN) [91] and I-Vector

length normalization [145]. Similar to how LDA is used to refine the dimensions of

the I-Vectors from its TVM, these techniques attempt to reduce the dimesonality of

the data.

Thus knowledge of the relationships between TVM elements is required to under-

stand the resultant I-Vector. Otherwise, the CDs calculated are a weak measurement

of the strength of the TVM’s ability to translate epochs into I-Vectors. Therefore

distance metric’s based on I-Vectors are effective for subject verification and subject

similarity, but fail to provide insight into the nature of the TVM. To fully track the

development of the TVMs through these metrics it is necessary to tightly control the

training data, which is part of the comparison experiments.

3.5.2 Epochs

Each epoch represents a point in feature space. As these should exist in the same

space regardless of recording technique or subject, they can all be directly compared

to each through distance calculations. These measures do not need to be perfect

in terms of handling error or unequal feature weighting, but use of the MD should

provide a balance to all of the EDs. What is most critical is that changes in the feature

sets are propagate in a linear fashion through the distance calculations ensuring that

at least relative change can be monitored. The intent is not to evaluate each feature

as being a good or bad choice, but to understand how they influence each other and

104



the resultant I-Vectors. Thus any epoch evaluations should be universal in the even

the EEG feature set changes.

The results of using epochs to train and evaluate each ML algorithm will be pre-

sented primarily as EER. Using the intersection of false negatives and false positives

provides a conclusive way to compare the performance of each algorithm. This re-

quires the data to be labeled in some manner so algorithms results may be compared

to known results which is why the majority of work focuses on subject and subject-

channel classification.

3.5.3 Distributions

A major component of this work relies on modeling the behavior of the datasets.

Understanding the relationships between all of the datasets is necessary to isolate the

influential distributions and features. For distributions the KLD, DKL, can be found

as an indication of similarity between the discrete datasets.

DKL(P ||Q) = −
∑
i

P (i) log
Q(i)

P (i)
=
∑
i

P (i) log
P (i)

Q(i)
(3.5-1)

The discrete version would operate directly on the samples in the datasets, carried

out during the Comparison Experiments. The continuous version

DKL(P ||Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx (3.5-2)

is setup to address divergence between the mixtures of each UBM given the presence

of means and variances. Together they provide a direct metric for quantifying how

well subsets of the datasets and mixtures represent their parent distributions.

This becomes increasingly important for the royalty and impostor datasets in

determining their likelihoods. The likelihood of these epochs occurring based upon the

known dataset distributions and UBMs provides insight into their nature. If epochs in
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the impostor dataset are determined to be extremely rare, their classification may not

matter because they could artifacts. Likewise, if the royalty epochs show equivalent

likelihood from all datasets they may represent background. Therefor it is necessary

to know the underlying distributions to characterize the individual features and the

epochs themselves.
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CHAPTER 4

Preliminary Reseaerch

I-Vectors were developed for use by the speech recognition community. The sem-

inal papers concerning their methodology and use focus on speech data which is

reasonably similar to EEG data in terms of being band limited non-stationary sig-

nals. However, EEGs are produced by multiple independent sources and range their

waveforms are not as well defined as speech phonemes. These differences are not

insurmountable, as evidenced by the number of ML algorithms shared between the

two fields. This simply requires preliminary experiments to understand how to tune

the system for a different type of data.

There are few parameters to control when producing I-Vectors, but each impacts

a distinct part of the process. When producing the UBM a mixture size must be

specified. The UBM is then used to develop the TVM through a given number of

EM iterations. Finally, a length for the I-Vectors must be chosen, although this has

an upper bound set by the data. The most important parameter is how the training,

enrollment, and testing datasets are constructed and partitioned.

Each parameter must be tested individually to isolate changes in performance.

The preliminary experiments address performance on different discrimination levels

(subjects, trial, and channel) as a function of UBM mixture size. Using a synthetic

dataset modeled on the TUH Corpus and the diverse PhysioNet datasets provides

variation in data itself related to number of subjects, duration of recordings, and

recording content. The experiments themselves are based on subject verification

where the training, enrollment, and testing data are identical.
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These loosely defined experiments provided a platform to explore the ability of

I-Vectors to discriminate EEGs. The results were critical for exploring how I-Vectors

work in a general sense, but also specifically for the new medium of EEGs. These

preliminary results provided insight in how to propose experiments to address the

research aims. A discussion of these factors is provide to show how these insights will

be applied moving forward.

4.1 Preliminary Research

By performing experiments with identical training, enrollment, and testing data

strong primary classification performance is assured. Primary classification is the

ability of I-Vectors to match on targeted level of data hierarchy. When comparing

channel I-Vectors, this would be seen by each channel I-Vector matching best with

itself. Secondary classification would be how well each subject’s channel I-Vectors

match against the other channel I-Vectors from the same subject.

I-Vectors are primarily evaluated by comparing the CD between them. This al-

lows for effective verification testing, but also provides a strong clustering mechanic

enabling secondary classification. The performance of primary classification is hy-

pothesized to be near perfect given the nature of the datasets. While secondary

classification is assumed to perform poorly given the complexity of the data and that

this is the first time such work has been attempted.

To help with the transition to EEG data, idealized datasets are used to control

for problems directly related to data quantity and quality. A simplified version of

a subset of the TUH Corpus is synthesized as a proof of concept test-bed. This

Synthetic Dataset allows the number of underlying mixtures to be controlled and is

described in the ensuing section. Controlling the composition of the data helps test

the impact of varying the UBM mixture size on classification.
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In addition, EEG recordings typically contain an abundance of background epochs.

These are portions of data with waveforms deemed insignificant to the study. This

contrasts with speech data which is typically comprised only of waveforms of interest.

The PhysioNet dataset contains a balance of background and subject activity given

the directed experiment protocol. This makes it similar to the structure of speech

data than a typically 20+ minute EEG recording full of benign waveforms.

4.1.1 Synthetic Dataset

The synthetic datasets were created to isolate the impact of (1) a common fea-

ture across subjects, and (2) a unique feature for each subject. The three synthetic

datasets were based on raw data from the TUH Corpus, and are referred to as sim-

ulated, static (simulated with an additional common feature across subjects) , and

unique (simulated with a unique feature for each subject). Figure 4.1 provides a

representation of the data generation process.

Figure 4.1: Generation of synthetic data from the TUH Corpus. The
clustered K-Means data (gray) and the unique (blue) or static (green)
features enable the creation of unique and static synthetic datasets. Only
10% of the subject’s K-Means generated data is replaced by the external
feature. The models produce all 22 channels at once for each of the 12
simulated TUH Corpus subjects.

The simulated data used K-Means on 12 subjects to produce Gaussian models

with K of size 3 and 4. By grouping all 22 channels for each epoch, the 27 cepstrum
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features per channel were turned into a cluster of 594 linked means and variances. The

likelihood of each cluster was used to the drive the continuous HMM that produced

the resultant models. This process created Simulated 3GMM and 4GMM datasets

containing 12 subjects each with 22 channels with a duration of 10 minutes.

The static and unique datasets start as simulated datasets which then gain an

additional feature. In the case of the static datasets, the additional feature was a

randomly chosen Gaussian mixture from a 16 mixture UBM generated from a random

subject within the PhysioNet dataset. The unique datasets drew from the same UBM,

but each was randomly assigned one of the top 10 weighted Gaussian distributions to

draw from. In both cases a random 10% of the base simulated dataset was replaced

with the new feature.

This produces six unique synthetic datasets: Sim3, Sim4, Sta3, Sta4, Uni3, Uni4,

outlined in Figure 4.1. As the static and unique datasets contain an additional feature

the data sets model mixtures of size 3, 4, and 5. As much authenticity of the raw

data is preserved in the synthetic data, highlighted in Table 4.1. The feature sampling

rate remains 10Hz. Only the duration of the recordings changes, held constant at 10

minutes. This is longer than the 2 minute recordings of PhysioNet and shorter than

the 20+ minute recordings of TUH Corpus.

Table 4.1: Composition of Synthetic TUH Corpus Datasets

Name Type Features Channels Duration

Sim3 Simulated 3 22 600s
Sta3 Static 4 22 600s
Uni3 Unique 4 22 600s

Sim4 Simulated 4 22 600s
Sta4 Static 5 22 600s
Uni4 Unique 5 22 600s
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4.1.2 Experiments

The experiments consist of ‘target’ verification, with the targets being subject,

trial, and channel. Subject verification of the synthetic dataset requires discriminating

12 unique subjects. The PhysioNet dataset allows for verification of the 109 subjects,

1,526 trials, and 33,572 channels. These experiments represent the four primary

classifications of kind-to-kind matching, how well the system matches the enrollment

I-Vector to the testing I-Vector. Aside from the channel I-Vector performance, these

results are presented as functions of the UBM mixture size.

The secondary classifications evaluate the trials and channels of the PhysioNet

dataset their associated cohorts. For trial I-Vectors the cohorts are built from the

trials of the given subject and trials of the same experimental protocol 1. The channel

I-Vector cohorts are built in the same manner, around the subject and around their

common trials. These secondary classifications do not use a range of UBM mixture

sizes, but instead of single mixture size shared among the experiments.

Performance for these experiments is measured in terms of sensitivity and speci-

ficity. For the primary classifications this is displayed as an EER. When working

with the secondary classifications, performance is measured in terms of being within

the cohort set. When comparing channels to a given subject or trial the within set

consists of the top 22 matching channels. Any matches that are of type-for-type

(a channel matching to a native subject or trial) are labeled as verification matches,

kind-for-kind matches (channel matches into a different subject-trial) are primary, and

matches across non-subject-trials are secondary matches. Classification via GMM-

UBMs is also performed fro the primary classification group with results presented

as EERs.

1Recall that each subject performed 14 trials of which 12 were a repeated set of 4 common
sequences of activity. Thus each subject has 4 sets of repeated trials and these trial protocols were
common for all subjects.
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Synthetic TUH Corpus Testing Results

Given the controlled nature of the synthetic data and the verification testing

protocol, the major factor controlling performance is the UBM mixture size. Clas-

sification performance of UBMs and I-Vectors as a function of UBM mixture size

is presented in Figures 4.2 and 4.3. The original and synthetic datasets classifica-

tions using GMM-UBM exhibit improved performance as the mixture size increases.

The rate of EER reduction in the two unique datasets (Unique 3GMM and Unique

4GMM) is the strongest and most responsive reaching zero with 32 mixtures. The

remaining datasets reduce their EER by roughly 10% over the 10 mixture sizes.

UBM EER by Cluster Size
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Figure 4.2: EER of UBMs on the seven data sets (l to r) Original, Sim-
ulated 3GMM, Simulated 4GMM, Unique 3GMM, Static 3GMM, Unique
4GMM, Static 4GMM. The EER for two unique data sets reaches 0% when
the models exceed 16 clusters.

Evaluating the performance of I-Vectors as a discriminators, figure 4.3, shows that

nearly all datsets achieve a near zero EER with 4 UBM mixtures. The two exceptions,

Static 3GMM and Static 4GMM, require a mixture size of 8 to reach a near zero EER.

Unlike their UBM based counterpart, none of the datasets ever settle to an EER of

zero.
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I-Vector EER by Cluter Size
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Figure 4.3: EER of I-Vectors on the seven datasets (l to r) Original, Sim-
ulated 3GMM, Simulated 4GMM, Unique 3GMM, Static 3GMM, Unique
4GMM, Static 4GMM. A strong reduction in EER is seen when transi-
tioning from 2 to 4 clusters for modeling. Beyond this transition changes
to the EERs at higher cluster sizes are minimal.

PhysioNet Testing Results

Verification testing on the subject and trial I-Vectors produced the EEG seen in

Figure 4.4. At lower mixture sizes, the I-Vector based classification methods out-

perform their GMM-UBM counterparts. This trend does not continue with the trial

I-Vector classification which performs worse than the GMM-UBM classifier at larger

mixture sizes. Subject GMM-UBM performance appears to plateau at larger mixture

sizes, similar to subject I-Vector performance. The trend of increasing mixture size

improving performance, noted in Figure 4.3, is seen in each classification aside from

the trial I-Vectors.

The variance in primary classification using the trial I-Vectors of a given subject,

separated between Full Trials and Motion Trials, is seen in Figure 4.5. Matching the

14 Full Trials or 12 Motion Trials I-Vectors within a subject correctly plateaus with at

a UBM with 8 mixtures, while equivalent performance of GMM-UBMs requires 256

mixtures in the UBM. However, beyond 256 mixtures the GMM-UBM classification

113



2   4   8   16  32  64  128 256 512 1024
Cluster Size

0

5

10

15

20

E
q

u
al

 E
rr

o
r 

R
at

e

UBM and I-Vector EER by Cluster Size

Subject UBMs
Subject I-Vectors
Trial UBMs
Trial I-Vectors

Figure 4.4: PhysioNet UBM and I-Vector verification test results as a
function of cluster size. The leftmost bars represent Subject UBMs and
I-Vectors and the rightmost bars represent Trial UBMs and I-Vectors.

produces a lower EER and a smaller variance than the I-Vectors. Classification of

Full Trials versus Motion Trials for the I-Vectors produces equivalent performance,

but for GMM-UBMs Full Trials’ EER the mean is always one standard of deviation

stronger than the Motion Trials’ EERs.

Within each subject are 14 trials, 12 are motion based trials and 2 are resting cal-

ibration. These can be broken into their respective groups, Figure 2.3, and classified

based upon how well they match into various trial sets, Figure 4.3. A breakdown of

the groupings is given in Table 4.2. Evaluating the secondary clustering classifications

against their expected likelihood distribution, Table 4.4, shows performance of the

secondary classification.

In all instances the trial I-Vectors the expected likelihoods for producing complete

sets of matches is statistically significant. This is most noticeable in the reduction of

individual matches and the increase in full sets, 3 of 3 and 5 of 5. Allowing for the

resting states has a strong impact on increasing the number of matches, given the

reduction in single matches from 65.45% for Motion 3 of 3 to 17.62% for Full 5 of 5.
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Figure 4.5: The averaged EERs of each PhysioNet subjects’ trials as a
function of cluster size. Error bars represent +/- one standard deviation
across the entire subject set. The I-Vectors’ EER plateaus after 8 clusters,
while the UBMs’ EER decreases as the cluster size grows.

Table 4.2: The Data Group specifies the trials given for the search space.
The Cohort Groups show which trials are considered a distinct group. The
Search Interval defines the acceptable positions [a-b] out of the available
trials presented in the Data Group.

Label Data Group Cohort Groups Search Interval

Motion 3/3
G1, G2,
G3, G4

{G1}{G2}
{G3}{G4} [1-3] of 12

Full 3/3
G0, G1,

G2, G3, G4
{G1}{G2}
{G3}{G4} [1-3] of 14

Full 3/5
G0, G1

G2, G3, G4
{G1}{G2}
{G3}{G4} [1-5] of 14

Full 5/5
G0, G1

G2, G3, G4
{G0 G1}{G0 G2}
{G0 G3}{G0 G4} [1-5] of 14

The doubling of Full 5 of 5 from an expected 2 matches to 4 matches out of 1308 trial

sets.

The final secondary classification focused on channel I-Vectors fitting into their

subject and trial cohorts. In this context there are three potential cohorts: a verifi-

cation cohort - matching into the correct subject or subject-trial, a primary cohort -
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Table 4.3: Experimental Likelihoods of Cohorts Using Four Clusters.
Values indexed with * are significant at p<0.005 and with ˆ are significant
at p<0.001

1 2 3 4 5

Motion 3 of 3 55.66ˆ 41.13ˆ 3.21* - -
Full 3 of 3 66.44ˆ 33.72ˆ 2.14* - -
Full 3 of 5 38.00ˆ 51.07ˆ 10.93ˆ - -
Full 5 of 5 15.29ˆ 43.88ˆ 33.64ˆ 6.88ˆ 0.31*

Table 4.4: The expected likelihoods for cohorts of PhysioNet trials. The
probabilities are generated from p choose n using the parameters set forth
in Table 4.3

1 2 3 4 5

Motion 3 of 3 65.45 32.73 1.82 - -
Full 3 of 3 70.51 28.21 1.28 - -
Full 3 of 5 49.45 24.73 2.75 - -
Full 5 of 5 17.62 47.00 30.18 5.04 0.14

channel-trial matches occupying the top 14 matches of a trial from the native subject,

and a secondary cohort - channel-trial matches occupying the top 14 matches of a

trial from non-native subjects. Their aggregation is represented by the total cohort.

These match percentages are presented in Table 4.5.

Table 4.5: Subject and Trial Cohort Matching Using Eight Clusters.
The Channel I-Vector’s distances are averaged and ordered to produce
trial and subject matches. Verification shows the likelihood the top match
pairs with the native trial or subject. Primary shows the likelihood of
matching to any of the 22 channels trials within the trial group in the trial
or subject. Secondary shows the likelihood of matching to trials within
the trial group among all other subjects. These results are statistically
significant.

Data Verification Primary Secondary Total

Sub to Chan 76.15 - - -
Chan to Sub 82.57 - - -
Trial to Chan 81.06 52.43 9.48 61.91
Chan to Trial 96.66 63.23 7.61 70.84
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In this parent (subject/trial) to child (channel) relationship, the verification cohort

child-to-parent relationship appears stronger (82.57% and 96.66%) than the parent-

to-child relationship (76.15% and 81.06%). The primary cohort results indicate over

50% of the matches originate from the native subject-trial. Included the secondary

cohort, over 60% of trial-to-channel and channel-to-trial matches are relevant to the

subject or trial under test.

4.2 Preliminary Results Discussion

These experiments served to prove the feasibility of I-Vectors on a new medium

and achieved that in the discrimination of subjects, trials, and channels. While the

initial experiments are straightforward subject verification testing, the performance

of the secondary classifications suggests the I-Vectors are capturing nuance in the

data beyond the primary classification. The experiments are a success because of

the strength of the primary and secondary classifications. Most interesting is the

statistical significance the trial groupings seen in Table 4.3.

4.2.1 Primary Classifications

The results of the synthetic classification, Figure 4.3, illustrate the strength of

I-Vectors when the system utilizes a UBM with mixtures equal to or exceeding those

found in the data. This is expected as it is the foundation of the technique, however

the non-zero EERs at larger mixture sizes is not expected. As the dataset is tightly

controlled and only the number of mixtures is changing with each evaluation there

are two possible sources causing this behavior. The first would be that the UBMs are

failing to accurately represent the dataset as they grow in size and the other is that

the process of generating the TVM fails to produce a matrix of sufficient quality.

A failure of the UBM to represent the dataset should be seen in EER of GMM-UBM

and I-Vector. Reviewing Figure 4.2, the GMM-UBM EERs shows that, while not as
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strong as the I-Vectors, their performance does not worsen as the UBM mixture

increases. This suggests the reason for the variation in performance is due to the

development of the TVM. Prior testing showed that given a TVM the creation of

I-Vectors is a deterministic process, but it was not considered necessary to analyze

the production of the TVM.

This conclusion is troubling because it casts doubt on the other preliminary results.

A poorly formed TVM will negatively impact the ability of the resultant I-Vectors

to discriminate. In fact, this could be the reason for poor performance of the trial

I-Vectors seen in Figure 4.4. Classification using GMM-UBMs was only included to

show the performance of the base classification offered by the UBM so any I-Vector

performance worse than it would suggest something is wrong with the I-Vectors.

This could also explain why, despite the GMM-UBMs being able to achieve near zero

EER for trial classification in Figure 4.5, the I-Vectors could not reach equivalent

performance.

As the TVM is core mechanic through which the I-Vectors operate, it is necessary

to understand why the training process may be insufficient for EEG based data. From

the preliminary experiments it is unclear if the issue is related to the organizational

structure of training data (subjects, trials, and channels) or perhaps the variability

of the waveforms in the data. The I-Vector variances in Figure 4.5 suggests the

occurrence of insufficient TVMs may be rare or is not as pronounced with small

datasets.

These concerns should be addressed by articulating specific datasets, where the

variability of subjects, trials, and channels can be controlled with respect to variance

and quantity. In doing so the UBM can manipulated with its properties being tracked

through the EM training process of the TVM. If near-identical UBMs can be produced

from different datasets or subsets of a larger dataset, akin to a DP, it may be possible

to produce an archetypal UBM that covers the full dataset.
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4.2.2 Secondary Classifications

The secondary classifications presented in Tables 4.3 and 4.5 suggest I-Vectors can

identify facets of multiple discrimination levels (subject, trial, and channel) in EEG

data. This is promising, but expected given the success of the technique within the

speech recognition community. The difficulty in leveraging it with EEG data is that

a pathway to link the resultant I-Vectors to the underlying EEG characteristics is

missing. Speech produces I-Vectors on much smaller time scales than those used in

the preliminary experiments which may not be feasible for EEG data.

Developing synthetic datasets with purposefully mismatched channels or pre-

determined phenomena spliced across subjects and channels should allow for detailed

analysis of what the I-Vector process deems significant for discrimination. Such a pro-

cess would not be reliant on annotated data so long as subject differences are strong

enough to be discernible, which is strongly suggested by the secondary classification

results. In this manner, subject data could be stitched together in various segment

lengths. The purpose of this would be to (a) test how a variable duration ‘trials’

impact I-Vector generation and (b) allow for better control when performing similar

secondary classification experiments with unlabeled data by using the subjects as the

labels.
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[67] M. Näpflin, M. Wildi, and J. Sarnthein, “Test-retest reliability of resting EEG
spectra validates a statistical signature of persons,” Clin. Neurophysiol., vol.
118, no. 11, pp. 2519–2524, 2007.

[68] A. B. Ajiboye et al., “Restoration of reaching and grasping movements through
brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-
concept demonstration,” Lancet, vol. 389, no. 10081, pp. 1821–1830, 2017.

[69] C. Gouy-Pailler et al., “Nonstationary Brain Source Separation for Multiclass
Motor Imagery,” IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 469–478, feb
2010.

[70] B. Blankertz et al., “Invariant common spatial patterns: Alleviating nonsta-
tionarities in brain-computer interfacing,” Adv. Neural Inf. Process. Syst., pp.
1–8, 2007.

[71] F. Lotte and C. Guan, “Learning from other subjects helps reducing Brain-
Computer Interface calibration time,” in 2010 IEEE Int. Conf. Acoust. Speech
Signal Process., vol. 1, no. 2. IEEE, 2010, pp. 614–617.

[72] P.-J. Kindermans et al., “True zero-training brain-computer interfacing–an on-
line study.” PLoS One, vol. 9, no. 7, p. e102504, jul 2014.

[73] L. A. Farwell and E. Donchin, “Talking off the top of your head: toward a
mental prosthesis utilizing event-related brain potentials,” Electroencephalogr.
Clin. Neurophysiol., vol. 70, no. 6, pp. 510–523, 1988.

[74] N. Karamzadeh et al., “Capturing dynamic patterns of task-based functional
connectivity with EEG,” Neuroimage, vol. 66, pp. 311–317, 2013.

[75] J. Jeong, “EEG dynamics in patients with Alzheimer’s disease,” Clin. Neuro-
physiol., vol. 115, no. 7, pp. 1490–1505, 2004.

[76] B. Porjesz et al., “The utility of neurophysiological markers in the study of
alcoholism,” Clin. Neurophysiol., vol. 116, no. 5, pp. 993–1018, 2005.

[77] E. Baar and B. Güntekin, “A review of brain oscillations in cognitive disorders
and the role of neurotransmitters,” Brain Res., vol. 1235, pp. 172–193, 2008.

[78] S. J. Lupien et al., “The effects of stress and stress hormones on human cog-
nition: Implications for the field of brain and cognition,” Brain Cogn., vol. 65,
no. 3, pp. 209–237, 2007.

[79] N. Kasabov and E. Capecci, “Spiking neural network methodology for mod-
elling, classification and understanding of EEG spatio-temporal data measuring
cognitive processes,” Inf. Sci. (Ny)., vol. 294, pp. 565–575, feb 2015.

[80] M. H. Silber et al., “The visual scoring of sleep in adults,” J. Clin. Sleep Med.,
vol. 3, no. 2, pp. 121–131, 2007.

127



[81] M. Radha, G. Garcia-Molina, M. Poel, and G. Tononi, “Comparison of feature
and classifier algorithms for online automatic sleep staging based on a single
EEG signal,” Conf. Proc. ... Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE
Eng. Med. Biol. Soc. Annu. Conf., vol. 2014, pp. 1876–1880, 2014.

[82] S. K. Loo and S. L. Smalley, “Preliminary report of familial clustering of EEG
measures in ADHD,” Am. J. Med. Genet. Part B Neuropsychiatr. Genet., vol.
147, no. 1, pp. 107–109, 2008.

[83] S. J. Segalowitz, D. L. Santesso, and M. K. Jetha, “Electrophysiological changes
during adolescence: A review,” Brain Cogn., vol. 72, no. 1, pp. 86–100, 2010.
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