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ABSTRACT

In recent years, electroencephalograms (EEGs) have been the subject of intense

signal processing research. The ability of software to group, cluster, or identify trends

in EEG data has applications that range from clinical support tools for neurologists

to brain-computer interfaces. However, a persistent limitation in the development

of EEG classification algorithms has been a lack of clinician labeled data which is

necessary to train the supervised neural networks and deep learning systems. This

work addresses this issue by presenting an unsupervised technique for classifying

EEGs and elucidating common data modes that do not depend on labeled data.

Specifically, this work introduces the application of Identity Vectors (I-Vectors)

to EEG signals. I-Vectors were originally developed in the speech processing

community to parse multiple facets of speaker data (speaker, language, accent, age,

etc). The similarities between EEG and speech data suggest that I-Vectors are a

strong candidate for developing data models that can differentiate between subjects,

channels, and medical conditions. I-Vectors work by building a Universal

Background Model (UBM) of signal features that is based on weighted Gaussian

clusters. This UBM is then projected into a lower dimensional space through a

Total Variability Matrix which seeks to maximize the differences between the UBM

and a group of “enrollment” signals. Optionally, further dimensionality reduction

can typically be achieved through linear discriminant analysis (LDA) before

generating the final I-Vectors.

This work develops the application of I-Vectors to EEGs by addressing three key

research aims. First: can the I-Vector technique be used to classify EEG data with

equivalent performance to other machine learning classifiers. Secondly: how should

I-Vector parameters be tuned to optimize performance on EEG data. And thirdly:
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What properties of EEG data do I-Vectors take advantage of, and can this knowledge

be used to inform the EEG classification process.

I-Vector performance was rigorously evaluated using larger and more diverse

data sets than have been used in comparable published literature, specifically

various blends of the PhysioNet Motor Movement Database and the Temple

University Hospital EEG Corpus. Benchmark comparisons were made against

well-known classifiers in the EEG domain, namely the Mahalanobis Distance and

Gaussian Mixture Model-Universal Background Model (GMMUBM) classifiers.

Performance was also evaluated using three different EEG feature sets as system

inputs, namely Power Spectral Density, Spectral Coherence, and Cepstral

Coefficients.

Ultimately, the I-Vectors exceeded the performance of the MD classifier and

reported an equal error rate 5% higher higher than the GMMUBMs. This was

achieved using I-Vectors that were one to two orders of magnitude smaller than

those in the GMMUBM classifier and half the size of the MD classifier. These

results Indicated the technique was robust and has the potential to scale for use on

large datasets such as the Temple University Hospital EEG Corpus.
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Chapter 1

INTRODUCTION

The ability to communicate underlies the major functions of the brain. Given

the array of tools at our disposal (voice, facial expressions, hands, feet and eyes) our

ability to communicate is limited only by our inventiveness. However, this system of

communication limits our brain by forcing it to indirectly communicate through these

tools. When we wish to study the brain itself problems arise because the majority

of measurements come through indirect means. This is further complicated as the

ideas to be expressed become more complex either in terms of emotional context or

severity, such as pain and illness.

Presently, electroencephalography is the principle method of directly

communicating with the brain. While the communication is one directional, in that

we can only listen, it affords opportunities not available through our human

faculties. electroencephalograms (EEGs) may be used to discern the incidence of

epilepsy and stroke [1], study neural responses to stimuli [2], or even neural control

feedback [3]. Recently, the advent of inexpensive commodity-grade EEG

headsets [4] has expanded the field to include areas such as gaming,

neuro-modulation, and mindfulness training [5].

These advances allow for direct and more timely interpretation of EEGs via the

creation of digital signal processing tools that can identify or predict neural

activity [6]. In clinical settings this technology assists neurologists in reviewing long

recordings [7], communicating with patients [2], and processing artifacts [8]. These
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tools leverage multidimensional statistical models [9, 10, 11] to enhance our

understanding of EEGs. In research settings, this technology has facilitated

advances in brain-computer interfaces (BCIs) [12] and seizure prediction [13].

Historically, computer-based EEG interpretation has been only moderately

effective despite large quantities of research [14, 15]. One key problem is that brain

function (and by extension an EEG recording) is highly variable, requiring very

large sample sizes in order to create robust statistical models [16]. The most

powerful statistical methods generally require even larger samples sizes to assure

convergence [17]. Until recently it has been difficult to collect, store, and process

such large EEG datasets.

Modern digital data collection methods, in both clinical and research settings,

have made ‘big neural data’ feasible [18]. However, these datasets must be annotated

prior to being useful for training statistical models. Annotated data is produced

when an expert reviews the recordings by marking which segments of the recordings

correspond to known phenomena [19]. These annotations can be at the macro scale

(such as ‘seizure’) or the micro scale (such as ‘sharp spike wave’). Not surprisingly,

EEG annotation is manually intensive making it rarely cost effective to ask clinicians

to perform it at a fine-grained level [20]

There are communication problems between even well trained clinicians on how

and what to annotate on recordings. This is evident by moderate consensus agreement

when annotating simple events such as variations of spike waveforms [21, 22, 23, 24].

Conflicting annotations make it difficult to produce ‘gold standards’ of annotations

used for training new clinicians and for leveraging the power of supervised Machine

Learning (ML) techniques.

Supervised ML techniques rely on this annotated data, more commonly called

labeled data within the ML community, to produce sufficient models of known
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classifications. By using prior knowledge of the data, models can be trained to

classify previously unseen data in classes such as background, seizure, and sleep.

However, a common problem with these techniques is a lack of strong consensus for

each class [6]. Thus the system is inherently limited by the quality and quantity of

its prior knowledge.

The difficulty increases when building unsupervised ML techniques that operate

on unlabeled data [20, 25]. Now the techniques are tasked with first determining

how to partition the data into classes and then performing classification on those

self-generated labels. This typically requires additional data beyond a supervised

approach, but removes the stipulation of prior knowledge.

Despite the majority of research focusing on supervised ML, an unsupervised

ML method may best suited for interpretation of EEGs. Unsupervised approaches

are decoupled from clinicians because there is no need for labeled data. Clinicians

are capable annotators, but even in their area of expertise they have biases which

manifest in poor inter-rater agreement when aggregating annotations [26].

Furthermore, as the use cases of EEGs grow they advance beyond what clinicians

typically annotate, meaning it is impossible to provide a documented ground truth.

Given such constraints, this work introduces Identity Vectors (I-Vectors) as an

unsupervised machine learning method for EEGs with the aim of supplanting the

reliance on clinician annotations.

1.1 The Landscape of Electroencephalograms

Before outlining the aims of this work, a brief background is provided to a shared

understanding of the relationships between EEGs, algorithms and clinicians. Chiefly

among these relationships is the way in which algorithms and clinicians are trained
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and perform annotations. Specific attention is paid to how clinicians, as individuals

and groups, produce the annotations used for algorithm development. The

performance of these algorithms is outlined to contrast with the scope and

performance of their human counterparts. Attention is focused on the algorithms

areas of application and performance.

1.1.1 Clinician Development

Clinicians undergo extensive training, often culminating in a fellowship to specialize

in the treatment of epilepsy, sleep disorders, or intensive care. These specializations

require the ability to interpret EEG recordings1 for which the clinician can be

certified through the American Board of Psychiatry and Neurology, Inc. (ABPN).

The American Academy of Clinicians (AAC) works with the ABPN to ensure

clinicians are adequately trained, but cautions that “[N]ot all hospital credentialing

boards require sub-specialty training to allow individuals to interpret EEGs”2.

Sub-specialty certifications are limited to topics such as brain injury, neuromuscular

issues, and epilepsy.

Beyond this, clinicians refine their skill on the patients they encounter through

their practice of medicine. Principle among these skills is their ability to accurately

annotate EEGs recordings. Annotations focus on documenting the activity of the

brain via signals recorded from strategically placed electrodes extracranially (on the

scalp) or intracranially (on the surface of the brain) [27]. The methodology of

annotating and interpreting EEG recordings is part of the certification process, but

1Taken from: https://medicine.yale.edu/neurology/education/fellowships/epilepsy_

eeg/
2Taken from: https://www.aan.com/uploadedFiles/Website_Library_Assets/Documents/

4.CME_and_Training/2.Training/3.Fellowship_Resources/3.How_to_Apply_for_a_

Fellowship/Epilepsy\%20Fellowship\%20FAQ.pdf
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the Epilepsy Foundation contends that “EEG training for clinicians is inadequate”3.

In spite of this, clinical annotations remain the best tool for assessing the behavior

and state of a brain [28].

Even with all their training and successful treatment of the myriad of brain

disorders, clinicians are not without their inconsistencies as they are human [21].

Firstly, their ability to annotate accurately is often surpassed by the amount of data

produced from tests. This leads to annotation consuming a disproportionate

amount of their work hours. Secondly, their formal education ensures they are in

agreement on terminology and its manifestation [22]. However, performance in

consensus-bases studies suggests there are disagreements over which waveforms are

of interest to each clinician [21, 23, 24].

Thus it is clear that clinicians are capable interpreters because they readily

determine the correct diagnosis from a EEG recording. However, their reasoning for

these assessments have the potential to be disparate. This behavior is not unique to

a specific subset of conditions as it is readily apparent in the lack of annotation

consensus in sleep [24], seizure [21] and cardiac [29] EEG recordings.

Even when presented with data common to their expertise, pairwise clinician

similarity (Cohen’s κ statistic4) is moderate (0.41-0.60) at best [21] and group

performance varies from slight (0.0-0.20) to almost perfect (0.81-1.00) [29]. This

suggests clinicians identify different, but valid, indicators of disorders. Ultimately

this produces multiple divergent, but correct, sets of annotation from one dataset.

While not problematic for diagnosing disorders, it makes it difficult to develop ML

algorithms when there are multiple ‘right’ answers.

3Taken from: http://www.epilepsy.com/article/2014/12/eeg-training-clinicians-

inadequate
4The statistic is not perfect [30], but does appear to be among the most common reported in

studies assessing neurologist performance.
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Figure 1.1. Example of EEG. In Halford et al. [23], seven reviewers were asked to
annotate for seizures and PDs. The annotation results of the hour long
recording, Segment 21, show that six reviewers labeled seizure events,
five labeled PDs, and one labeled nothing. The quantity of annotation
varies as does the spatial alignment between between reviewers.

1.1.2 Clinical Annotations

The ability to produce correct annotations is a fundamental component of EEG based

research. In order to validate the performance of algorithms, clinicians must provided

annotated data. These datasets are annotated through the lenses of the clinician’s

specialization and the patient’s condition or diagnosis. As discussed previously, even

when annotating the same data, clinicians struggle to come to consensus about its

contents. Figure Figure 1.1 shows the results of seven clinicians annotating an hour

long segment for seizures and periodic discharges (PDs). Nearly all the clinicians

annotate abnormal events, save one, but the diversity and quantity of annotations

are inconsistent.

Further complicating matters is that investigators often produce their own

datasets, specifically for a given study. This occurs because existing datasets lack

annotations, subject information, recording parameters, or protocols necessary to
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address their specific research questions. This makes it difficult to reuse previously

annotated data because there is nothing is standardized. While one study annotates

the other two do not, and then all three present with different sampling rates,

recording durations, and electrode layouts.

While these decisions are practical with respect to specific studies, this behavior

prevents supervised ML techniques for being applied across datasets. Without

consistent sampling rates, the datasets may need to be interpolated to produce

consistent windows of data. Mismatches in electrodes, inconsistent annotations, and

artifacts are often manually resolved via the experiment team’s limited knowledge

or by possibly requiring the assistance of yet another clinician. While algorithms

may overcome noise inherent in the data, this is only possible if there is a plethora

of well annotated data from which to learn.

Annotations start, as shown in Figure Figure 1.2, as waveforms whose variations

conform to similar behaviors. Not all annotations are related to medical conditions, as

eye blinks and background are often considered to be noise. Differentiating such noise

from waveforms of interest, like generalized periodic epileptiform discharges (GPEDs),

periodic lateralized epileptiform discharges (PLEDs), spike and sharp wave complexes,

and triphasic waves, is a critical step in reading an EEG. The American Clinical

Neurophysiology Society (ACNS) defines an exhaustive list of EEG terms, including

background characteristics, which are outlined in [29]. Clinicians are well versed in

the terminology, but struggle in their ability to accurately match waveforms with

appropriate labels [31].

The waveform examples from Wulsin et al. [14] are drawn from a seizure dataset.

However, the waveforms are not unique to seizure recordings and could also be

found in any of the other active EEG research fields such as attention/workload

measurement [32], biometric identification [33], BCIs [5], evoked response
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Figure 1.2. Annotation example. Annotations used for the work of Wulsin et al
in [14]. Notice the placement of the spike does not need to precede or
succeed the sharp wave. GPED and PLED typically occur over a range
of channels making them context dependent.

potentials (ERPs) [34], and sleep stage classification [35]. Each field focuses on

different facets of an EEG recording and may have distinct waveforms. Other

sources for distinct waveforms include subject related traits, such as their

age [24, 36] and genetics [37].

In summary, the fundamental technical challenge of training robust algorithms

for automatic EEG interpretation is the diversity of annotated data. Seizure data

differs from ERP data which differs from sleep data, making it difficult, if not

impossible, to find clinicians capable of accurately annotating all of it. The lack of

large diverse sets of thoroughly annotated data encumbers the advancement of

algorithm based annotators/classifiers. This is exemplified by the struggle to

develop ML algorithms capable of meeting performance levels deemed acceptable by

clinicians and the inability to produce consistent universal ML classifiers.
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1.1.3 Algorithm Applications

While major research avenues align with clinical applications (sleep, seizure, and

various brain disorders), the use of ML provides avenues for novel applications as

research progresses such as BCI, biometric verification, ERPs, and brain state

workloads. Despite the variety of unique classification tasks, they all face similar

fundamental performance hurdles. Chiefly among these are the necessary steps of

pre-processing to address artifacts and production of acceptable feature sets.

Within a given EEG recording it can be necessary to address the background

waveforms that comprise the majority of the datasets.

EEG artifacts are often hard to classify because they appear as waveforms that

resemble, Figure Figure 1.2, the more critical spikes and sharp waves of seizures [26]

or the natural brain frequency rhythms [38], Figure Figure 1.3. While artifacts

impact clinicians and algorithms, selection of an optimal feature set is unique to the

algorithms. This is because feature sets are often paired with the type of EEG data

being classified. The result is a wide range of potentially useful features consisting

of but not limited to Power Spectral Density (PSD) features [39], spatial and

temporal features [40], Cepstral Coefficient (CEP) feautres [41], auto-regressive

parameters [42], and normalized raw data [43].

Despite focusing on waveforms of interesting via artifact correction and feature

selection, the majority of EEG often consists of background signals[14, 44, 38]. This is

frequently a problem for rare events like seizures, but is a boon to subject verification

tasks and the biometric community [45]. Additionally, there are many less studied

conditions that manifest throughout a recording, such as alcoholism [46], emotional

state [47], pain [9], and mental focus/workload [48].
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Figure 1.3. Artifact Example. Example of artifacts (b) similarity to the natural
rhythms of the human brain (a) used for the work of Uriguen et al
in [38].

To motivate the implication of these areas of research a brief review of six common

EEG classification fields is presented. The use of algorithms for seizure, sleep, BCIs,

ERPs, and mental/workload classification are readily associated with clinician driven

research, while EEG based biometrics branch out beyond their well defined knowledge

base.

Seizures A substantial portion of work in this field focuses on correctly identifying

and locating seizures [49, 50, 51, 52]. By isolating seizure events, researchers can

focus on the properties of the seizure for the purposes of classification and waveform

modeling [14, 53, 54]. The knowledge gained in this process makes it possible to

predict seizures in real-time [6, 13]. Seizure events are typically high energy and

frequency wavefroms with synchronization across channels [23].

Sleep Studies Sleep state classification labels the transition from wakefulness to

random eye movement (REM) sleep. Sleeping EEG recordings are often cleaner due

to lack of movement artifacts which improves their clarity for clinicians and reduces
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Figure 1.4. Example of a Generalized Seizure EEG. A segment of an EEG recording
taken from a subject at the onset of a generalized seizure. Note that
after the seizure starts, activity is not uniform across all channels.
Image sourced from Tatum [55].

pre-processing for algorithms [56]. Despite this and a closed set of distinct stages,

sleep stage classification suffers from inter-rater agreement problems [24]. Sleep

spindles and K-Complexes serve as the main indicators of sleep along with

pronounced changes in band Power Spectral Density [57]. While seizures often

manifest during sleep, other issues can also be addressed such as sleep apnea [35]

and overall brain functionality/health [58].

Biometrics Multiple studies have focused on the use of EEGs to identify and

verify subjects, irrespective of any associated disease and disorder [59]. The results

of such work suggest that individuals have distinct EEG fingerprints [60, 61, 62]

which may relate to potential inheritable characteristics [61, 63]. A major theme in

biometrics is understanding how different brain states impact these fingerprints.

The work of Rocca et al. showcases brain distinctiveness when using a common

testing state of resting eyes closed [33], spectral coherence as discrimination
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Figure 1.5. Example of Sleep EEG with Sleep Spindles. A segment of an EEG
recording taken from a subject in the second of phase sleep. Note the
present of sleep spindes, black arrow, across multiple channels. Image
sourced from Tatum and Tatum[55].

feature [64], and techniques to reduce the feature set into sparse mappings [65].

Some approaches overlap with other applications by invoking response

potentials [66], focusing on specific brains states of sleep [67], or restful states with

eyes open and closed [68]. Even the longitudinal stability of biometric EEGs is

tested [69] to determine viability for long term applications.

Brain Computer Interfaces BCI technology finds ways to get information into

and out of a brain. The most advanced applications of this are restoring

functionality to those unable to use their body [70, 71]. This requires algorithms

robust to changes in subjects, but sensitive to spatial and temporal facets of EEG

recordings [72, 73]. Development of subject invariant algorithms has led to disparate

training protocols with transfer learning using multi-subject models [74] and
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zero-calibration training being subject specific [75]. This leads to a similar problem

as sleep, where the waveforms are well understood, but their manifestation across

populations complicates their performance.

Evoked Response Potentials ERPs are a stimulus response and not a

voluntary action. A well documented case of ERP is the P300 signal that triggers in

the pariatal/occiptal region 300 milliseconds after seeing an image of interest [2].

This signal is commonly used to enable subjects to communicate via P300 spellers.

These spellers flash the alphabet before a subject waiting for a letter of interest to

trigger an ERP, which allows them to build words [76]. This approach allows a

brain to communicate without the need of a body, but also has applications for

testing processing time of visual and auditory stimulus response [77].

Figure 1.6. Example of an ERP. A 2D mapping of the electrodes and their group
averaged waveform (solid lines). The standard deviations of the channel
averaged are given as the dashed lines. Image sourced from Karamzadeh
et al.[77].

Brain State/Workload Analysis of involuntary conditions address the state of a

person’s brain which can refer to the emotional state, disease state, or
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attention/workload state. Those afflicted with Alzheimer’s [78], alcoholism [46], and

mental disorders such as attention-deficit/hyperactivity disorder (ADHD) and

Bi-Polar disorder [79] present with distinct EEG features. Knowing these conditions

can manifest in the EEG recordings provides context for the how the known

underlying biological changes alter a subject’s EEGs. This is exemplified by studies

measuring how stress impacts cognitive function [80] and a brain’s workload during

attention dependent tasks [48].

1.1.4 Algorithm Development

The development of ML techniques for EEG tends to focus on areas well understood

by clinicians, detecting seizures [13, 14], identifying the stages of sleep [35, 81],

capturing ERPs [34, 82], or processing BCI signals. Minimal focus has been given to

a generalized classifier for interpreting multiple types of EEGs [83]. The approach

closest to this goal is the use of EEGs for biometrics given that subject verification

works on variety datasets with similar results [84, 85, 86]. While conditional

classification techniques (seizure detection, sleep classification, BCIs, and subject

verification) are capable, they fail to increase our overall understanding of EEGs.

Despite the lack of a generalized classifier, the data specific classifiers rely on some

amount of data pre-processing. This is necessary to address recording artifacts [11,

87, 88], optimize the available channel data [64], or generate an acceptable feature

set [89]. In carrying out one or more of these pre-processing steps a preliminary

amount of dimensionality reduction is introduced which becomes more pronounced

as the data is windowed into epochs for a given algorithm [90, 91, 92].

Unfortunately all these steps are often unique to the type of EEG being classified

which means there is no well defined protocol of feature set that applies universally.

For example, seizure algorithms typically process data in windows on the order of 10s
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of seconds [93]. Biometric algorithms utilize channel subsets to verify a subject [45].

BCIs use spatial filters to target the regions of the motor cortex [94]. ERPs focus

on the occipital region where recognition of stimulus is triggered [72]. Things are

further complicated by the varying performance within a dataset based upon subject

or recording variation seen in BCI tasks [90, 73, 95], seizure recordings[6, 14, 96], and

even biometric protocols [97, 98]. Due to this a comprehensive feature set remains

elusive, but data specific feature sets have shown promise when paired with various

algorithms.

These approaches leverage knowledge gained from the study of EEGs which

makes them domain knowledge. Unfortunately domain knowledge comes from

clinicians which means, as outlined previously, there are limits to its impact. It is

critical in understanding artifacts and background (Figure Figure 1.2), seizures

(Figure Figure 1.4), and sleep patterns (Figure Figure 1.5) [99, 57], but clinicians

have minimal knowledge specific to biometrics [84]. Thus some approaches are

bootstrapped by domain knowledge, but it furthers a Catch-22. Algorithms are

made dependent clinician supplied insights when the algorithms task is to provide

annotations to assist those same clinicians.

Within this loop of clinician annotations driving the development progress of

algorithms, is the closed set of available EEG datasets. Aside from the PhysioNet

EEG Motor Movement/Imagery Database (PhysioNet Database) [100] and BCI

competition [101] databases, much of the research is conducted on specific single use

datasets [14, 92, 102]. Furthermore, when the PhysioNet Database database is used

it is often the only dataset [86, 103, 68, 104]. There are studies that combine

datasets, but that they tend to focus on biometric applications [105].

This lack of a robust data landscape manifests as variable algorithm performance

based on the dataset[11, 91] or, within the context of BCI applications, as subjects
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being unable to use the system making them ‘illiterate’ [106, 107]. This suggests

there are intrinsic problems within processing EEG data. Algorithm performance

can they be viewed as being dependent on the type of data (BCI, sleep, seizure, etc),

but also the individual subjects themselves. This makes it difficult to tout any way

forward given the lack of common performance benchmarks.

To address these data issues, algorithms must either be generalized, or built to

tackle specific problems using domain knowledge. These two paths pair well with

unsupervised (generalized) and supervised (specific) ML algorithms [34, 108, 109,

110]. The use of domain knowledge with supervised deep learning approaches have

shown promise in BCI [111], sleep [112] and seizure [14, 13] classification. While their

unsupervised counterparts do not require clinician support they do lag in comparative

performance when addressing similar classification tasks [83, 113, 114, 110].

Efforts to address this data dependency in the BCI field produced four styles of

classification schemes: adaptive classifiers, matrices and tensors, transfer learning,

and deep learning [91]. In a ten year review of 2008 to 2018 by Lotte et al. [110], it

was noted the similar schemes still worked, but a focus should be placed on tailoring

BCI algorithms specifically to the end user to improve performance. These reviews

covered supervised and unsupervised algorithms indicating that no resolute classifier

has been found for the BCI community. Seizure classification has progressed, but the

results are often using small esoteric datasets with 5 subjects [43] and 17 subjects [13].

Biometric techniques continue to perform well, but have also failed to expand their

datasets [115, 59, 86].

The potential within the EEG ML community is vast. Presently performance

varies based upon dataset, feature set, algorithm, and often subject quality. While

some applications have become robust, seizure, ERP, and BCI classification show

promise, this field is still maturing. Given the nascent status of EEG processing
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borrowing techniques from an established domain may be helpful. In general much

of the technology currently deployed for ML pursuits comes from the realm of speech

recognition, such as with Hidden Markov Models (HMMs) [116]. Following this trend,

the development of the unsupervised learning technique called I-Vectors could offer

growth of performance and understanding for EEG classification tasks [117]. I-Vectors

are able to learn decision surfaces for the accent, age, content, gender, and language

of a speaker [118]. Through a series of data modeling utilizing Gaussian Mixture

Models (GMMs) [119] that produce a Universial Background Model (UBM) [120]

capturing the variability of the training data in a total variability matrix (TVM), it

is possible to reduce the dimensionality of various sized segments of data into robust

discrimination vectors, I-Vectors [121].

1.2 Research Proposal

A clinician’s primary focus is to treat their patients. Asking clinicians to produce

perfectly annotated recordings to support algorithm research is not in the best interest

of their patients or their overall productivity. There is little sense in asking clinicians

for help to build datasets for algorithms who’s goal is to reduce the time clinicians

spend reading EEGs. This is clearly a Catch-22: The people that algorithms can help

must first help to train the algorithms. However, clinicians do not have the time or

group consensus to meet the needs of the algorithms.

The most direct solution is to find a way to annotate recordings without

involving clinicians. As discussed ML-based solutions exist, but the field is diverse

and lacks an apex technique. Despite the success of these techniques, fundamental

problems continue to exist which must be overcome by all algorithms. These include

variations in the quality of the recordings, the presence of adequate (in quality and
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quantity) annotated data, an acceptable feature set, and consistent channel layout

across recordings. At its core the issue is identifying what characteristics of the

EEG are relevant for a given classification task. In most instances, annotated data

and prior knowledge is leveraged in order to reduce the dimensionality, and thus the

uncertainty, in the algorithm’s classification. This approach reinforces a reliance on

annotators, which is not ideal given the disparate quality and consensus of

annotations.

Annotation-based techniques are presently the dominant ML approach to

classifying data. This means that clinicians effectively control the algorithms’

performance which makes them an external source of error. To alleviate this

constraint, unsupervised ML algorithms can be developed to match the capabilities

of their supervised counterparts. The benefits of equivalent performance would be

significant, as unsupervised ML enables training on large diverse datasets without

the need of clinicians. Countless hours of data in need of annotation could thus be

labeled, producing a steady supply of data for training supervised ML algorithms

and clinicians. By using I-Vectors for this process it may also be possible to uncover

novel phenomena in the data similar to their use on speech signals.

1.2.1 The Research Aims

The goal of this work was to lay the foundation for an unsupervised ML system

that classified and clusterd EEG recordings. The preliminary pre-dissertation work

indicated it was possible for I-Vectors to perform subject verification and to sort

data by similarity5. While promising, these results had to be expanded to determine

whether I-Vectors could overcome the annotation advantage. This primarily relied on

the constrained modeling processing carried out in the generation of I-Vectors. Once

5See chapter 4’s preliminary experiment results.

18



mastered, the process was largely transparent in its approach making it possible to

study the decision surfaces used for the proscribed classification and clustering tasks.

In addition to understanding how the proposed system operated on EEGs, it was

necessary to prove that I-Vectors could offer comparable performance to existing

standard methods, including both ML algorithms and clinicians. However, given the

advancement of ML algorithms, the ability to cluster and verify subjects is related

only to algorithms. Clinicians do perform similar tasks, but they use resources

beyond EEG recordings to make their assessments such as medical reports. Thus

the performance of I-Vectors was evaluated against other well documented ML of

varying complexity to highlight the tradeoffs between performance, dimensionality

reduction, and algorithm complexity.

From these areas of interest, three research questions were posed:

Research Aim 1: Can an I-Vector-based classification perform as well as, or better

than, other applicable ML techniques?

Research Aim 2: Under what conditions does an I-Vector based system perform

best?

Research Aim 3: What characteristics of EEG data do I-Vectors take advantage

of in their discrimination? Is this process inherently well suited for addressing EEG

classification?

By answering these questions, insight into the nature of I-Vectors and EEGs was

gained. This was possible because similar I-Vectors work in the speech recognition

community produced strong results related to subject verification [122], language

classification [123], accent detection [118], and speaker age estimation [124]. The
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underlying hypothesis was that EEGs had a bounded mathematical space similar to

speech signals. This space can be exploited by the constraints of the TVM which

shapes the I-Vectors producing nuanced classification similar to those seen in speech.

1.2.2 The Research Experiments

The Aims of this work were addressed in three experiments: Parameter Sweeps,

Algorithm Benchmarks, and UBM-TVM Relationship. Upon completing the

experiments, the process of producing I-Vectors from EEG data was understood

along with which properties of EEG and I-Vector made this approach viable for

producing annotations in an unsupervised manner.

Parameter Sweeps The purpose of the Parameter Sweeps was to determine

optimal operating parameters for applying I-Vectors to EEGs. This addressed

Research Aim 2 by measuring the significance of specific features, channels, UBM

mixture sizes, and the TVM training process. Testing each parameter over a range

of values produced trends for a best practice approach to baseline I-Vector systems.

The statistical decomposition of each dataset (abnormal, normal, motion trials, and

seizure) and I-Vector development process provided background and baseline results

enabling comparisons against the other published results where the data is not

publicly available.

Algorithm Benchmarks In order to validate I-Vectors as an option for

classification and clustering of EEG data their performance was compared against a

suite of ML algorithms. The algorithms were evaluated through their sensitivity and

specificity and, when applicable, their ability to cluster. These experiments
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addressed Research Aim 1 through a series of leave one out cross

validation (LOOCV) experiments based on subject and channel classifications.

UBM-TVM Relationship The relationships between UBMs and TVMs was

deconstructed to examine the trade-offs made during optimization of the TVM.

Using the reported performance of Gaussian Mixture Model-Universal Background

Model (GMM-UBM) and I-Vector classifications, the influence of the mixture

weighting were traced throughout the entire modeling process. This manifested as

comparative feature and mixture mappings for each classification test. These

mappings unlocked the fundamental statistical properties used to differentiate

subjects which can then be compared across data sets as they are bounded by a

common feature set. Ultimately this protocol turned I-Vectors into a powerful

multi-modal signal analysis technique.
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Chapter 2

BACKGROUND

Scarecrow:

The sum of the square roots of any two sides of an isosceles triangle is
equal to the square root of the remaining side. Oh joy! Rapture! I got a

brain! How can I ever thank you enough?

The Wizard of Oz:

You can’t.

This chapter introduces the nature and use of EEGs in clinical and research

settings. Clinical EEGs are used by clinicians to make diagnostic decisions in

accordance with their education and training. In research settings algorithms strive

to replicate the performance of clinicians through statistical modeling guided by

clinician annotated data. Together these two groups are increasing our ability to

discern the meaning of EEG signals.

This dissertation will examine the suitability of I-Vectors as a mathematical tool

for allowing researchers to replicate clinician performance on EEGs. I-Vectors have

shown promise with respect to classification and clustering of speech signals in terms

of accent, age, context, gender, and language via its feature transformation process.

This type of discrimination would be beneficial to understanding the phenomena that

produce EEG waveforms. The I-Vector technique is introduced in depth along with

the necessary criteria to evaluate it against other algorithm based discrimination

techniques.
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2.1 Electroencephalograms

An EEG records the electrical activity of the brain. The captured voltage signals

represent the firing of neurons involved with all aspects of a brain’s functionality.

Through the use of EEGs we can see how the brain functions on an operational

level [47], interprets stimuli [62], and changes due to diseases and disorders [46]. The

applications of EEGs are primarily limited by the ability to link recorded activity to

the underlying physiological condition.

A clinician’s ability to annotate EEG recordings utilizes their knowledge of the

relationship between waveforms and physiological conditions. An accurate diagnosis

cannot be made from waveforms only as the clinician must consider the subject’s

history and the recording conditions of the EEG. In many cases spatial and temporal

properties must be considered when assess for specific conditions related to different

regions of the brain and similarities between waveforms.

Depending on application, EEG signals require radically different signal processing

techniques for separating or decoding them. For example, whereas seizure and sleep

waveforms are distinct and easily separable [1], EEG signals in BCI applications

are typically subtle and require custom spatial and/or temporal filters [34]. This

changes the discrimination techniques when dealing with BCI to spatial and temporal

features [73, 125]. Auditory and visual stimulus response [2] have distinct spatial

patterns as well adding to the diversity of BCI waveform morphology [75].

To distinguish spatial and temporal features, EEGs are partitioned via channels

and epochs. As discussed previously, the channels are a representation of the

electrodes, shaped by filtering and montages. Epochs segment the data as a

function of time, typically on the order of seconds. Clinician and algorithm based

approaches both rely on these techniques, but in different ways. Clinicians will
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review EEGs using epochs on the order of tens of seconds [24, 126], while algorithms

operate on epochs of seconds [14, 75].

One of the main diagnostic applications of EEGs is the classification of

seizures [14]. Seizures represent excessive electrical activity within a region of the

brain which manifest as high energy waveforms. The study of sleep is also an active

research area given the occurrence of seizures during sleep and sleep’s impact on

brain health [102]. When recording for seizure and sleep activity a substantial

amount of background activity is also captured. This enables enables an analysis of

overall brain function, like the presence of ADHD in children[127]. Adult EEGs also

provide insight into numerous conditions such as alcoholism [46], Alzheimer’s

Disease [78], brain development [128], emotion [47], and stress [80].

In a research setting, BCIs promote a deeper understanding of brain

functionality by allowing those with disabilities to communicate [2] and regain

functionality [70]. BCIs highlight the ability of algorithms to classify waveforms

beyond the capabilities of clinicians. These computer-driven methods enabled the

development of novel applications in clinical monitoring, video games [5], and

bio-metrics [129]. All of these use real-time classification which is not in the purview

of clinicians. Specifically, bio-metrics provide the ability to dissect the facets of EEG

that differentiate one person from another. This is a level of discrimination that

clinicians cannot attain and serves needs far beyond clinical settings in hospitals.

Moving EEGs outside of hospitals has expanded the potential applications of

EEGs[4]. It is easier to produce EEG datasets for experiments, but even with these

advances there are few publicly available datasets. Those datasets available having

varying levels of documentation and labeling related to conditions, subjects, and

tasks. In addition, the sampling rates and number of channels have no definitive

standards which furthers the disparate nature of the recordings. Recording in non-
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clincial environments often increases the likeliehood of artifacts, but even under ideal

clinical conditions artifacts are still present requiring pre-processing[87, 8].

The following sections focus on the process and techniques of collecting EEG

signals from a brain. Electrode configuration and montages are two important tools

clinicians use when making a diagnosis from a recording. They provide flexibility to

the clinician, but hamper the ability of algorithms to validate themselves on similar

data. The experimental datasets are also introduced to highlight the difficulties of

working with publicly available data.

2.1.1 Properties of Electroencephalograms

An EEG is comprised of multiple surface/scalp electrode channels capturing the

continuous signals generated by the brain. These signals represent the aggregated

neuronal activity of the cortical neurons in immediate proximity to each electrode.

Each channel maps to a specific electrode that is placed on the scalp, extracranially,

or in the case of intracranial electroencephalograms (iEEGs) directly on the brain’s

surface. Electrode placement for extra-cranial recordings follows a standardized

layout, Figure 2.1, based upon relative distances [130]. Intra-cranial electrodes are

high density electrode grids that are placed directly on the brain region of interest.

This increases the complexity of the electrode and the data collected which excludes

them from this work, but there is no theoretical reason I-Vectors could not operate

on such signals.

The electrode configuration dictates the number of channels in the recording.

To visual these signals clinicians view them indirectly as montages, a differential

electrode configuration. Montages, Section 2.1.1, can be configured to be referential

to a common ground electrode, neighboring electrode, or a contralateral electrode.

These configurations aid in the diagnostic process by calling attention to patterns
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Figure 2.1. 10-20 EEG Configuration. The 10-20, 10-10, and 10-5 layouts for EEG
electrodes utilize a proportional unit of measure for the distribution of
electrodes. The first number represents the distance of the electrodes
from the nasion and inion and the second represents the space between
subsequent electrodes. With this approach adding electrodes does not
change the location of the previous electrodes. Image sourced from [131].

of behavior in the recording. Below are three sets of montages for a system with

eighteen channels1.

Montages serve to improve the clarity of each channel. Theoretically they do

not impact the content of the channels, but evaluating such a claim is beyond the

immediate focus of this work. Filtering of the channel data, before or after inclusion

in a montage, is necessary to separate signals into the five standard EEG frequency

bands, Table 2.2. Signals between 2Hz to 80Hz represent the spectrum commonly

viewed by clinicians2. For many conditions the frequency range of activity is critical

1Taken from: https://www.acns.org/UserFiles/file/EEGGuideline3Montage.pdf
2While this is the dominant spectrum of interest, research using iEEGs indicates activity at

higher frequencies (>500Hz) may contain relevant discriminatory data related to seizures [109].
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in signal classification. Motor activity signals dominate the alpha band [132], while

the stages of sleep affect all but the gamma band [35].

Table 2.1. Common EEG Montages

Channel
Longitudinal

Bipolar
Transverse

Bipolar
Referential to
Ground(Ear)

1 Fp1-F7 F7-Fp1 F7-A1
2 F7-T3 Fp1-Fp2 T3-A1
3 T3-T5 Fp2-F8 T5-A1
4 T5-O1 F7-F3 Fp1-A1
5 Fp1-F3 F3-Fz F3-A1
6 F3-C3 Fz-F4 C3-A1
7 C3-P3 F4-F8 P3-A1
8 P3-O1 T3-C3 O1-A1
9 Fz-Cz C3-Cz Fz-A1
10 Cz-Pz Cz-C4 Pz-A2
11 Fp2-F4 C4-T4 Fp2-A2
12 F4-C4 T5-P3 F4-A2
13 C4-P4 P3-Pz C4-A2
14 P4-O2 Pz-P4 P4-A2
15 Fp2-F8 P4-T6 O2-A2
16 F8-T4 T5-O1 F8-A2
17 T4-T6 O1-O2 T4-A2
18 T6-O2 O2-T6 T6-A2

Table 2.2. EEG Frequency Bands

Band Name
Frequency Range

(Hz)
Attributes

Delta 1-3 Brain health, deep sleep
Theta 4-7 ADHD rhythms, relaxation
Alpha* 8-12 motor activity, alertness
Beta 13-30 anxiety, focus

Gamma 31-80 REM sleep, stress

*When dealing with motor cortex signals it is common
to encounter the Mu band (9-11Hz) which resides within
the Alpha band.
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2.1.2 Available Datasets

There are a number of publicly available EEG datasets3. These datasets are developed

for specific studies independently of each other resulting in a wide variation of data

content and format. Their data formats range across European Data Format (EDF),

Matlab formatted files, and raw text files. The data content differs in terms of

electrodes, sampling rates, and the studied phenomena.

This work applies to the PhysioNet Database dataset and the Temple University

EEG Corpus (TUH-EEG) dataset. These datasets have been standardized to utilize

the same 20 channel Trans-Cranial Parasagittal (TCP) montage. In addition the

TUH-EEG dataset contains annotations from multiple sources providing robust

labeling of events. This helps control for variation between the BCI focused

PhysioNet Database dataset and predominantly seizure focused TUH-EEG dataset.

2.1.2.1 Temple University Hospital EEG Corpus

The TUH-EEG dataset contains over 25,000 EEG studies and their associated

neurological evaluations taken from Temple University Hopsital (TUH) in

Philadelphia, Pennsylvania [18]. Each patient’s records present with different

electrode configurations and sampling rates. The curated corpus uses a common 22

channel montage, TCP shown in Figure 2.2, for all subjects with a static sample

rate of 250Hz.

The dataset contains longitudinal results of patients receiving continuing care at

the hospital. These include multiple same patient sessions in a given day or sessions

spaced out over a number of years. TUH treats patients of varying backgrounds (age,

gender, diagnosis) providing breadth to the data. Recording profiles at TUH range

3The University of California San Diego maintains a website, https://sccn.ucsd.edu/~arno/
fam2data/publicly_available_EEG_data.html, indexing many of the publicly available datasets.
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Figure 2.2. The TCP Montage Layout. The TCP Montage channels (red) used by
the TUH EEG corpus is overlaid on the PhysioNet Database channel
layout. Each montage link (orange) is assigned an index for storing the
montage channel (gray) data in the corpus. The proper 10-20 channel
names (black) are provided for the montage channels.

from 23 to 32 electrodes with sampling rates of 250Hz, 256Hz, 400Hz, or 512Hz [18].

Computerized EEG analysis is complicated by the fact that even small variations in

electrode placement can hamper generalizations between subjects. This problem is

exacerbated when datasets from disparate sources are combined.

2.1.2.2 PhysioNet EEG Motor Movement/Imagery Database

The PhysioNet Database data contains 109 subjects following computer prompted

motion/motion imagery trials at the New York State Department of Health’s

Wadsworth Center [94]. The recordings present 64 electrodes following a 10-20

layout sampled at 160Hz. From this base layout, the data is converted to the same

22 channel TCP montage used by the TUH-EEG.
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Each subject performs two calibration trials (resting eyes open and resting eyes

closed) and twelve task driven trials. The four tasks consist of opening/clenching the

(1) left or (2) right first and opening/clenching both (3) fists or (4) feet as a physical

and imaginary movement. A trial consists of 30 tasks that alternates between rest

and motor tasks. The calibration trials last for one minute and the motor trials last

for two minutes, providing 26 total minutes of subject data. The data is publicly

available through the PhysioNet Database website [100].

There are 12 total motion tasks representing three groups. These groups consist

of 4 repeated trials creating natural cohorts of grouped trials: {3, 7, 11; 4, 8, 12; 5,

9, 13; 6, 10, 14}. Figure 2.3 shows the layout of tasks within each trial and their

associated grouping. The major experiments utilize these trial level cohorts and the

unique 109 subjects to develop I-Vectors for discrimination on the trial and subject

level.

Figure 2.3. PhysioNet Trial Composition. Each subject from the PhysioNet data set
completed 14 trials. Two of these trials (TR1 and TR2) are one minute
calibrations trials of resting eyes open and resting eyes closed. The
remaining 12 trials are two minute recordings of a predefined sequence
consisting of a task state and resting state. With four tasks states, each
task is repeated three times producing four groups of task related trials.
These trial groups provide the basis for cohort retrieval on the trial level.
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2.2 Applications and Classification of Electroencephalograms

The techniques used by algorithms and clinicians to classify and cluster EEG data

are unique. An algorithm’s foundation is informed by the knowledge of clinicians

via their annotated data. A clinician’s knowledge comes from their experience

treating patients and their formal education. The algorithms are dependent on the

clinicians’ annotations to build their knowledge base, making them susceptible to

clinician bias. Clinicians are skeptical of algorithm performance because it does not

match clinical performance. As algorithms attempt to improve their classification

they are competing against experts in a field that is still being understood. Progress

is slow because it is difficult for algorithms and clinicians to be confidant in the

reasoning of their classifications. This makes it difficult to produce accurate testing

datasets given the competing views on what are accurate annotations.

Clinicians annotate EEGs recordings to diagnose their patient. Typical clinical

recordings are 20 minutes or more depending on the nature of the assessment. Each

recording is accompanied by a detailed EEG report [27]. These reports must

document the subject, the testing carried out, and address the clinical questions4.

The interpretation of an EEG recording is the main criteria when affirming a

diagnosis, but must be supported by evidence indicating the recording is normal or

abnormal[19].

This annotation and reporting process relies on the clinician’s ability to review

segments of the full recording for waveforms relevant to the clinical questions. A

clinically relevant interpretation of the patient’s condition may not be forthcoming

4Clinical questions are posed prior to testing by the clinician. They serve to inform the clinician
about the patient, their condition, and what outcomes are possible. As an example, if a patient
has seizures while sleeping it would be necessary to determine the location of these seizures, their
severity, and how such seizures compare to other patient populations. These would all be questions
answered through EEG recordings.
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without reviewing the reports of other tests and/or subjects [27]. This meta-analysis

across subjects is a clustering process informed by medical records and annotations.

However, the EEG reports focus on determining if the results inform the clinical

questions or not [19]. This does not require all relevant phenomena to be annotated,

as only enough data must be collected to affirm a position. As such a clinician’s

ability to cluster could be hampered by their ability to annotate, which is suggested

by tracking a clinician’s ability to reproduce classifications [26].

In contrast, an algorithm’s approach to annotation is much more broad.

Depending on the desired outcome, algorithms can perform a normal/abnormal

classification [7], annotate specific epochs [14] or combine these approaches to

classify EEG recordings [35]. Each of these classification techniques is a subset of

the classification approach used by clinicians. Performance of these algorithms is

measured against gold standards generated from training data annotated by

clinicians [14, 24]. The goal is develop algorithms capable of mirroring clinical

performance which limits the strength of the algorithms to the strength of the

clinicians.

Depending on the output of these algorithms, they are capable of clustering

EEG recordings in a way clinicians cannot replicate. The ability to infer similarity

of waveforms, epochs, and entire recordings across subjects is important in the

development of robust BCI [74] and bio-metric applications[45]. In this area

algorithms exceed the ability of clinicians by shifting how EEG recordings are

evaluated through novel channel and feature selection [65, 66, 68].

Specifically, bio-metric algorithms can determine the similarity of one subject to

another [45, 63]. This makes bio-metric subject verification the closest analog to

I-Vectors, but they are not limited to subject comparisons. Instead they offer the

ability to discriminate on multiple facets of the data without needing the same extent
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of bio-metric pre-processing [121]. This makes their application to EEG recordings

interesting as I-Vectors may be capable of bridging classification between algorithms

and clinicians.

2.2.1 Clinician Classification

For clinically annotated EEG recordings it is important that common terminology

was used when describing the waveforms. Without a shared vocabulary EEG reports

would be ineffectual for diagnostics and documentation [27]. Gaspard [22] tested 49

clinicians’ agreement on terminology by asking them 409 questions about 37 pre-

selected EEG waveforms. Their protocol removed the need of the clinician to find the

epochs, enabling them to focus on each clinician’s ability to describe the contents of

each pre-selected epoch.

Each clinician’s background varied in terms of experience (2-15+ years) and

training (adult or pediatric neurology). While the epochs were sourced from only

critical care patients exhibiting PLEDs, GPEDs, seizures, and other rhythmic

activity. The epochs were presented using a modified biploar montage with a

bandpass filter spanning 1Hz-70Hz. From these epochs, clinicians made categorical

assessments based upon the presence of a seizure and dominant morphologies and

ordinal assessments based upon the physical properties on the signals (sharpness,

amplitude, frequency, etc). The overall and inter-rater agreement of the clinicians is

presented in Table 2.3.

In 12 of the 15 categories, the clinicians’ exceeded an agreement of 70% and 7 of

the 15 showed near- perfect (0.81-1.00) κ statistics. The categories with the lowest

agreement and weakest κ statistics were categorical classifications. With only 3

morphologies reporting κ below substantial (0.61-0.80), the results suggest the

clinicians perform well as a group. Yet, those three categories indicated a universal
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Table 2.3. EEG Terminology Agreement

Terminology Item Agreement (%)
κ statistic
(95% CI)

Categorical
Seizure 93.3 91.1 (90.6-91.6)
Main Term 1 91.3 89.3 (89.1-89.6)
Main Term 2 85.2 80.3 (79.4-81.2)
Triphasic Morphology 72.9 58.2 (56.1-60.2)
Plus + Modifier 49.6 33.7 (32.4-35.1)
Any + 59.3 19.2 (17.5-20.9)
+ Fast Activity 71.9 65.5 (64.4-66.7)
+ Rhythmic Activity 76.5 67.4 (66.5-68.3)
+ Spike or Sharply Contoured 83.9 81.8 (81.2-82.5)

Ordinal
Sharpness 91.5 84.8 (84.3-85.2)
Absolute Amplitude 96.5 94.0 (93.8-94.2)
Relative Amplitude 71.8 66.4 (65.3-67.4)
Frequency 97.8 95.1 (94.9-95.2)
Phases 89.9 83.0 (82.6-83.4)
Evolution 65.6 21.0 (19.7-22.2)

Each terminology item, aside from Seizure, could be classified with
multiple responses. Fast Activity could be yes, no, or no applicable
while Phases were 1, 2, 3, >3, not applicable forcing the clinicians to
articulate their classifications. Agreement specifies the percentage of
waveforms classified correctly. The κ score indicates the amount of inter-
rater agreement, see Section A.1.1.
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blind spot that would be passed on to an algorithm built from this annotated data.

Since the contents of epochs were known, this showed how difficult it was for

clinicians to agree on labeling of wavefroms.

These biases likely existed because clinicians were evaluated on their annotations

indirectly. Their diagnoses were not solely based on a single event in the EEG, but

rather the sum of the recordings in conjunction with the patient’s medical history.

In Halford et al. [26] the importance of detecting epileptiform transients (ETs) was

found to be critical for diagnosing epilepsy. Failing to annotate some of the ETs

does not change the diagnosis because the clinicians were primed to make a decision

about epilepsy. Individually the 18 tested clinicians were unable to produce a Gwet

agreement coefficient5 over 0.50 with the rest of the group. This indicated a weak

agreement among the clinicians. Despite varying levels of certification and years of

practice, there were no distinct indicators of what characteristics represented a better

annotator.

The difficulty in producing accurate annotations with respect to others existed

at the intersection of finding the waveforms and then correctly labeling them. These

problems were documented to various degrees when clinicians’ annotation skills were

tested on critically ill patients [31], patients exhibiting seizures [21, 23], comatose

cardiac patients [29], and sleeping subjects [126]. The results of such studies

highlighted problems with clinician inter-rater and intra-rater agreement as a

function of the type of EEG data.

5The Gwet’s AC2 is an alternative to κ statistics for quantifying inter-rater similarity, but is
bounded over the same range [133].
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2.2.1.1 Clinician Inter-rater Agreement

The previous section discussed this broadly and with the benefit of the waveforms

being pre-selected. However, when clinicians were asked to annotate longer epochs

the discrepancies shift from clinical knowledge to issues of annotation style. Their

inter-rater agreement was the ability of one clinician’s classification to agree with one

or more other clinicians.

A pedantic instance of this was seen in Figure 2.4 where two clinicians labeled

seizure events [23]. In the highlighted section, Rater B identified two discrete events

while Rater A labels them as one event. Each of them notices at least 4 other seizure

events, but their agreement was weakened because of their three misidentified events.

Behavior such as this further complicated how to quantify agreement and disagree

based upon duration of said annotations.

Figure 2.4. Inter-rater annotation matching. An example of how open ended
annotation styles lead to inconsistencies in evaluating the accuracy of
inter-rater agreements.

This example came from Halford et al.[23] where the agreement of 8 clinicians

was test on 30 one hour Intensive Care Unit (ICU) EEG recordings from 20 seizure

patients. Each clinician was asked to label PDs events, a strong indicator of a seizure,

and true seizure events. The resultant κ statistics for the group were 0.58, moderate,

for seizures and 0.38, fair, for PD. These results highlighted the difficulty in finding
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consensus by suggesting it surpassed their background and experience. There was a

clear issue in how clinicians selected waveforms in the recordings, which resulted in

less data being included in any gold standard.

Gerber et al.[31] conducted a study with a more expansive classification list than

Halford et al.’s by expanding the available labels and varying the amount of

available data. Two data sets, split into epochs of 10 seconds and epochs >20

minutes, were built from 11 subjects with convulsive seizures, status epilepticus6.

The results, Table 2.4, showed the clinicians’ consensus was stronger on the shorter

epochs (0.04-0.68) than the longer epochs (0.07-0.44).

Table 2.4. Classification Performance of Long and Short Segments

Term
10s Epoch

Kappa
20min Epoch

Kappa
20min Epoch

Agreement (%)

Rhythmic/periodic vs. excluded 0.68 0.44 82
Localization 0.49 0.42 66
Morphology 0.39 0.37 69
Frequency 0.34 0.27 78
“Quasi” vs. Not 0.04 0.07 57
“Frontally Predominant” vs. Not 0.40 0.08 68
+ vs. Not 0.12 0.08 62

Results of classification using segments of 10 seconds and > 20 minutes in length.
Five clinicians annotated the shorter epochs and all seven clinicians annotated the
longer epochs. The κ statistics for both datasets are reported along with the raw
agreement percent for the 20min epoch dataset.

The most critical labels (rhythmic/periodic vs. excluded, localization, and

morphology) exceed 65% agreement, but only rhythmic/periodic exceeds 80%. This

meant that on average each clinician failed to recognize 20% to 35% of what the

6Status epilepticus is the categorization of a person’s state when seizures occur close together or
occur for a prolonged duration(>5 minutes).
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other clinicians annotated. Without definitively labeled data it was impossible to

determine if the 35% gap is due to false positives or false negatives. Such knowledge

could be used to determine if they were over-jealous or overly-shrewd in their

annotations. However, it was possible their performance was impeded by alignment

issues similar to those seen in Halford et al.’s work. The results otherwise suggested

that the clinicians agree at a moderate to fair level which was enough to make

accurate medical decisions, but not sufficient from which to train algorithms.

Gerber et al.’s best reported inter-rater agreement was inline with Halford et

al.’s. This trend persisted in the work of Grant et al.’s work [21]. Their study

evaluated the agreement of 6 clinicians (adult and pediatric neurologists) classifying

7 categories (status epilepticus, seizure, epileptiform discharges w/ and w/o slowing,

slowing, normal, uninterpretable) of waveforms in 150 30 minute EEG epochs. Each

clinician reviewed a unique set of 150 epochs from the full dataset’s 300 30-minute

epochs. Over the 15 inter-rater pairs, their inter-rater κ scores ranged from 0.29 to

0.62 suggesting fair to substantial agreement among the pairs.

Westhall et al. [29] had a smaller subject pool, 4 clinicians, but asked them to

evaluate EEG recordings for specific to Prespecified EEG patterns, Background EEG,

or Periodic or rhythmic patterns. Each > 20 minute recording was drawn from a

pool of 103 comatose cardiac arrest patients. For the prespecified EEG patterns the

κ statistics ranged from 0.42 to 0.71, Table 2.6. Meanwhile, the background and

periodic patterns produced inter-rater κ statistics between -0.07 to 0.82, Table 2.7.

Just as the results of Gerber et al. showed strongest performance for critical

waveforms, Westhall et al. did too. However, performance outside these critical

waveforms was extremely poor in terms of classification agreement and κ statistics.

This might have been caused by the increase in classification categories, compared

to Gerber et al., Grant et al., or Halford et al, but more likely suggested the
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Table 2.5. Inter-rater Clinician κ Agreement

Clinician Clinician Pair
A B C D E F

A - 0.43 0.52 0.37 0.37 0.50
B - - 0.48 0.41 0.37 0.29
C - - - 0.49 0.56 0.62
D - - - - 0.48 0.35
E - - - - - 0.42
F - - - - - -

The pair averaged κ score was 0.44 which made the overall agreement
moderate.

Table 2.6. Inter-rater Clinician Agreement

EEG Waveform Agreement (%) κ statistic

Highly Malignant 75 0.71 (0.55-0.79)
Malignant 63 0.42 (0.34-0.51)
Benign 63 0.42 (0.34-0.51)

Agreement and Kappa statistics using the ACNS classification labels
for inter-rater performance on specified EEG patterns.

clinicians fundamentally disagreed over the non-prespecified EEG patterns given

their previously discussed terminology consensus. Conversely, if background EEG or

periodic patterns were necessary to make a diagnosis it would be difficult to resolve

an understanding from the work of these clinicians.
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Table 2.7. Inter- and Intra-rater Agreement

Condition Inter-rater Intra-rater
Agreement (%) κ Agreement (%) κ

Background EEG
Continuity 37 0.76 62 0.86
Voltage 47 0.65 75 0.31
Predominant Frequency 3 0.36 30 0.17
Reactivity to sound 42 0.25 82 0.76
Reactivity to pain 32 0.17 69 0.44

Periodic or rhythmic patterns
Periodic or
rhythmic discharges

50 0.56 80 0.55

Prevalence 39 0.49 70 0.58
Typical frequency 6 0.82 55 0.80
Maximum frequency 14 0.74 54 0.68
Sharpness 74 0.73 75 0.58
Absolute amplitude 44 0.42 86 0.59
Stimulus induced pattern 63 0.19 80 0.48
Evolution 13 0.19 76 0.30
Plus Modifier present 19 0.17 84 0.28
Triphasic morphology 61 -0.07 63 0.00

2.2.1.2 Clinician Intra-rater Agreement

Clinicians difficulty in producing acceptable κ statistics in inter-rater testing

extended themselves via intra-rater testing as well. In most cases, intra-rater

agreement addressed a clinician’s ability to reproduce annotations on data they

previously annotated. Gerber et al., Grant et al., and Westhall et al. ran specific

intra-rater experiments to track inter-rater behavior.

Gerber et al. evaluated the ability of 5 clinicians to reproduce their results on

the 10 second epochs 12 months after the original study. The same epochs were

used, presented in a randomized order, and each clinician was asked to follow the

classification scheme from the original study. The resultant κ statistics, Table 2.8,
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showed the difficulty clinicians had in agreeing with themselves. Compared against

inter-rater agreement, Table 2.4, the intra-rater agreement was only marginally better.

Table 2.8. Intra-rater agreement after 12 months

Clinician
Rhythmic/

Periodic
vs. Excluded

Local. Morp. Freq.
“Quasi”
vs. Not

“Frontally
Predominant”

vs. Not

“Plus”
vs. Not

1 0.79 0.58 0.67 0.30 0.28 0.32 -0.03
2 0.86 0.60 0.55 0.24 0.25 0.38 0.00
3 0.68 0.51 0.15 0.28 0.32 0.45 0.28
4 0.73 0.68 0.58 0.29 -0.08 0.57 0.24
5 0.76 0.46 0.40 0.19 0.28 0.67 0.00
Mean κ 0.76 0.57 0.47 0.26 0.21 0.48 0.098

The 5 clinicians in the original 10s epoch evaluations, re-evaluate the same
set of data 12 months later. These results represent how well each clinician
agrees with their original classifications.

The follow-on experiment in Grant occurred 4 months after the initial study. In

this case, the range of intra-rater agreement (0.33 to 0.73, mean of 0.59) was better

than that of the inter-rater agreement (0.29 to 0.62). However, the intra-rater results

suggested clinician A was the worst performer. This conflicted with clinician A’s inter-

rater agreements, Table 2.5. The worst inter-rater agreements did not involve clinician

A, but rather clinicians B, D, and F. These results suggested inter- and intra-rater

agreement scores were poor tools for understanding a clinician’s annotation ability,

but confirmed their ability to generate consistent diagnoses.

The trend of intra-rater agreement, Table 2.9, scoring higher than inter-rater

agreement, Table 2.6, was repeated by the clinicians Westhall et al tested as well.

Repeating their original experimental protocol 6 months later produced very high

intra-rater classification agreements, Table 2.9. However, the κ statistic for highly

malignant, 0.64, was lower than its inter-rater counterpart, 0.71. Despite each
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clinician improving and/or maintaining their classification ability, they were unable

to identify the same waveforms as they did previously. This again spoke to nature of

clinicians ability to only need a minimum amount of insight to generate a consistent

diagnosis.

Table 2.9. Intra-rater Classification

EEG Waveform Agreement (%) κ score

Highly Malignant 88 0.64 (0.48-0.83)
Malignant 98 0.93 (0.57-1.00)
Benign 98 0.93 (0.57-1.00)

Agreement and Kappa statistics using the ACNS classification labels
for intra-rater performance.

The other features in Table 2.7 represented less discrete facets of EEG

waveforms. These features required qualitative analysis which increased the

difficulty of classification consensus, exemplified by the abundance of slight and

poor inter-rater κ statistics. Intra-rater agreement showed minimal improvement of

κ statistics, while the averaged intra-rater agreement % was better than its

counterpart. This suggested clinicians were capable of reproducing their work, but

were prevented from doing so by their innate biases thus limiting their κ statistics.

As a whole these intra- and inter-rater studies indicated clinicians were consistent

within themselves, and their cohorts, when classifying EEG recordings. However that

consistency did not appear to translate into producing data acceptable for use as a

gold standard. While the results of each study offered suggestions as to why such

consensus was difficult to reach, there was no single conclusive factor. The size of the

epochs, the category of classification, the duration of the annotated waveform, and
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the clinician’s training and experience all impacted the resultant κ statistics. Their

inability to come to agreement did not, however, diminish their ability to diagnosis.

The only shortcoming was that it limited the quality and quantity of data available

on which to train ML algorithms.

2.2.2 Algorithm Classification

Despite robust waveform nomenclature, translating EEG signals into features for

algorithm classification was an open field. With no feature consistency, each study was

free to develop their own features such as using a unique feature set [14], borrowing

from a previous study’s features [134], or forgoing features and using the raw data

directly [135]. Regardless of the type of features, they all segmented the recordings

into epochs which served as the input to the algorithms.

Most epochs represented a window in time, typically on the order of seconds, that

contained the data from one or more EEG channels. The duration of the epochs

drove a trade off between categorizing phenomena occurring rapidly, PDs, or slowly,

such as sleep states. Given the number of channels in a recording, their duration, and

the sampling rate EEG recordings typically produced significant amounts of data.

The use of epochs was the first step of dimensionality reduction by attempting to

normalize the raw data into manageable segments across channels, subjects, sessions,

and datasets.

Thus the features used for these epochs needed to excel at minimizing the amount

of data while maximizing the information density relative to the data type. This

was a difficult task given the depth of EEG signals which was why feature sets were

frequently developed for specific use cases like seizures [13], BCIs [136], sleep [24],

alcoholism [46], ADHD [42], and beyond. The combinations of features and epochs
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allowed each study to focus on their specific goals, but made it difficult to produce a

robust universal feature set.

This problem was compounded by the EEG community’s continual adaption of

the newest ML algorithms in an effort to increase classification performance. This

behavior was not much different from the development of speech technologies until

they resolved a robust universal feature set [137] as they developed a myriad of

techniques to address their classification problems, such as K-Nearest

Neighbors (KNNs), Support Vector Machines (SVMs), Neural Networks (NNs), and

GMMs. Often a given a combination of features and datasets performed better or

worse than another depending on the algorithm and its parameters. This made it

hard to determine if performance gains were due to algorithms, dataset, feature set,

or something else.

The following sections reviewed algorithms that used statistical models, supervised

algorithms, and unsupervised algorithms common to the EEG classification landscape.

Statistical models formed the basis of numerous ML techniques and were frequently

used to filter out artifacts via thresholding, detect ERPs, or interpret common spatial

patterns (CSPs). Supervised algorithms used labeled data from clinicians and a prior

knowledge to build classifiers focused on specific phenomena like seizures and mental

states. Meanwhile, unsupervised algorithms leveraged the power of statistical models

built from large unlabled datasets to classify conditions for which annotations were

hard to obtain. These techniques were applied at one time or another on datasets

generated from sleep, seizures, ADHD, or BCI EEGs.

2.2.2.1 Statistical Algorithms

Statistical modeling of known EEG phenomena provided a robust platform for

developing basic classification algorithms. The type of modeling depended on the
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waveform, similar to how features were adapted, but classification was primarily

based on one-versus-all evaluation. These approaches were mathematically

straightforward and required minimal data relative to the defined phenomena. Their

success, however, was data dependent as they required a thorough set of labeled

data to operate. This made them ultimately reliant on the knowledge on clinicians.

An ERP represented an involuntary response by the brain when it perceived a

targeted external stimulus. One of the most common instances of these events, the

P300 response, was used to development basic BCI spellers. A P300-spellers were

built to detect responses to auditory and/or visual stimulus enabling a person to

spell words with their brain [76]. This phenomena was ideal for statistical modeling

as brief subject specific training readily produced acceptable performances [138].

Guger et al. [138] showed that 5 minutes of training were enough to elevate the

majority of the subjects to 60% or better accuracy, Figure 2.5. The training period

asked the subjects to spell specific words and then used Linear Discriminate Analysis

(LDA) to tune the weights of the 8 pre-selected channels. Subjects operated the

speller by responding to a single character being flashed, single character speller, or

by alternating flashing of rows and columns, row-column speller.

Figure 2.5. ERP Classification Performance

Classification
accuracy (%)

Row-column
speller % of sessions

81 subjects

Single character
speller % of sessions

38 subjects

100 72.8 55.3
80-100 88.9 76.3
60-79 6.2 10.6
40-59 3.7 7.9
20-39 0.0 2.6
0-19 1.2 2.6
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This approach represented a highly effective real-time communication platform

that did not require excessive training data nor overly complex signal processing.

The main drawback was the time required to produce a single letter, 28.8 seconds

for row-column spelling and 54 seconds for single character spelling. The technique

itself was very specific to ERPs which meant it did not contribute much to other

EEG applications. This necessitated the development of different statistical models

for addressing the detection of Alzheimer’s Disease (AD) [90], ADHD [139], and

seizures [140] events.

The ability to detect and classify seizures has remained a core focus of EEG

research in terms of reviewing existing recordings as well as enable accurate

predictions. Chu et al. [13] applied attractor states7 to EEG data in an effort to

improve seizure prediction and detection via statistical discrimination. The

technique was tested on two datasets, the Children’s Hopsital of Boston

Massachusettes Institute of Technology Scalp EEG Database (CHB) and adult

seizures from the Department of Neurosurgery of Seoul National University

Hospital, using 50% overlapping channel independent 20s epochs. The raw epochs

were converted to frequency banded Fourier coefficient features used to build seizure

and non-seizure state models.

Their seizure predictions, using a 30 second horizon, averaged 90.20% sensitivity

on the training data and 86.67% sensitivity on the testing data (2 subjects reported

0%). Decreases in sensitivity correlated with a drop in average false positives per

hour from 0.476 on the training data to 0.367 on the testing data. The peak rate of

false positives were 1.667 and sensitivity for multiple subjects was 0.0%. The results

suggested a simple model can predict seizure onset, correctly predicting 39 of the 45

7Attractor states are stable states which the data trends towards given its natural behavior. The
concept originated from the work of Scheffer et al.[140], but is beyond the scope of discussion in this
work.
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documented seizures across the 17 subjects. However, the failure to detect anything

for 2 subjects (1 seizure each) and missing 2 seizures from another subjects indicated

the technique may not be sufficient for all types of seizures nor all patients.

Understanding sleep cycles aided in understand seizures given seizures frequently

occur at night [6], but first the stages of sleep needed to be classified. Warby et

al.[24] compared the performance of six statistical sleep spindle, sleep stage markers,

algorithms8 against clinicians and non-experts. The dataset consisted of 32,112 25s

single channel epochs from 110 healthy subjects split into training, testing, and

verification data. The verification data, built from 2,000 epochs scored by 5.3

clinicians on average, serves as the gold standard.

Each of the algorithms applied different flavors of energy thresholding (Root Mean

Squared (RMS), PSD, or Fast Fourier Transform (FFT)) on a bandwidth filtered (9-

16Hz) portion of the epochs. The algorithms’ performances, Table 2.10, were not

in agreement with the gold standard (GS), but they did agree with the automated

group consensus (AGC). Overall, the algorithms were the weakest classifiers while the

clinicians were the strongest at classifying sleep spindles. The non-experts performed

better than the algorithms which suggested these statistical based algorithms may

not be an effective classification technique for this task.

Huang et al. [145] aimed to detect the presence of AD in a set of 93 subjects

labeled as having AD, mild cognitive impairment (MCI) or healthy controls.

Classification used the 15 2s epochs from each subject which were built on their

alpha (8.0-11.5Hz) and theta (4.0-7.5Hz) global field potential (GFP), a generalized

EEG amplitude measurement. The algorithm reported an AD classification

accuracy of 84% against control subjects. This represented an optimal feature set,

8The six algorithms were drawn from six unique studies cited here: {a1[141], a2[142], a3[143],
a4[144], a5[99], and a6[57]}
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Table 2.10. Sleep Spindle Detection F1 Scores

Algorithm Gold Standard Non-Expert Group Automated Group

a1 0.28 0.22 0.28
a2 0.28 0.30 0.40
a3 0.21 0.17 0.21
a4 0.50 0.46 0.79
a5 0.52 0.49 0.84
a6 0.41 0.37 0.48

which started as epochs of FFTs decomposed into their GFP across frequency

bands ( delta (1-3.5Hz), theta, alpha, beta 1 (12-15.5Hz), and beta 2 (16-19.5Hz) ).

These features were then localized with respect to regions of the brain:

antero-posterior (Loc-X), left-right (Loc-Y), and superior-inferior (Loc-Z). The

resultant values of each feature permutation is shown in Figure 2.6.

ADHD was another omnipresent condition that could be detected through a

subject’s theta beta ratio (TBR) [146]. Lenartowicz et al. [146] reviewed multiple

approaches for distinguishing ADHD patients from controls based on temporal and

spatial features and the ratios of energy present in frequency bands and specific

channels. The studies reported divergent performance when using TBR as a

discrimination metric. Monastra et al. [139] reported an accuracy of 91% (90%

sensitivity, 94% specificity) while Buyck et al. [147] reported an accuracy of 49-55%.

Detecting ADHD through EEG recordings appears possible based on the TBR, but

Lenartowicz et al. conclude the technique is not reliable enough to be a diagnostic

test. The work of Monastra et al. was carried out in 2001, but advancement in

the field, like Buyck et al.’s 2014 work, indicate variations in ADHD morphology

make TBR a poor classification metric. Despite a clear clinical utility in using EEG

recordings for ADHD diagnosis [148], the research suggested the condition was not
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Figure 2.6. Raw Feature Means for AD Classification

Band Group GFP Loc-X Loc-Y Loc-Z

Delta AD 13.4(9.3) 12.5(9.8) 1.8(4.2) -5.6(6.0)
C 7.3(2.3) 12.9(8.6) 0.1(4.7) -4.4(5.8)
MCI 10.4(5.2) 12.2(11.3) 1.8(4.6) -6.2(6.0)

Theta AD 15.6(14.6) -2.6(7.6) 2.1(5.2) -0.2(6.9)
C 8.0(6.5) -5.7(7.2) 1.4(5.9) -4.0(5.0)
MCI 10.2(10.8) -3.6(12.3) 2.7(5.5) -2.0(6.3)

Alpha AD 14.1(14.5) -12.6(11.5) -2.1(7.1) 1.7(8.9)
C 31.2(30.2) -21.0(7.3) -0.4(5.4) -3.4(7.2)
MCI 40.1(43.3) -19.9(11.1) -0.1(6.3) -1.7(9.3)

Beta 1 AD 3.7(3.7) -6.2(11.2) -1.5(8.9) 5.2(9.9)
C 3.6(1.9) -12.1(10.1) 2.2(5.8) 1.4(9.1)
MCI 5.2(5.2) -13.9(12.3) 1.3(6.9) 2.5(8.8)

Beta 2 AD 2.1(1.7) 0.3(12.8) -2.3(10.8) 8.3(10.6)
C 2.9(1.7) -8.2(11.8) 1.8(7.4) 4.4(8.6)
MCI 4.2(4.6) -8.8(13.9) 1.0(10.4) 4.8(11.0)

The table contains the mean values of the GFP for each frequency band over a
given brain region. These represent the features the algorithms uses to discern
AD subjects from MCI subjects and healthy controls.
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yet understood to the point of being able to develop a robust statistical classification

model for it.

However, Buyck et al. found that TBR did make an excellent, AUC 0.965,

discriminator for age classification. This exemplified the difficulty in building a

robust feature set for a given classification task as differnet sets of features could

conflate multiple conditions. The best examples of this were the efforts made for

detection and correction of EEG artifacts [8].

The most common artifacts (eye blink, muscle artifacts, and eye movements) were

caused by the subject making them difficult to mitigate during recording. Jung et

al. [149] indicated the overlap between artifacts and waveforms of interest prevents

many novel artifact detection techniques from having a broader impact. Their work

compared the performance of independent component analysis (ICA) to principal

component analysis (PCA) on a dataset of normal and autistic subjects. Despite

both techniques being capable of separating the signals from the noise, ICA offered

the best performance for correcting the original recordings.

Delorme et al. [150] devised a more comprehensive experiment9 for detecting

artifacts. They applied six thresholding schemes to raw data and data processed

each with ICA, building on the success of Jung et al. Their results, Figure 2.7,

showed that applying ICA improved the classification performance regardless of the

artifact’s source. However, the use of ICA did not improve the performance of each

algorithm.

9They compared five methods to determine how best to identify artifacts within a recording.
(1) Extreme values: Artifacts detected if amplitudes exceeded a predetermined threshold. (2)
Linear trends: Least squares thresholding against an average of the activity in an epoch. (3) Data
improbability: Likelihood of an observations with respect to all observations from each channel.
Each epoch became a product of likelihoods which should decrease if artifact events are detected.
(4) Kurtosis: Measure the ‘peakedness’ of each epoch’s distribution. (5) Spectral pattern: model
scalp topology in conjunction with frequency spectrum.
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Figure 2.7. Statistical Thresholding of Artifacts. Classification performance of
thresholding approaches based upon the signal to noise ratio of the
artifact and the signal.
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The largest changes in performance were related to the artifacts (discontinuity and

white noise) and not the algorithms. This suggested that the algorithm’s performance

does matter, i.e. Kurtosis performed universally poor, but ICA was only able to

impact performance when the noise was distinct from the signal. This, of course,

is the definition of ICA, but highlighted the problem of its use on EEG data where

waveforms and artifacts presented as seemingly identical signals.

Despite this limitation, these experiments were mostly a success which lead to the

development of Fully Automated Statistical Thresholding for EEG artifact Rejection

(FASTER) [8] and Automatic EEG artifact Detection based on the Joint Use of

Spatial and Temporal features (ADJUST) [40]. These techniques provided universal

artifact detection and rejection across multiple types of EEG data. FASTER relied

on a parameter set consisting of variance, Hurst exponent10, amplitude range, and

channel deviation over five thresholding levels (channel, epoch, epoch ICA, channel-

epochs, and channel average). ADJUST used spatial and temporal feature extraction

to classify and remove artifacts from ICA filtered data. These results again highlighted

how different feature sets and algorithms achieved acceptable performance making it

hard to know which option is ‘right’.

Table 2.11. FASTER’s Artifact Detection Performance

Channels
Channel

Sensitivity(%)
Channel

Specificity(%)
Epoch

Sensitivity(%)
Epoch

Specificity(%)

128 94.47 98.96 60.24 97.53
64 97.02 98.48 61.83 97.54
32 5.88 96.81 58.64 97.49

10The Hurst exponent is a measure of the changes in lag observed from the auto-correlation of
pairs of points in a time series.
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ADJUST was more complex, but achieved 60% sensitivity and 97% specificity,

Table 2.11, on 2 second channel independent epochs drawn from 47 subjects. FASTER

was less complex than ADJUST and replicated the clinician’s 95.2% artifact detection

performance. The most significant aspect of these results were that the testing dataset

was built from 10 subjects that were withheld from the 21 subject training dataset.

Artifact detection and correction continues to be an active research topic, but

the reliance on ICA remained. Mahajan et al.[87] reported exceptional performance

using ICA on 12 electrodes followed by modified multiscale sample entropy (mMSE)

and Kurtosis and thresholding. Their eye blink detection algorithm reported 90%

sensitivity and 98% specificity across four subjects.

These statistical approaches to classification are promising, but they are developed

on small datasets with simple goals. Adapting them for use on larger datasets with

more extensive classifications needs seemed to be beyond their capability. At the very

least they showed when EEG signals were broken down to their core components it

was possible to reliably discriminate among them. This suggested reiterated the idea

that it was possible ML algorithms to at least match a clinician’s performance.

2.2.2.2 Supervised Algorithms

Supervised ML algorithms build statistical models from datasets with labeled classes.

Each class would ideally represent a subset of related data (artifacts, sleep spindles,

or ETs) that the algorithm would learn to distinguish between. Given a diverse

feature set, the algorithms build decision surfaces based upon the strongest statistical

properties of the features unique to each known class. These decision surfaces allowed

classifications to be learned instead of having to infer them directly from the dataset.

These algorithms were setup with the aim of emulating a clinician’s classification

performance. In doing so, they tied themselves to the performance of those provided
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the labeled data. This is the main limitation of supervised learning: The algorithms

must be shown what to classify making their success dependent on the properties of

the training data. If the test contains a new class, the algorithm will struggle to define

it and it may go undetected unless additional analyses were undertaken. However,

the strength of this approach is that supervised ML classification algorithms work

extremely well for well known phenomena (artifacts, seizure, and sleep). This has

been shown to be true even when such conditions occurred rarely or were learned

from a small number of epochs [151]. This naturally meant they worked best paired

with phenomena in smaller sets of clinically annotated data (BCIs, emotions, and

workload) EEGs.

The classification of sleep relied on detecting waveforms known as k-complexes

and sleep spindles which are unique to a sleeping brain. There is also generalized

brain activity specific to the energy bands that accompany each stage of sleep[126].

Thus each stage of sleep contains a mixture of unique waveforms and shifts in the

rhythms, ratios of energy in the EEG bands, and waveforms that make it distinct from

other brain conditions. Such behavior is most notable in the that dominant (>50%)

alpha rhythms where remain indicative of being awake. Stage 1 typically contains

a split (50%\50%) of alpha and delta rhythms. Stage 2 contains sleep spindles and

diminished (<20%) delta rhythms. Stage 3 sees a resurgence (20%-50%) of delta

rhythms. Stage 4 and REM sleep are classified by dominant delta rhythms.

These discrete states made the adaptation of supervised ML algorithms

straightforward. In Schluter et al.[35] the stages of sleep were classified with
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Decision Trees (DTs) by bagging11 on an array of physiological data12. The

classification was performed on 33,542 30 second epochs drawn from 15 subjects,

Table 2.12. On the whole separating wakefulness, REM sleep, and from the stages

of sleep was excellent. However, identifying the distinct stages of sleep proved

difficult especially for stage 1 and stage 3. These results incorporated data in

addition to the EEG recordings, suggesting EEG alone may not be sufficient for

accurate classification.

Table 2.12. Classification of the Stages of Sleep

Stages W S1 S2 S3 S4 REM

W 97.0 2.4 0.6 0.1 0.0 0.5
S1 9.1 58.1 20.2 0.8 0.2 11.6
S2 0.5 4.7 91.7 5.5 0.8 0.2
S3 0.0 0.1 20.2 62.8 18.2 0.1
S4 0.1 0.2 1.0 12.6 86.8 0.1
REM 0.7 2.3 3.0 0.1 0.0 96.6

Radha et al. [102] used different algorithms to classifying the stages of sleep,

but produced similar results to that of Schluter et al. Their data consisted of 30s

epochs of 34 features drawn from 10 health subjects. They compared two supervised

algorithms, Random Forest (RF) and SVM, ability to classify the epochs into REM

sleep and the 3 stages of non-REM sleep (N1,N2,N3). By using supervised algorithms

it was necessary to have a clinician provide labeled training data. However, this also

allowed a κ statistic to be associated with each algorithm’s performance relative to

11Bagging, bootstrap aggregating, is a technique employed to reduce the variance of ML
algorithms. The original data was re-sampled with replacement to produce multiple data sets
containing redundant data.

12Sleep studies frequently collect electrocardiogram (ECG), EEG,electromyography (EMG), and
electrooculography (EOG). In this work, aside from EEG data, EMG and EOG were used to help
classify the sleep stages.
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the clinician, Figure 2.8. Prior to classification the feature set was optimized for the

differential montage channel (F4-A1), an epoch duration of 30s, and only 20 of the

original 34 features.

Figure 2.8. Single EEG Channel Sleep Scoring

Sleep
Stage

SVM 1vA
Precision

SVM 1vA
Recall

SVM 1v1
Precision

SVM 1v1
Recall

RF
Precision

RF
Recall

W 0.86 0.51 0.75 0.71 0.78 0.73
N1 0.00 0.00 0.18 0.00 0.52 0.31
N2 0.86 0.83 0.85 0.88 0.85 0.91
N3 0.32 0.70 0.82 0.70 0.83 0.73

REM 0.56 0.55 0.58 0.79 0.69 0.70

Accuracy 0.69 0.77 0.80
κ 0.46 0.61 0.66

Precision and recall of SVM and RF classification using a single EEG
channel for sleep stage classification. In this study non-REM sleep
is broken into only three stages (N1, N2, N3) making it difficult to
compare to the standard four non-REM stages of sleep shown in
Table 2.12.

These results were comparable, Table 2.12, to Schluter et al., which was a study

that used far more data. The moderate to substantial κ statistics suggested the

algorithms performed as well as a clinician would have given the previously reported

inter-rater agreements. However, it was possible that the feature optimization drove

this performance. Sleep states were not a unique phenomena and they tended to

represent major changes in brain activity, the necessity of channel and feature

optimization suggests this algorithm/feature combination was only able to find the

strongest indicator of sleep and may be missing out on the nuances of individual

sleep stages.

Similar to sleep, seizures had frequently been categorized into distinct stages:

normal indicative of a normal healthy state, pre-ictal indicative of a build up to a

56



seizure, ictal indicative of an active seizure [152], and post-ictal indicative of the time

following a seizure [13]. Accurate detection of these stages, specifically pre-ictal, could

help improve the diagnosis and treatment of epilepsy [6]. Seizure classification was

always a primary research focus of automated algorithms because of number of people

affected by them[6]. Effort has been continually applied to improve the classification

of seizures which tended to focused on developing better features than the FFT based

frequency band powers [14, 54, 13] and improving algorithms [152, 25, 153]. These

efforts were predicated on, and thus limited by, the availability of annotated data and

the quality of the annotations.

Wulsin et al.[14] used raw data and diverse feature subsets derived from a stock

listing of features 13 to compare seizure detection as a function of algorithms and

features. Despite efforts to find a suitable feature subset, the strongest classification

occurred when using the raw data as the input features. In addition to the feature

analysis, four classification algorithms (DTs, SVMs, KNNs, and Deep Belief Networks

(DBNs)) were evaluated with SVMs producing the best classifications, Figure 2.9.

Bajaj et al.[54] used emperical mode decomposition (EMD)14 features as inputs for

a Least Squares Support Vector Machine (LS-SVM) driven seizure classifier. The data

was sourced from 100 23.6s channel epochs drawn from 5 subjects. EMD separated the

nonlinear and non-stationary components of the EEGs into intrinsic mode functions

(IMFs). The two dominant IMFs, amplitude modulation and frequency modulation,

produced a peak sensitivity and specificity of 100% while averaging 94% sensitivity

and specificity over the dataset by using a common supervised ML algorithm in SVMs.

As the classifier was not knew, the success of this work was likely driven by the use

13area, normalized decay, frequency band power, line length, mean energy, average peak/valley
amplitude, normalized peak number, peak variation, root mean square, wavelet energy, and zero
crossings

14A detailed review of EMD is omitted, but if interested the work of Huang et al.[154] introduced
technique and its applications.
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Figure 2.9. F1 Performance of Four Supervised Algorithms. Wulsin et al. evaluate
algorithm peformance based upon the F1 measure, where
F1 = 2 ∗ (sensitivity ∗ precision)/(sensitivity + precision). The results
are presented to compare the algorithms and feature sets against each
other. The feature sets are comprised of: raw256 represents the raw
waveform data, feat16 are the hand selected 16 features, and pca20 are
the 20 features chosen by PCA.

of EMD features or qualities of the 5 subject dataset. This was a recurrent problem

with EEG algorithm development of unique datasets and unique features obscuring

the cause of classification improvement.

The alternative to diverse features and datasets was to test range of algorithms.

This is what Acharya et al.[152] did by focusing on six supervised ML algorithms:

Fuzzy Sugeno Classifier (FSC), SVM, KNN, Probabilistic Neural Network (PNN),

DT, and Naive Bayes Classifier (NBC), and one unsupervised ML algorithm: GMM.

This was a better approach than Bajaj et al.’s as it provides multiple reference

points on a constrained dataset. These six algorithms used four different types of

entropy calculations as features: Approximate Entropy (ApEn)[155], Sample

Entropy (SampEn)[156], and S1 entropy and S2 entropy[157]. Distinct epochs were

drawn from 5 healthy and 5 epilepsy subjects that produced 200 healthy, 200

pre-ictal, and 100 ictal artifact free single channel 23.6 second epochs.
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Table 2.13. Algorithm Performance Using Entropy Based Features

Algorithm Accuracy (%) Sensitivity (%) Specificity (%)

FSC 98.1 99.4 100
SVM 95.9 97.2 100
KNN 93.0 97.8 97.8
PNN 93.0 97.8 97.8
DT 88.5 98.3 91.1
GMM 95.9 98.3 95.6
NBC 88.1 94.4 97.8

Classification accuracy of entropy based feature sets for various
classifiers.

The sensitivity and specificity the algorithms were similar, Table 2.13, but the

best accuracy was achieved by the FSC classifier. The separability of the trained

seizure states, Table 2.14, produced a p-value less than 0.0001 for each entropy.

However, it was hard to assess the strength of the individual algorithms given the

small size of the dataset and the natural discrimination strength of the features.

The strong performance across all the algorithms suggested the results were driven

by the features, but the dataset was, again, too small to have known for certain.

Table 2.14. Entropy Level Based Seizure Labeling

Class Normal Pre-ictal Epileptic

ApEn 2.2734± 3.320× 10−2 1.8650± 0.331 1.9325± 0.215
SampEn 1.3130± 0.120 0.99332± 0.189 0.92628± 0.139
S1 0.57012± 7.120× 10−2 0.47208± 6.149× 10−2 0.48325± 1.55
S2 0.76827± 3.125× 10−2 0.68072± 3.790× 10−2 0.73184± 4.555× 10−2

Ghosh-Dastidar et al. [25] benchmarked a novel wavelet-chaos-neural network

Levenberg-Marquardt Backpropagation Neural Network (LMBPNN) classifier
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against the same data as Acharya et al. They picked features (standard deviation,

correlation dimension, and largest Lyapunov exponent) that were specific to each

frequency band and grouped them together into various band specific sets. The

epochs were evaluated by supervised techniques (Radial Basis Functional Neural

Network (RBFNN) and LMBPNN), an unsupervised technique (k-means

clustering), and statistical discriminant techniques (Quadratic Discriminant

Analysis (QDA) and LDA using Euclidean and Mahalanobis distance metrics).

The various combination of band-specific features sets were used to resolve an

optimal set for the classifiers. These tests provided an exhaustive analysis of the

relationship between algorithm and feature set performance, which was frequently

lacking in other research. However, the best performance resulted when using a

mixed-band feature set. The impact of feature set on the performance of LMBPNN

is seen in Figure 2.10.

Figure 2.10. Impact of features on LMBPNN classification. When iterating over the
available feature sets, the performance of LMBPNN responds
differently for each combination. The Greek letters indicate the band
specific features (SD is standard deviation, CD is correlation dimension,
and LLE is Lyapunov exponent). The mixed-band feature set uses the
band independent SD and CD with αSDCDLLE, βSDCD and γSDCD.
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The classification performances were similar so only the maximum accuracy was

reported in Table 2.15 and even these cover a wide range. Overall, the proposed

LMBPNN provided the strongest peak performance, but it relied on a large

mixed-band feature set. This suggested that the features were the driving force of

classification, and yet only some of the algorithms were able to adequately used

them. Again, the difficulty in improving performance appeared to stem from being

able to model the phenomena in a meaningful way for the chosen classifiers.

Table 2.15. Classification Accuracy of Single and Mixed-Band
Features

Algorithm Maximum Accuracy (%)

k-means 59.3
LDA w/ Euclidean 79.6

LDA w/ Mahalanobis 84.8
QDA 85.5

RBFNN 76.5
LMBPNN 89.9

QDA* 93.8
LMBPNN* 96.7

The values shown are the maximum accuracy achieved by each
algorithm given on a single or (*) mixed-band feature set.

2.2.2.3 Unsupervised Algorithms

Unsupervised ML algorithms differed from supervised ML algorithms in that they

do not require labeled data. This has made them a historically useful as starting

point when knowledge of a domain was limited. Their decision surfaces were created

directly through the data which removed any bias present in the labeling, but traded it
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for bias in the datasts. This also meant unsupervised approaches worked best when

operating on datasets with enough data to represent each class of interest. Thus

without an equitable distribution of data, classes may be ignored or poorly modeled

leading to weak classification performance.

Given the need for large and diverse datasets and improvement to supervised

classification techniques, the use of unsupervised classification of EEG recordings has

diminished. However, unsupervised algorithms endured given their ease of use and

ability to produce benchmarks for their supervised counterparts. Acharya et al.[152]

showed GMM produced competitive accuracy and sensitivity, but not specificity to

their tested supervised methods in Table 2.13. Alternatively, there were cases where

it peformed much worse such as Ghosh-Dastidar et al.’s [25] k-means clustering of

Table 2.15. As unsupervised algorithms relied on the dataset more than supervised

techniques, such contrasting performances were common in the EEG literature.

Gabor et al.[158] tested a single unsupervised algorithm, a self organizing map

(SOM)15 NN, for seizure detection on 24 recordings from 22 subjects. The algorithm

was trained to classify seizures from features produced by a wavelet transform using

4s epochs built from the 10 channels of each recording. A separate feature set using 8s

epochs was used, but the duration was found to be too long as it masked out shorter

seizures.

In total 62 seizures were captured from the 24 recordings of which the algorithm

detected 56 (90%). The average false positives per hour (0.71) produced more false

positives than true positives given the average recording duration of 22.02 hours. As

discussed previously, unsupervised techniques are sensitive to the distribution of the

15A detailed review of SOMs was omitted, but if interested the work of Kohonen[159] formalized
the implementation. This technique attempts to mimic the structure of the brain by parsing the
data in an unsupervised fashion to create a flat, two dimensional, map linking elements of the data
together.
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training data which manifested in this case as poor false alarm rates. In addition, the

age range (<1 to 43 years old), small training set (5 of the 24 recordings), and epoch

duration were all factors working against the algorithm.

Not all unsupervised algorithms focus on classifying the data, as some are deployed

for dimensionality reduction. One such approach was the use of of unsupervised LDA

in areas where clinicians’ skills were weaker such as BCI [83]. LDA is within the realm

of factor analysis (FA), as are ICA and PCA. A detailed review of FA techniques is

given in Section 2.4.1 and what follows now touches on their use in EEG applications.

Vidaurre et al. [83] used three flavors of LDA to enhance BCI performance over

four datasets16. The experiments focused on developing an unsupervised solution to

transitioning between training and feedback sessions of BCI tasks. Each version of

LDA focused on a different aspect of the features: LDA-I, targeted changes in the

pooled mean (PMean) between the features of the training and feedback data, LDA-

II incorporated updates to the covariance matrix with PMean, and LDA-III scaled

the mean and covariance using CSPs. These techniques were compared against a

supervised version of LDA to determine the strength of the unsupervised techniques.

Unsupervised techniques main strength resides in their simplicity when

compared to ever advancing supervised techniques. Their evaluation was frequently

used to evaluate the performance gain versus increased complexity and

requirements. This made head to head comparisons, Figure 2.11, critical to

development of both type of algorithm. Using the first dataset, the supervised

algorithms slightly out performed the unsupervised algorithms. On the second,

larger, dataset the PMean based algorithms met or exceeded the performance of the

16The first dataset was comprised of 19 sessions recorded from 10 subjects performing motor
imagery tasks. The second dataset consisted of 80 subjects performing 75 motor imagery trials with
calibration. The third dataset involved 7 quadriplegics attempting to move use a BCI mouse. The
final dataset was a repeat of the second dataset without any calibration for the users.
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Figure 2.11. BCI Calibration Error. The comparative error rates between the
supervised and unsupervised adaptation techniques through changes in
the error rate. The pink plot shows the difference between a labeled,
mean, and unlabeled, PMean, classification.

state of the art supervised approaches during feedback. The unsupervised technique

exhibited robustness as a class was removed from BCI feedback and outperformed

the supervised algorithm in Figure 2.12. These results were important because

clinicians seldom label BCI datasets and it showed the trade off between supervised

and unsupervised may not be that advantageous. This was especially true in this

instance as BCI recording sessions were rarely annotated by clinicians, but often as

dynamic as seizure or sleep sessions.

2.2.3 Bio-metric Applications

The use of EEG recordings as a means of bio-metric identification was not dominant

area of research, but has begun to rapidly advance [105]. Initial efforts focused on

being able to discriminate EEG behavior between individuals and between different
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Figure 2.12. BCI Feedback Error. Performance on feedback data after training for
supervised adaptation and unsupervised PMean adaptation. The (left)
impact of removing one class from the feedback dataset for the
supervised algorithm (red line) and unsupervised algorithm (blue line).
The (right) error rate between the two algorithms during the online
feedback experiments.

brain conditions [160]. This work did not have discrete waveforms to find or

frequency ratios to calculate, but instead relied on direct comparison between

subjects. Stassen [161] developed computerized methods, borrowed from speech

recognition, to recognize normal and schizophrenic individuals based on their EEG

spectral pattern. The style of this approach, finding dominant properties in subject

epochs, remained in use [59] and was the best corollary to the research proposed in

this dissertation.

Advancement of EEGs as a bio-metric tool focused on the statistical properties

of each subject [105]. This detached it from the dominant research trends that were

reliant on clinical annotations [103]. This made bio-metric applications open-ended

as they do not, and in most cases cannot, rely on previously developed feature sets or

decision surfaces built from clinical annotations. Researchers were therefore on their

own to find features and testing protocols leading to a variety of approaches not seen

elsewhere [63, 65, 104, 162, 163].
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The initial efforts by VanDis et al.[160] and Stassen [161] focused on subjects at

rest with eyes closed and open. Similar experiments contiuned to be carried

out [33, 64, 65] but with their aims updated to optimize the accuracy and speed of

subject verification as a function of features and channels. Active state recordings,

when subjects performed mental tasks, such as imagined hand movements [68, 103],

imagined speaking syllables [66], or reading text[39] underwent similar channel and

feature optimization testing.

Active and resting based data analysis suggested that the qualities of subject

authentication and identification existed regardless of brain state. Other works went

as far as suggesting a genetic basis underlies this separability [37, 67]. While

interesting, the genetics of brain uniqueness expanded beyond the scope of this

work. However, by focusing on the techniques and results of active and resting

based data studies comparisons could likely be drawn between the structured

waveform based annotations of artifacts, seizures, and sleep.

2.2.3.1 Resting Recordings

The work of La Rocca et al.[33, 64, 65] focused on developing a novel set spatial

and temporal patterns as features to improve subject recognition. Brigham et al.[66]

used data with imagined activities to test applications of subject identification during

mental tasks. These studies represent the adaptation of techniques the worked for

other EEG classification tasks, spatial and temporal patterns for BCI and mental

tasks for attention/focus/workload performance and ERPs.

In [33] electrode sets of 2, 3, and 5 from the 56 recorded channels were used to find

a lower-bound on the number of required channels. The approach used autoregressive

stoichastic modeling and polynomial regression to match 3 second epochs broken into

features through the 6 standard EEG bands. Classification performance varied as a
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function of electrode set and the EEG band used. Increasing electrodes trended with

an improvement in classification performance. However, regardless of the number of

electrodes the alpha band provided the strongest classification accuracy. Performance

peaked at 98% classification accuracy when using the alpha, beta, delta, and gamma

bands for 5 channel sets. The best single band performance (83%) was seen using

only the alpha band across 5 channels.

They followed up this work with ‘bump’ modeling to reduce the amount of data

from the 10-20 layout into a parametric model [65]. These bumps were filters that

enabling sparse encoding. This generated vectors to control the mapping/weights of

the bumps scale the features of the data. These vectors were then classified with

LDA based upon features generated from groups of three channels drawn from the

six standard EEG bands. The training and testing sets were curated to provide

overlapping frames, jointed, and without overlapping frames, disjointed. This

distinction highlighted the impact of frame overlapping with the beta band

producing a classification accuracy of 95% for jointed and 74% for disjointed. The

alpha band resulted in similar classification accuracy with 96% for jointed and 67%

for disjointed. In all bands the jointed feature sets outperformed their disjointed

counterparts.

Their final work focused on spatial patterns generated from 1s PSDs epochs

from different regions of the brain [64]. This deviated from their earlier attempts at

reducing the amount of data through feature and individual channel reduction.

Instead it grouped channels together to develop a statistical approach to subject

verification using the PhysioNet Database dataset. Classification was carried out by

building Gaussian mixtures based upon the distributions of the PSDs. These

mixtures were evaluated via a Mahalanobis Distance (MD) classifier to determine
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likelihood of similarity between subjects. Using the results for each region of the

brain, classification accuracy reached 100% for identifying subjects.

2.2.3.2 Active Recordings

In Marcel et al.[103] a nine subject dataset was classified based upon their brain

activity during three mental tasks. These tasks required the subjects to imagine

carrying out prescribed actions: moving their left hand, moving their right hand, and

speaking words with a common leading letter. The feature set was built from 0.5s

50% overlapping epochs of PSDs. These PSDs were spatial filtered over the 10-20

electrode configuration with a surface Laplacian function. The features were given to

a GMMs which produced baseline models for subject verification. Evaluation scores

were reported as half total error rate (HTER) generated from the false acceptance

rate (FAR) and false rejection rate (FRR).

HTER =
FAR + FRR

2
(2.2-1)

The results, Table 2.16, of the left and right hand authentication of the subjects

suggested performance was dependent on the number of Gaussian mixtures used in

the modeling process. This experiment used a large datasets which was collected from

the subjects over a three day period. Results using smaller subsets of the dataset

showed the imaging word task authentication lagged compared to that of the hand

tasks.

In Fraschini et al.[68] phase synchronization was tested as a feature set for

identifying subjects. The dataset used the 109 PhysioNet Database subjects’ resting

eyes closed and resting eyes trials. The features were generated from the standard

EEG frequency bands and segmented into 12s non-overlapping epochs. Finding the
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Table 2.16. Imagined Activity HTER

Mental Task Num. Gaussians FAR FRR HTER

Left

4 18.6 32.3 25.4
8 23.8 25.15 24.5
16 19.3 19.65 19.5
32 13.7 24.9 19.3

Right

4 18.4 40.5 29.4
8 20.6 29.5 25.0
16 15.0 23.6 19.3
32 13.0 30.15 21.6

phase lag index (PLI) relationship between all the channels of an epoch produces

distinct mappings between subjects. These topologies were reduced via Eigenvector

Centralization to produce a feature vector for each epoch. The Euclidean

Distance (ED) between each feature vector was the decision surface used to assert

the similarity between the subjects for each frequency band. The results showed the

equal error rates (EERs) of Resting Eyes Open and Resting Eyes Closed for the

Gamma band were 4.4% and 6.5% and when using the Beta band were 10.2% and

16.9% respectively.

Brigham et al.[66] tested a similar subject identification protocol using two unique

datasets. One source of data came from Visually Evoked Potentials (VEPs) in 120

alcoholic and non-alcoholic subjects. The other ws sourced from 6 subjects uttering

two syllables, /ba/ and /ku/. Artifacts were removed from each set and processed into

PSDs of their respective trial lengths, 1s for the VEP and 10 seconds for the syllables.

Using SVMs and KNNs the classification accuracy of each algorithm was averaged

from 4-fold cross-validation. After artifact removal the VEP data set contained 9,596

trials for the 120 subjects and 3,787 trials for the 6 syllable subjects.
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On the VEP dataset the SVM achieved 98% accuracy and KNN achieved 93%

accuracy, both had a 95% confidence interval. The syllable dataset achieved higher

accuracy, 99% with SVM and 98% with NN with both, again, at a 95% confidence

interval. The strong performance across both datasets indicated the techniques and

feature sets worked well on a fundamental level. However, the diminutive number of

syllable subjects was not compelling and should have likely be run with more subjects.

In Gui et al.[39] a more contemporary ML technique, Artifical Neural Network

(ANN) using feed-forward, back-propagation, and multiplayer perceptron, was used to

identify subjects. Their dataset consists of the 6 mid-line channels {Fpz, Cz, Pz, O1,

O2, and Oz} of 32 subjects undergoing VEPs. The channels were bandpass filtered,

0Hz to 60Hz, before wavelet packet decomposition (WPD) produces the final three

features of mean, variance, and entropy for each 1.1 second epoch. Four experiments

are carried out, but only two were of interest in subject classification: (S1) finding a

single subject from the set of 32 and (S2) matching all 32 subjects against each other

simultaneously. The other experiments consisted of a one versus all classification

(S3) and separating small groups of subjects from each other (S4). For S1 the highest

accuracy of 10% occurred with 5 neurons and the worst accuracy of 5% occurred

with 10 neurons. S2 produced better results with a highest accuracy of 94% with 45

neurons and a worst accuracy of 70% with 30 neurons.

Here the fundamental issues of ML were exposed in terms of dataset source, pre-

processing, feature selection, algorithm, and classification task. Across the range of

experiments presented nearly every single one used different data or different features

or different algorithms. The result was a lack of comparison points from which to

drawn definitive conclusions about EEGs data and features or their classification.

While many of these experiments produced acceptable results, little was gained and
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many were often confirming ideas already well documented instead of expanding the

knowledge base.

2.3 Identity Vectors

At the center of this dissertation was the introduction of I-Vectors to the EEG

classification community. I-Vectors are mathematical models that were designed to

reduce the dimensionality of UBMs [117]. UBMs served to reduce a dataset of

f -dimensional feature samples into C mixtures of f -dimensional GMMs. Following

this, I-Vectors can then be created by enrolling distinct samples into a modeling

process involving the UBM and a TVM. The TVM is generated from the enrollment

samples and served to constrain the contributions of each mixture within the UBM.

Finally, those I-Vectors were evaluated against testing I-Vectors, built from testing

samples and the same TVM used to produce the enrollment I-Vectors. This

evaluation resolve the distance in the l-dimensional distance between them.

As the technique is entirely data dependent, it could be altered to measure

similarities between epochs, channels, individuals, or groups of individuals.

I-Vectors were developed originally as an extension of a speech processing method

called joint factor analysis (JFA) which split utterances into separate models for

speaker, channel, and context [164]. In contrast, I-Vectors collapse those three

models into just one.

The principal I-Vector equation is

M ≈ m+ Tw (2.3-2)

where M is the feature space of the data, m is the UBM, T is the TVM and w is

the I-Vector itself. The specific data used to build the UBM m is referred to as the

71



training data. Once m and T have been defined, they can be used in concert with

alternate enrollment targets of size S and testing data sets M to create data-specific

I-Vectors, w.

Figure 2.13. UBM Development. Training data was used to construct C
independent Gaussian mixtures over the f dimensional feature space.
This transformed the training data into C mixtures each with f means
and variances. Taken as a whole these c mixtures were the UBM in
addition to a mixture weight parameter. Ultimately this c mixture
UBM served as the basis for developing a TVM and the associated
I-Vectors.

A typical I-Vector use case might involve determining whether an EEG from a

new patient should be diagnosed as epilepsy. First, a large randomized collection of

training data drawn from a diverse set of subjects would be used to build a UBM,

Figure 2.13. Then, sub-populations of data from known healthy and epileptic patients

would be used to construct an enrollment dataset. This enrollment dataset would be

used to resolve a TVM and produced enrollment I-Vectors related to the enrollment

subjects.
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Finally, the new patient’s data would be used with the TVM to construct their I-

Vectors. Then evaluations between the enrollment and target I-Vectors would inform

which population they were more likely to match with, Figure 2.14. Depending on

the choice of enrollment and test data, I-Vectors can automatically search for across

channels, times, medical conditions, medications, and even entire subjects.

A UBM models the f -dimensional features by representing them with C

independent Gaussian mixtures [165]. In general, increasing the number of mixtures

captures more nuance, thereby potentially strengthening discrimination. The UBMs

provide dimensionality reduction by taking a training dataset of L epochs each with

f features each down to C mixtures of f features. As each feature has a mean m,

variance σ, and weight ρ, reduction benefits are seen when L > 3C. The UBMs can

be characterized according to:

Ωc=1...C =


m(c)

σ(c)

ρ(c)

(2.3-3)

Each parameter is a vector of length f representing a given feature. Each I-Vector is

the result of the expectation maximiation (EM) of the available UBM and M .

The I-Vectors are of length l = Cf with many residual elements and are frequently

further reduced by the speech community via LDA. This process requires that the

final I-Vector length be one less than the number of subjects S or less given the

constriants imposed by LDA’s algorithm. Thus I-Vectors final length, l = min(S −

1, Z), is frequently controlled by S or Z, where Z is on the order of 100s. The final

I-Vectors therefore represent a very dense and robust abstraction to an l dimensional
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Figure 2.14. I-Vector Development. Using the UBMs as an initialization, the
enrollment and training data are transformed into I-Vectors. This
process is reliant on the creation of the TVM randomly generated from
the variances of the UBMs and refined by adaptation towards the
means of the UBMs. The resultant I-Vectors are pairwise evaluated to
find the Cosine Distance (CD) between them to rank their similarity.
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space. Within this space the similarity between two I-Vectors can be found via any

metric evaluation, often CD.

2.3.1 Mathematics

The major components and steps to producing I-Vectors are outlined in reverse

starting with the resultant I-Vectors and ending with the original JFA technique.

This includes sections on the TVMs, UBMs, maximum a priori (MAP), and GMMs.

2.3.1.1 I-Vectors

The critical component of Equation 2.3-2, is the TVM T . An evolution from the

eigenvoice matrix used in JFA, it captures all of the variances present in the UBMs.

Generating T from training data requires an iterative EM approach reliant on

feedback from the produced I-Vector w.

T =


T1

...

TC

 =


A−1

1 ∗K1

...

A−1
C ∗KC

 (2.3-4)

The matrices of A and K represent the updated mean and variance of T . These

updates are driven by w and T along with the static values of N, F̂ , and Σ. The

superscript H represents the Hermitian transpose.

Ac =
S∑
s=1

Ns(t)w
−1(t) (2.3-5)

Kc =
S∑
s=1

F̂c(s) ∗
(
w−1(s) ∗ TH ∗ Σ−1 ∗ F̂c(s)

)H
(2.3-6)
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The estimation of w uses T a Cf × Cf matrix. This matrix is formed from the

Baum-Welch (BW) statistics N̂ and F̂ , an l× l identity matrix I, and a model of the

UBM variances Σ. As the models are all independent Σ is a diagonal Cf×Cf matrix

of the true variances from the UBMs where as the BW statistics are estimations of

the mean N and variance F .

w(s) =
(
I + T tΣ−1N̂(s)T

)−1

T tΣ−1F̂ (s) (2.3-7)

The BW 0th (N) and 1st (F ) order statistics are generated from the evaluation of

the UBMs against the L epochs in the training data. The higher order statistic

must be offset by the preceding orders resulting in a centered 1st order statistic F̂ .

Each statistic models the f features in each of the C mixtures resulting in C × f

matrices. Each epoch, e, from the full epoch set t = 1...L is evaluated to generate

initial probabilities based on Ω for N and F .

N̂(s) =


N1(s)

. . .

NC(s)

 (2.3-8)

F̂ (s) =


F̃1(s)

...

F̃C(s)

 (2.3-9)
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F̃c(s) =Fc(s)−Nc(s)mc (2.3-10)

Nc(s) =
L∑
t=1

P (c | et,Ω) (2.3-11)

Fc(s) =
L∑
t=1

P (c | et,Ω)et (2.3-12)

This process resolves a suitable T after approximately twenty iterations of

Equation 2.3-4 to Equation 2.3-7. Notice that Equation 2.3-8 to Equation 2.3-12 are

needed only once to generate T . Creating I-Vectors from the enrollment and testing

data follows Equation 2.3-2 in a modified form. The resultant I-Vector w will be a l

row vector where l is a length defined during the creation of the initial estimate of

T .

w = (M −m)T−1 (2.3-13)

The number of I-Vectors produced is based upon the enrollment targets h and testing

queries q, producing data on the order of (h + q) × l. Therefore dimensionality

reduction will not be significant if the data is partitioned such that h+ q ≡ L.

The I-Vectors are finalized after applying LDA to control for dependencies in the

data. This process reduces their length from l to l = min(S − 1, l) elements based

upon the transformation matrix produced by the LDA. There are other approaches

to normalize the I-Vectors aside from LDA which can be reviewed elsewhere [166].

These final I-Vectors can be compared pairwise using CD to determine similarity

between enrollment targets and testing queries.

cos(Θw1,w2) =
wt1w2

‖w1‖ ∗ ‖w2‖
(2.3-14)
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2.3.1.2 Total Variability Matrix

After the development of JFA it was discovered that the iterative modeling process

was not perfect at separating speaker, channel, and residual effects[166]. In fact the

eigenchannel space was collecting information related to the subject when operating

on specific utterances. JFA was still considered state of the art, but its performance

could be challenged by the total variability space. This space, formally the TVM, was

produced by using the first iteration of JFA to generate a low-dimensional speaker-

and channel-dependent matrix. As this matrix is the key component in generating

I-Vectors a detailed decomposition of its construct and applications is necessary.

The initial form of the T is f ×C, GMMs by features, shown in Equation 2.3-15.

These parameters were dependent on each other and the training data. The speech

community uses a definitive feature set [137], Mel Frequency Cepstral Coefficients

(MFCCs), which evolved over time to become the gold standard [167]. This makes

determining the number of features straightforward. Settling on an acceptable number

of mixtures for the GMM was more difficult given the trade-offs between classification

and computational performance[168, 169].

In many studies the number of mixtures is on the order of a base 2 number, often

being set to at least 2048 mixtures[170, 171]. The optimization for the number of

mixtures was dependent on the best performance, but limited by the dimensions of

the training data. Given a number of subjects S each providing u utterances the

number of mixtures C would need to be less than S ∗ u to prevent over-fitting.


M1

...

Mf

 =


m1

...

mf

+


T1,1 . . . T1,C

...
. . .

...

Tf,1 . . . Tf,C

 ∗

w1

...

wC

 (2.3-15)
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Critically, the TVM was not implemented to mimic utterances, but to map them

instead. The technique allowed I-Vectors to be the weights controlling the inclusion

of a column of features. In this manner it was possible that one column may contain

the dominant features of a low pitched voice and a high pitched voice. If each of the

C columns of T represent a unique component of the speakers, then the I-Vector w

would be binary. More likely is that the characteristics are spread across mixtures

since emergent properties of speech are parameterized via the MFCCs.

Advancing this approach to EEGs may produce a reasonable algorithm for

discrimination, but also allow for an understanding of why the discrimination

occurs. This is entirely dependent on the chosen features, which are well established

for speech, but still open for EEGs. Using a non-linear variation of MFCC

maintains the parameterization providing a closed set of features. With features

bounded, experiments can then focus on finding an optimal size GMM for the UBM

of EEGs.

Working down this chain, further incremental improvements can be made while

gaining insight into the discrimination and grouping of EEGs in an unsupervised

algorithm. While speech already knows the principal modes of their data [172], how

to separate consonants, vowels, words, genders, and ages, such techniques do not meet

the needs of the EEG community.

2.3.1.3 Universal Background Models

As mentioned previously UBMs are sets of GMMs created from the features of

continuous signals. The GMMs contextualize the varied speech signal segments as

independent feature distributions regardless of the spoken text [165]. This technique

is suited to the problem of speaker recognition where the goal is to match subjects

irrespective of data content. As this process is reliant on the likelihoods of features
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for a given model or subject sample, it can be used in an unsupervised manner to

match and/or separate subjects.

The GMM represents the core component of the UBMs which in turn makes them

critical to the performance of I-Vectors. Sets of Gaussian distributions (M) can be

represented with a mean (µ) and co-variance (Σ) drawn from each measurement or

feature of the D-dimensional raw continuous data [119]. This allows a likelihood

calculation equation given a D-dimensional sample x to compare against the model,

p(x|λ) =
M∑
i=1

wig(x|µi,Σi) (2.3-16)

where x,µ, and Σ are vectors of length D and wi corresponds to the weight of each

mixture component where
∑M

i=1wi = 1. The calculated likelihood provides an

unsupervised estimation of the sample relating to the given model(s).

The λ component of p(x|λ) represents the GMM and associated parameters: wi,

µi, and Σi. While the previous equation does not assign a subscript to λ there would

be U GMMs which comprise the fully formed UBM. Just as each GMM attempts to

determine the underlying states of the data, the UBM requires depth to account for

each class of signal.

As an example suppose one wants to know if the weather on a given day will

require a heavy coat, a light coat, a raincoat, or no coat. If the temperature is below

45◦F a heavy coat is desired and if the temperature is above 70◦F no coat is necessary.

In between these two temperatures a light coat may be necessary, but only if the day

will be windy. At the same time, at any temperature above 45◦F with high humidity

levels should warrant wearing a raincoat.

The GMM representing raincoat would have a large variance for wind and

temperature, but a small variance for humidity. The temperature means of heavy
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coat, light coat, and no coat would be unique. However, light coat and no coat

would have a similar mean and variance for humidity and overlapping distributions

for wind. Meanwhile, the heavy coat model would be insensitive to anything aside

from temperature.

The weather conditions (humidity, temperature, and wind) become the three

features modeled by the GMMs. Once four, or more, models are created they each

categorize the required jacket. This full set becomes the UBM that provides a basis

for evaluation of each day’s weather. Given a weather report, the UBM would

provide the likelihood of each jacket being the correct answer.

To calculate the likelihood for a multivariate normal distribution the follow

equation is used, represented as the function g(x|µi,Σi) from the prior equation,

g(x|µi,Σi) =
exp
{
− 1

2
(x− µi)′Σ−1

i (x− µi)
}

(2π)D/2|Σi|1/2
(2.3-17)

From these equations estimations of underlying modes of the data can be found

from which to build a suitable model. Two important assumptions are made in this

process, the first is that each Gaussian mixture is independent of the other mixtures

and the second is that the underlying modes can me adequately modeled with normal

Gaussian distributions. These mixtures are therefore representing a unique hidden

set of generators/states that create the resultant signal. Given that the number of

hidden states is unknown, GMMs may produce mixtures with marginal weights or

mixtures with redundant attributes.

2.3.1.4 Maximum A Posteriori Parameters

With a UBM in place it is possible to tune the model toward specific subjects. The

estimation of a subject specific model from a UBM is called MAP estimation[119].
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Just as with a UBM, the statistics (weight, mean, and variance) of the subject are

found from their data S = st, ..., sT . These expectations are derived from the prior

model found from the UBM, but operating on the subject specific data.

ni =
T∑
t=1

Pr(i|st, λprior) (2.3-18)

Ei(s) =
1

ni

T∑
t=1

Pr(i|st, λprior)st (2.3-19)

Ei(s
2) =

1

ni

T∑
t=1

Pr(i|st, λprior)s
2
t (2.3-20)

These are then able to adapt each i mixture’s weight, mean and variance. The amount

of adaptation is based on the expectations and a chosen relevance factor rρ.

ŵi =
[αwi ni
T

+ (1− αwi )wi

]
γ (2.3-21)

µ̂i = αmi Ei(s+ (1− αmi )µi (2.3-22)

σ̂2
i = αviEi(x

2) + (1− αvi )(σ2
i + µ2

i )− µ̂2
i (2.3-23)

The adaptation coefficient is most often constant for all three statistics, but given

unique labeling allowing for decoupling if necessary.

αw,m,vi =
ni

ni + rρ
(2.3-24)

These new statistics not only provide subject specific models, but present a new set

of models for discrimination. An example of this process is shown in Figure 2.15.

The models themselves can be compared against each other to determine similarity

in addition to evaluating them against new data samples.
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Figure 2.15. Example of MAP of GMM. Results of MAP estimation when speaker
data, red triangles, is applied to a UBM, gray mixtures.

This process is also used to carry out EM to each larger mixture iteration of the

UBM, Figure 2.16. By using an initial estimate of the means, variances, and weights

the next mixture size is constructed by splitting each mixture along the feature axis

of its largest variance. The square root of this variance is to used shift one positively

and the other negatively producing two new means which share their parent mixture’s

variance and half their weight.

2.3.1.5 Gaussian Mixture Models

Understanding how GMMs produce likelihoods for a given data sample x informs how

each mixture’s λ is produced. The more accurate the parameters of λ are for a given

GMM, the more insightful the resultant likelihoods. However, unless the parameters

are known outright they must be deduced empirically. One of the more prevalent

techniques for parameter estimation is maximum likelihood estimation (MLE)[173].
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Figure 2.16. UBM EM Example. Using a single mixture UBM built from all of the
training observations, EM can be used to produce 2 and then
4-mixture UBMs that accurately model the distribution of the
observations. The thickness of each black ring represents the
proportional weight associated with each mixture.

The MLE attempts to find a distribution that maximizes each of the T training

vectors X = {x1, ..., xT}

p(X|λ) =
T∏
t=1

p(xt|λ) (2.3-25)

this equation assumes that each component of the distribution is independent. This

often turns out to be untrue, but is a necessary assumption to provide a functional

solution. This function is non-linear as the product of all the training vector

evaluations allows for one worsening likelihood to diminish any improvements

gained from the remaining vectors. To avoid this problem, a variant of EM can be

used to estimate the parameters for each feature independently. This helps isolate

the features, in the event that they are not independent, and provides the ability to

directly improve the overall likelihood on a feature by feature basis.
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With this each parameter of λ can be estimated in an iterative manner with the

following equations

w̄i =
1

T

T∑
t=1

Pr(i|xt, λ) (2.3-26)

µ̄i =

∑T
t=1 Pr(i|xt, λ)xt∑T
t=1 Pr(i|xt, λ)

(2.3-27)

σ̄2
i =

∑T
t=1 Pr(i|xt, λ)x2

t∑T
t=1 Pr(i|xt, λ)

− µ̄2
i (2.3-28)

these three equations provide updated values for the weights, means, and variances

that can feed the next iteration of the EM algorithm. The a posteriori probability

Pr is found with the following equation

Pr(i|wt, λ) =
wig(xt|µi,Σi)∑M
k=1 wkg(xt|µk,Σk)

(2.3-29)

2.3.2 Success in Speech and Adaptation

The deployment of I-Vectors as a tool for speaker recognition/verification[122],

language detection[123], accent detection[174], and speaker age[124] showed the

growth and trust the speech community put into the algorithm. I-Vectors were

developed in 2011 at the Centre de Recherche d’Informatique de Montreal (CRIM)

by Dehak, Kenny et al[166]. Prior to this work the group at CRIM developed JFA

for use with speech data to address speaker and session variability[175]. I-Vectors

were a natural extension of JFA, but proved to be very effective as a feature

preprocessing technique and their own classifier when paired with a simple metric

like CD [176, 120].

Fundamentally, evaluations of other ML algorithms relied on tracking the

sensitivity and specificity of each experiment and I-Vectors were no different. In
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fact, they performed inline with other approaches achieving over 90% sensitivity and

90% specificity [171]. Given this development, the approach presented here

represents the heart of the technique in as simple a manner as possible. The

extensive use of I-Vectors has produced a variety of augmentations, but it would

have been unwise to start with a more complex system when transporting the

technique to a new field of data. It was decided to minimize as many degrees of

freedom as possible while developing I-Vectors for EEGs.

Another problem in adapting this technique was that finding valid speech data was

relatively easy. If someone was talking, producing sounds, they were likely producing

valid data. However, that was not the case with EEGs which have a constant stream

of data. It was not clear if EEG recordings since background segments are not devoid

of information, essentially all data is data of interest. This naturally leads to an

increase in background signals in EEGs compared to speech. A sleep study may last

for an entire night only to capture a brief 10 minute seizure. Easy for a clinician to

correctly identify, but difficult for a ML technique to recognize.

2.4 Machine Learning Algorithms

The breadth of potential algorithms, supervised and unsupervised, was too much to

review in depth. Instead, a review of the most notable algorithms referenced in this

section and those critical to the validation of I-Vectors were reviewed in the following

section. This was meant to provide necessary context to the present field of EEG

classification, but was not comprehensive to the rapidly developing realm of ML.

Similarly, a brief discussion of FA was included given the frequent use of LDA in

supervised and unsupervised techniques and that I-Vectors were predicated on JFA.
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2.4.1 Factor Analysis

At a base level I-Vectors reduced the dimensionality of data by finding the most

influential features in the given training dataset. In a general sense this is similar to FA

which is used to perform blind source separation (BSS), the decomposition of a signal

into a linear representation of statistically independent components [173]. While this

was the goal, it is difficult to assure linear independence of all the components. As

such the techniques are imperfect given the premise of being blind to the true nature

of the data.

Two commonly used techniques to achieve BSS are PCA and ICA. From these

algorithms more advanced techniques, LDA and QDA, are capable of separating the

components of different known classes. They are not able to operate blind, or

unsupervised, as they require knowledge of the classes to define class dependent

components. Knowing the dependent components they can then resolve the class

independent components in an effort to discern the decisions surfaces between the

classes. QDA operates in a more generalized space allowing for separation of two or

more classes compared to LDA defining separability of a single class from the

dataset.

2.4.1.1 Principal Component Analysis

PCA finds the dominant components in a set of data by maximizing the variance of

the given features [177]. For a set of data X composed of p columns of features and

n rows of observations there exists a vector w capable of maximizing the variance of
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a given feature.

V =
XTX

n
(2.4-30)

σ2
w = wTV w (2.4-31)

Here V represents the covariance matrix of the data matrix X which is used to find

the eigenvectors that become w. As eigenvectors are orthogonal to each other, they

are each uncorrelated components and produce the p principle components of the X.

There are at most n principle components representing unique weightings of the

p features. To find the true number of components, q, the number of zero or near

zero eigenvalues, ez = p− q, must be found. This linearly independent q-dimensional

space represents the true decision surface of the observations. From these operations

it becomes possible to define the critical features and unique observations from the

data itself.

2.4.1.2 Independent Component Analysis

ICA separates individual signals from those collected by multiple receivers, commonly

known as BSS [173]. The typical example is that of a cocktail party with an equivalent

number of microphones and speakers. By using ICA, it is possible to isolate each of

the speakers using the data from all of the microphones. This example is referred

to as the Cocktail Party Problem and exists in many research areas including EEG

recordings.

A dataset contains the sequential samples, t, from each recording device and

assumes there is a transformation matrix, A, that turned the source signals, s, into

88



the captured output X.

X =


x1(t)

...

xn(t)

A =


a11 . . . a1n

...
. . .

...

an1 . . . ann

 s =


s1(t)

...

sn(t)

 (2.4-32)

X = AS (2.4-33)

From this output, the features of the recorded signals must be whitened before the

individual signals can be found. Whitening is a process that transforms the data into

a matrix. z that is uncorrelated, but not assured to be independent. The approach is

similar to PCA in that it requires eigenvalue decomposition to produce the whitening

matrix, V . The matrix E is found from the eigenvectors of X and the diagonal

matrix D contains the associated eigenvalue for each eigenvector.

z = V x (2.4-34)

V = ED−
1
2ET (2.4-35)

z = V As = Âs (2.4-36)

Now the transformation matrix, Â, contains only orthonormal components instead

of the previous correlated components. This process is necessary as it constrains the

solution sets when solving for the independent components.

The kurtosis of a signal is one of the many ways to solve for the independent

components after whitening. As the kurtosis supports the additive property, it

provides a natural process for optimization the non-Gaussian portions of the signal.

The expectations, E, of the random variable y’s second,variance, and fourth moment

are used to find the ‘tailedness’ of the distribution. With a normalized distribution
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the expectation of the variance would be 1, but for Gaussian distributions kurtosis

would always be zero because the fourth moment is always 3(E{y2})2. This is why

the independent components must be non-Gaussian otherwise they cannot be

separated out.

kurtosis(y) = E{y4} − 3(E{y2})2

kurtosis(s1 + s2) = kurtosis(s1) + kurtosis(s2)

kurtosis(αs1) = α4kurtosis(s1) (2.4-37)

When all the random variables are normalized the variance of y is equal to 1 which

bounds the solution by the unit circle. This simplifies the solution to finding a vector

that produces the largest amplitude of kurtosis for the given distribution. These

kurtosis based dimensions indicate projections of non-Gaussian distributions which

is where the suspected independent signals reside.

|kurtosis(y)| = |q4
2kurtosis(s1) + q4

2kurtosis(s2)| (2.4-38)

There are other techniques for discerning the projection space of non-Gaussian

distributions, Gram-Schmidt, ML estimation, or negentropy, which focus separating

independent non-Gaussian distributions. In all instances the mixing matrix A is

chosen to be square to simplify the mathematics. The only constrains on the

process, regardless of approach, are on the data being statistically independent and

that the underlying signals are non-Gaussian distributions. These both require prior

knowledge of the signals in the dataset otherwise the results of ICA will be similar

to those of PCA, orthogonal uncorrelated feature vectors.
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2.4.1.3 Linear Discriminate Analysis

LDA uses the mean and variance of each class in the data to build decision surfaces

between the classes. This is achieved by maximizing the distance between the means

SB and minimizing the variances SW of the features associated with the classes K.

Original developed by Ronald Fisher, often called Fisher’s Linear Discriminant, it

seeks to maximize the discriminant factor J(w) by finding the vector w [17].

Given two datasets containing ni observations of each class, a decision surface w

can be found.

X1 = {x1
1, ...,x

1
n1
} , X2 = {x2

1, ...,x
2
n2
}

mi =
1

li

ni∑
j=1

xij

SB = (m1 −m2)(m1 −m2)T

SW =
K∑
i=1

ni∑
j=1

(xj −mi)(xj −mi)
T

J(w) =
wTSBw

wTSWw
(2.4-39)

This can be expanded to handle multivarate data by expanding the definitions of SB

and SW . Here m̄ represents the mean of the observations ni across all classes in the

training set. Then a sufficient w can be found by maximizing J(w) which occurs

when w is an eigenvector of S−1
W SB.

SB =
K∑
i=1

ni(mi − m̄)(mi − m̄)T

SW =
K∑
i=1

ni∑
j=1

(xij −mi)(xij −mi)
T
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Classification based off LDA requires an additional step to set thresholds for each

class with respect to the resultant eigenvalues produced by w · x. Through this

metric many approaches can be used to distinguish between the K classes in the

multivariate data such as individual or one-versus-all classification.

The multivariate approach often assumes a common global covariance matrix SX

to ensure that S + W−1SB is diagonalizable. This assures that the eigevenvectors

will be caused by the features within the data. To approximate a global covariance

matrix the pooled within-class covariance matrix is scaled by the degrees of freedom

between the observations and classes.

SX = (n−K)−1SW (2.4-40)

This results in K − 1 eigenvectors as diagonalizablity of a matrix does not ensure

unique eigenvectors. In general, LDA is frequently used to perform dimensonality

reduction similar to PCA based upon the eigenvalues associated with each

eigenvector. Even without reviewing the eigenvalues, LDA always produces one less

feature dimension than classes to force discrimination upon the next eigenvector

axis.

2.4.2 Algorithms

Numerous algorithms were introduced while reviewing the applications of EEG

recordings. The following section highlights the more common algorithms used in

ML and those to be compared against I-Vectors. From training datasets the

algorithms are able to classify unknown samples by providing a likelihood of a

match or a discrete label if given labeled data. These introductions serve only to
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address the nature of the algorithm, unsupervised or supervised, the process of

discrimination, and show the input parameters and type of classification produced.

2.4.2.1 Gaussian Classifiers

Once created, GMMs can be used as the basis for discrimination. As discussed in

Section 2.3.1.5, the data is broken down into a series of estimated Gaussian

distributions. These distributions strive to model classes defined by the data. To

identify new data, a likelihood score is generated based upon the distance between

each model and the new data sample. Calculating the distance, and thus likelihood,

can be done in a number of ways. Assuming the distributions are Gaussian in

nature, the following equation provides the likelihood the point belongs with the

model.

Here x is the location in d dimensional space with a known mixture modeled by

its mean µ and co-variance Σ.

likelihood(x, µ,Σ) =
e−

1
2

(x−µ)T Σ−1(x−µ)√
|Σ|(2π)d

(2.4-41)

This general form produces the likelihood a sample x could come from a given mixture.

The end result becomes a set of likelihoods of the known classes from which to draw

a classification label. However, there is no assurance of a data sample exceeding 50%

likelihood of any of the classes.

This classifier functions based on the modeled distributions. If the GMMs are

created via EM or another clustering method the entire process is unsupervised.

However, it is possible make the process supervised by knowing the class means and

variances in advance or using labeled data to manual cluster the data. The evaluation

of a likelihood based upon a distribution is a fundamental technique used by many
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ML algorithms. It serves as a natural comparison point for I-Vectors as a preliminary

step in their development is to produce GMMs.

2.4.2.2 Naive Bayes Classifier

Naive Bayes Classifiers (NBCs) make use of probabilities to classify based on

discrete conditions. The classifier is built out from Bayes’ Theorem which describes

the probability of an event occurring given the current conditions. This approach

requires knowledge about the events that inform the probabilities making it a

supervised algorithm. The two class form of a NBC is

P(A|B) =
P(B|A)P(A)

P(B)
(2.4-42)

which provides the likelihood of A given B. In this equation P(A) and P(B) represent

the independent probabilities of events A and B and the probability of B given A is

given as P(B|A). This expands to multiple conditions T by taking into account the

likelihoods of each possible condition with

P(Ai|B) =
P(B|Ai)P(Ai)∑T
i P(B|Ai)P(Ai)

(2.4-43)

The expansion of the unitary case shows that as the number of conditions increases

probabilities for each condition with respect to each class are needed. In a sense the

conditions could be features representative of classes or the classes themselves.

The approach is a natural tool for evaluating any modeling technique that

produces discrete probabilities assuming they are all independent. Since this cannot

always be assumed the technique’s performance is dependent on adequate feature
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selection and class separation. The outcome is a probability of the test event or

class occurring that is bounded between (0%− 100%).

2.4.2.3 K-Nearest Neighbor Classifier

A KNN classifier uses labeled datasets to assume the class of an unknown sample.

This approach is similar to using GMMs, but KNN can only operate with labeled

data. Given the k closets neighbors class, the unknown sample is labeled as the

highest counted class. The algorithm relies on mapping distances between the data

points in their f dimensional feature space [178].

Determining the distance between unique samples provides flexibility in handling

non-Gaussian distributions. Unlike GMMs classifiers and similar to NBCs, this

algorithm operates directly on the data and not through a model when fed training

data. The trade-off becomes having enough data and selecting a sufficient value of k

to produce acceptable classifications. The previous two algorithms relied on the

statistics drawn from the training data, but KNN is directly dependent on samples

in the training data.

The simplistic nature of and ease of conceptulizing lead KNN to be used in a

variety of experiments as a comparative benchmark [14, 152].

2.4.2.4 Support Vector Machines

Another kernel based classifier, SVMs, creates a hyperplane between a target class

and all other data. The use of a kernel allows linear and non-linear decision surfaces

to be transformed onto a hyperplane for discrimination. This hyperplane maximizes

the distance between a target cluster and a non-target cluster [179]. Development

of the technique stemmed from considering two normal distributions N1 : m1,Σ1 &
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N2 : m2,Σ2 and an target location x.

Fsq(x) = sign
[1

2
(x−m1)TΣ−1

1 (x−m1)− 1

2
(x−m2)TΣ−1

2 (x−m2) + ln
|Σ2|
|Σ1|

]
(2.4-44)

In this case Fsq(x) resolves to a positive sign indicative point x is inN1 and a negative

sign for N2. From this initial equation may variations developed to address non-

normal distributions and how to simplify the equation by approximating Σ1 ≈ Σ2.

Results of SVMs are a binary one-versus-all classification. This provides no way

to produce clusters of data nor known the strength of the classifications. As with the

other classifiers it builds the hyperplane used for separation from a labeled training

set, making it a supervised classifier. As it seeks to maximize the space between

clusters additional data is most beneficial when it represents boundary conditions of

each class. It has been used on I-Vectors in the speech community [180] and numerous

EEG classification tasks [14, 102, 66].

2.4.2.5 Dirichlet Process

A Dircihlet Processes (DP) allows for distributions of distributions to be built in an

unsupervised manner. The process produces random variables GK as

sub-distributions from the full dataset’s distribution G0 given a concentration

parameter α. In this manner an unlimited number of distributions can be produced

from a closed dataset containing T1...TK partitions17 of the data Θ[181].

G ≈ DP(α,G0) (2.4-45)[
G(T1), ..., G(TK)

]
≈ Dir(αG0(T1), ..., αG0(TK)) (2.4-46)

17A partition of Θ defines a collection of subsets whose union is Θ. A partition is measurable if it
is closed under complementation and countable union.
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Generating new distributions in this manner assures that the average distribution

properties are maintained. Those distributions with large α will contribute more

heavily, but have a greater likelihood of exemplifying the full dataset’s true

distribution. Through iterative measures it is possible to produce distributions that

separate into naturally defined classes based on the dataset alone.

The clustering of the data occurs via the atoms at each level. An atom is a model

of the statistical patterns of some phenomena in the data. At the lowest clustering

level only atoms relevant to that level are present, but the next highest level contains

these atoms plus their own atoms. Building up towards the highest clustering level

means collecting all the atoms along the way. By sharing the atoms across the dataset,

it becomes possible to then map similarities based upon the mixture of these atoms

at each level [182].

The version used in Wulsin et al.[51], Heirarchical Dirichlet Process (HDP),

allows distributions to be drawn across multiple levels of the data at once. This

exemplifies the use case of a DP for clustering data on multiple levels with minimal

prior knowledge. Wulsin built clusters at each level of the data (subject, seizure,

and channel) so the knowledge was about the structure of the data and not the

contents of the data. This is similar to I-Vectors as features are clustered in the

GMMs and then the resultant samples are clustered based on the feature models.

2.4.2.6 Artificial Neural Networks

By applying the functional structure of brain neurons, an algorithm that behaves as

a NN can be trained to perform non-linear classification. Each node in the network

takes in information from the preceding layer, evaluates an equation to determine its

state, and then contributes this activation to the ensuring layer. The connections

between nodes have their own weights and the number and depth of layers is based
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upon the needs of the network. The algorithms referenced thus far included DBNs,

RBFNNs, multilayer perceptron neural networks (MLPNNs), and MLPNNs represent

a small sample of breadth of NNs.

Depending on the type of data and intended classification goal one NN may

perform better than another. The trade-offs between the algorithms stem from the

characteristics of the data related to the number of classes and any temporal

relationships. At the crux of these algorithms is the need for a large diverse amount

of labeled data. Like other algorithms, they learn directly through each sample of

data which enables them to be non-linear classifiers. The training methodology is

driven by reducing the error in the training dataset through adjusting the weights

connecting the nodes and the biases of activation in each node. The complexity of

the problem to be solved is often matched by the complexity of the NN.

Of interest to the development of I-Vectors is a Long Short-Term Memory

Neural Network (LSTMNN) adaptation capable of quantifying the similarity

between two inputs [183]. By training on ranked input vectors, in the case of

Mueller et al. [183] sentences, the algorithm can learn to produce a discrete

similarity score. This approach is highly dependent on the initialization parameters

and the quality and quantity of training data available given the need to operate on

variable length input vectors that represent the same classification.

2.4.2.7 X-Vectors

The I-Vector methodology was improved upon while this work was ongoing by

research in the speech community that augmented it with a deep neural

network (DNN) [184]. This combined system used I-Vectors and embeddings from a

feed-forward deep neural network (the x-vectors) to surpass both of their individual

speaker verification performances. The premise of the x-vectors was to utilize the
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post-statistics pooling layers of the DNN to generate feature vectors. The first

embedding was taken from the first affine layer after the statistics pooling and

second embedding was taken from the affine layer that received the output of a

ReLU (rectified linear units) layer driven by the previous embedding. This made

the first embedding a linear representation of the speaker’s statistics and the second

embedding a non-linear representation of the same statistics. The embeddings and

I-Vectors are evaluated using the same process of LDA followed by length

normalization and probabilistic linear discriminant analysis (PLDA) to produce the

classification scores.

The original research group further refined the technique to the point that it

surpassed its I-Vector counterparts [185]. These results were promising for

advancing speaker recognition on text-independent datasets, where I-Vectors had

been the standard classification technique. However, the x-vector approach is a

supervised ML algorithm which relied on speaker labels to build the embeddings

from the training dataset before generating the embeddings from the test dataset.

They are clearly superior to I-Vectors for speaker/subject recognition, but this

approach would be reliant on clinical annotations to expand subject recognition.

Additionally, the computational requirements of x-vectors is orders of magnitude

beyond that of the presented I-Vector technique, as the original work by Snyder et

al [184] utilized 4.4 million parameters over all layers of the DNN.
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Chapter 3

METHODS

Those who fail to plan, plan to fail.

Attributed to Benjamin Franklin

The application of I-Vectors on EEGs is a novel concept given that I-Vectors

were designed for speech processing. Therefore, there is minimal guidance on how

to use I-Vectors on EEG data. As indicated in the background, the foundations

of the experiments proposed here came from following the development of I-Vectors

within the speech community. The two fields are related in terms of their signal

analysis goals, and subject and condition discrimination (Research Aim 1), but their

optimization processes may be different (Research Aim 2). In both Aims, the desired

goals afford insight into the classification process, which in turn is leveraged into

insight about the features, datasets, and EEGs themselves.

3.1 Experimental Outline

The ultimate goal of this research is to provide subject and condition discrimination

of EEGs. Prior to this work, this goal was not possible using I-Vectors given the

lack of a software tools specifically for EEGs. The first experiments provided

classification performance showing that I-Vectors met or exceeded performance of

equivalent techniques. Providing competitive classification required an

understanding of the technique’s trade-offs in terms of features, datasets, and
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parameters. Running experiments to sweep through the features, datasets, and

parameters provided operational thresholds for the datasets, UBMs, and UBMs for

using I-Vectors based classification on EEGs.

In this work the experiments are classified as Algorithm Benchmarks, Parameter

Sweeps, and UBM-TVM Relationship. The Algorithm Benchmarks addressed

Research Aim 1 (RA1) by testing the performance of I-Vectors against benchmark

classifiers, specifically Mahalanobis distance and GMM-UBM. The initial

comparisons were carried out using parameters borrowed from speech recognition,

which then required optimization through the Parameter Sweeps that addressed

Research Aim 2 (RA2). Using the optimal classification parameters, the mechansims

by which I-Vectors carried out their classification was resolved through analysis of

the relationships between the UBMs, TVMs, and feature sets. These UBM-TVM

Relationship experiments addressed Research Aim 3 (RA3) and represented the

major contribution to understanding EEGs and multi-modal signal analysis.

Each experiment operated on the same fundamental features, datasets, and

evaluations as they built upon each other. This chapter details all the components

used to build out the experiments. The ensuing three chapters organize present each

of the experiments: Chapter 5 - Parameter Sweeps, Chapter 6 - Algorithm

Benchmarks, and Chapter 7 - UBM-TVM Relationship.

3.2 Data

Using heterogeneous data is necessary for validating any statistically rigorous

method such as I-Vectors, but EEG data is difficult to obtain. Typically, new data

is generated as part of research experiments and/or acquired from hospitals, but

rarely if ever enters the public domain. This limits innovation to specific
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combinations of data and techniques. To mitigate this, only the publicly available

datasets from PhysioNet Database[100] and TUH-EEG[18] were used in this work.

While not comprehensive in terms of the variety of subjects and conditions used in

other studies this collection provided the necessary breadth to validate the goals of

this work. These data include EEG from imagined and actual hand, arm, and foot

motion, and normal, abnormal, and seizure clinical EEGs from over 600 subjects.

3.2.1 PhysioNet Database

This EEG data comes from the New York State Department of Health’s Wadsworth

Center [94] and is a component of the PhysioBank archive maintained by MIT’s Lab

for Computational Physiology1. Within the data bank are EEG recordings pertaining

to resting states, imagined motion, and motion tasks. The data consist of 64 channel

EEGs from 109 subjects performing 14 trials: 12 motion and 2 resting calibration

outlined in Figure 2.3. Information about the subjects (age, gender, handedness, etc)

is not provided, making subjects and trials the most applicable decision surfaces.

Each 2-minute imagined-motion/motion trial consists of a series of 30 4.1 second

tasks. These alternate between rest states and the computer prompted tasks

(T1-T4). The tasks consist of opening/closing left or right fist (T1), imagine

opening/closing left or right fist (T2), opening/closing both fists or feet (T3), and

imagine opening/closing both fists or feet (T4). The two resting state trials, TR1

Eyes Opened (EO) and TR2 Eyes Closed (EC), are one minute recordings of

unprompted subject recordings. From this, three dataset

1. Physio Full - All fourteen trials (TR01-TR14)

2. Physio Single - One trial of each type (TR01-TR06)

1https://www.physionet.org/pn4/eegmmidb/
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3. Physio Motion - One of each motion trial (TR03-TR06)

These datasets allowed classification experiments on distinct levels of the data.

The highest level was subject classification across trials. Beneath that was subject-

trial classification, dependent on matching the correct subject and trial. Finally,

within-subject trial classification was possible given the grouping of the repeated

trials.

The recordings consist of 64 electrodes sampled at 160Hz following a standard

10-20 layout. A 65th channel provides labels for each task during the trials. Since

its introduction in 2009, the PhysioNet Database has been used in biometric

classifications [105] with respect to task sensitivity [86], subject independence [186],

various subject classification schemes [68, 104], and attempts at content based

retrieval [187].

3.2.2 TUH Corpus

The Temple University EEG Corpus (TUH-EEG) contains over 25,000 EEGs with

their associated medical evaluations. All data comes from patients seen by Temple

University Hospital in Philadelphia, Pennsylvania [18]. These recordings represent

considerable breadth and depth in terms of patients, medical conditions, and

recording conditions. Seizures were the most common diagnosis for patient’s with

medical records, but stroke and concussion patients are represented as well, while

the majority of all recordings are simply indeterminate. In addition to these

patients, there are subsets consisting of normal patients and those with

indeterminate conditions considered abnormal. These latter classifications

(abnormal/normal) along with seizure patients were used to organize 3 distinct

datasets:
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Figure 3.1. Layout of TCP CEP Montage. The Trans-Cranial Parasagittal (TCP)
montage uses a rostral to caudal differential between electrodes to
produce channel data. This differential is applied from the ears inward
as well to produce 22 distinct channels. Common electrode names are
provide with intermediate electrodes left blank. The gray numbers
represent the channel index found in the Temple University EEG
Corpus (TUH-EEG).

1. TUH Normal - 50 normal patient sessions

2. TUH Abnormal - 50 abnormal patient sessions

3. TUH Seizure - 411 seizure patient sessions

These datasets allowed for two types of classification experiments. The first was

on the subject level, as each was built from unique subjects. The second was

developed by combining the datasets to classify them based upon their condition,

abnormal/normal/seizure. Further analysis was possible given the associated

medical reports, but beyond the time and scope of this research.

Unlike the PhysioNet Database, the TUH-EEG is in vivo, leading to a wide

array of recording variation. The electrode configurations, sampling rates, and

session counts are at the discretion of medical professionals and not a structured
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research protocol. As addressed in its public release [18], the most common

recording configuration consists of 31 electrodes at a 250Hz sample rate. This is

substantially fewer electrodes than the PhysioNet Database, but is enough to

produce clinically common EEG montages2.

3.2.3 Synthetic Dataset

Developing and testing on experimental data alone would make it impossible to

provide validation of the software’s efficacy; therefore, a synthetic dataset was built.

This controlled dataset allowed for two ‘ideal’ configurations: (1) a dataset with a

common feature across all subjects and (2) a dataset with an unique feature for

each subject. These datasets were labeled as simulated, static (simulated with an

additional common feature across subjects) , and unique (simulated with a unique

feature for each subject). Each one contained 10 minutes of data for the simulated

12 subjects and their 22 channels, matching the number of channels in the

AutoEEG dataset.

Production of the synthetic datasets relied on a Gaussian Mixture Model based

Hidden Markov Model (GMMHMM) consisting of 3, 4, or 5 Gaussian models drawn

from UBMs. The baseline UBM came from 12 TUH-EEG AutoEEG V1.1.0 subjects

using a 16-mixture UBM. The common and unique features came from a single

random subject in the PhysioNet Database, also using a 16-mixture UBM. Simulated

data contained either 3 or 4 mixtures, allowing the static and unique to add an

additional feature containing 4 or 5 mixtures depicted by Figure 3.2.

This produced six unique synthetic data sets: Sim3, Sim4, Sta3, Sta4, Uni3,

Uni4, outlined in Figure 3.2. Data was generated for each one-second epoch of each

channel as CEP features directly. The distribution of the simulated data followed the

2ACNS - Guideline 3: http://www.acns.org/UserFiles/file/EEGGuideline3Montage.pdf
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Figure 3.2. Generation of synthetic data from the TUH-EEG. The GMMHMM
modeled data (gray) and the unique (blue) or static (green) features
enable the creation of unique and static synthetic data sets. Only 10%
of the simulated data is replaced by the external PhysioNet Database
feature. The modeling produced features for each epoch’s 22 channels
simultaneously to keep the channel-epochs temporal synchronized for
each of the 12 simulated TUH-EEG subjects.

weighting of the initial 16 mixture UBM. When the static and unique features were

added they overwrote 10% of the simulated data with the new PhysioNet Database-

based feature. Authenticity of the raw data was preserved by keeping the synthetic

data as similar to the TUH-EEG AutoEEG V1.1.0 dataset as possible, highlighted in

Table 3.1.

Table 3.1. Composition of Synthetic Data Sets

Name Type Features Channels Sampling Rate (Hz) Duration (s)

AutoEEG Real ∞ 22 100 1200
PhysioNet Real ∞ 64 160 120

Sim3 Simulated 3 22 100 600
Sta3 Static 4 22 100 600
Uni3 Unique 4 22 100 600

Sim4 Simulated 4 22 100 600
Sta4 Static 5 22 100 600
Uni4 Unique 5 22 100 600
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3.2.4 Feature Sets

In addition to using multiple datasets, three feature sets were applied to the

PhysioNet Database and TUH-EEG: Cepstral Coefficient (CEP), spectral

coherence (COH), and Power Spectral Density (PSD). Using multiple feature sets

was important because there is no consensus on an optimal feature set for EEGs.

PSD features have a long history of use with EEGs [91, 188, 189], as do COH

features [64, 162]. CEP are well-established features in the speech processing

domain [190, 123]; their application to EEG research was introduced by the Neural

Engineering Data Consortium (NEDC) [41].

The COH and PSD features were computed according to the work of

LaRocca [64]. The CEP features were built following the standards developed by

the speech community [41] and their channels modified to conform with a TCP

montage used by neurologists [7]. Thus the feature sets are distinct not only in their

mathematical construction, but also their topographical configurations, Table 3.2.

Table 3.2. Feature Set Configurations

Name Type Features Channels

CEP
Original 26 22

Slim 26 22

PSD
Original 40 56

Slim 40 19

COH
Original 40 1540

Slim 40 22

As discussed in the background, EEG recordings can use a variety of electrode

configurations. For example, the PhysioNet Database contains 64 electrodes of data,
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while the TUH-EEG contained a myriad of electrode configurations. Therefore the

TUH-EEG set was aligned with the most common standard, the TCP montage,

resulting in 19 electrodes organized as 22 differential channels. La Rocca’s features

consisted of 56 PSD channels and 1540 COH channels making for a larger disparity

in channels for each feature set. To address this channel imbalance, the TUH-EEG

configuration layout was replicated for the PSD and COH feature sets producing

two groups of features. The first was the 55 electrode layouts used by La Rocca [64]

and the second time was a mirror of the 19 electrodes from the TUH-EEG TCP

montage.

This resulted in a slim feature set consistent of the 22 channel CEP, 19 channel

PSD, and 22 channel COH. The CEP and COH confirmed to the TCP layout, but the

PSD were not converted to keep them as distinct from the COH features as possible.

The benchmark testing against La Rocca’s worked used the full feature sets, while

all Algorithm Benchmarks and UBM-TVM Relationship experiments used the slim

feature sets.

3.2.4.1 Cepstral Features

The CEP-based features were predicated on the success of similar MFCC used in

speech recognition. Their adoption for EEG required shifting from a log frequency

scale to linear frequency and adjusting the time windows for the ∆ and ∆∆

differentials. Generation of these features was introduced and detailed by Harati et

al in [41], but is outlined here.

The base feature vector consisted of of nine coefficients (seven cepstral coefficients,

the frequency domain energy, and the differential energy). The filter banks actually

produce eight spectral coefficients covering the following frequency ranges: {0, 1-

10, 11-20, 21-30, 31-40, 41-50, 51-60, 71-80 Hz}. However, the zeroth coefficient is
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discarded and replaced with the frequency domain energy; the differential frequency

energy becomes the ninth term. These filters provided a single energy value after

bandpass filtering (Hamming) the FFT for each of the listed frequency ranges.

The two energy terms: frequency domain (Ef ) and differential frequency energy

(Ed) are given as:

Ef = log
(N−1∑
k=0

|X(k)|2
)

(3.2-1)

Ed = max
(
Ef (m)

)
−min

(
Ef (m)

)
(3.2-2)

Ef was derived from the outputs of the filter banks where N are the number of

filters and X is the filtered cepstrum frequency output. Using these values within the

prescribed 0.9s window of samples, the Ed is found by comparing the maximum and

minimum Ef values over the range of m elements in the signal window. These built

the first nine features with the remaining 17 coming from the first derivative (∆) and

second derivative (∆∆).

The ∆ and ∆∆ features used the same equations, but with different window sizes:

dt =

∑N
n=1

[
ct+n −−ct−n

]
2
∑N

n=1 n
2

(3.2-3)

Here each sample n in the window N was used to produce a derivative for a given

coefficient c centered around time t. Zero padding was used to pad the vector near

the beginning and ending of the data. The first derivative ∆ used N = 0.9. Once

resolved, the second derivative ∆∆ used the ∆ values with a new window of N = 0.3.

In Harati’s work [41], the optimal configuration was found to be a 26 feature vector

where the ∆∆ for Ed was excluded. This configuration was adopted by the research

group and became the consistent feature for the experiments in this work.

109



3.2.4.2 Power Spectral Density Features

PSD features are derived from the sum of energy over a frequency range for a given

time sample. Variation in their creation can be found in their frequency range, number

of FFT samples, and filtering of the time signal. The variation of PSD based features

used in this work are identical to those of La Rocca et al. [64] which used a frequency

range of 0-100Hz, a 100-point FFT, and Hanning windows for filters. The final

features were 10-second epochs with 40 PSD values evenly spanning 1-40Hz.

The time series data was filtered with 1 second Hanning window using a 0.5 second

overlap. This produced 20 filtered samples for each 10 second epoch centered around

each 1 second interval from 0 to 9.5 seconds. These filtered samples were evaluated

using Welch’s averaged modified periodgram (built into Matlab) with a 100 point

FFT to produce 1Hz resolution over the range of 0 to 100Hz. La Rocca’s work used

the PhysioNet Database data which first had to be resampled from 160Hz to 100Hz

prior to the filtering.

The resultant 100 energy levels were reduced down to only those spanning 1-40Hz.

This reduction in frequencies is necessary given (a) the resampling and (b) that the

EEG oscillations of interest Delta (0.5-4Hz), Theta (4-7Hz), Alpha (8-14Hz), Beta

(15-29Hz), and Gamma (30-40Hz) fall within that range. This resulted in 40 features

per EEG channel. The channel count was reduced to 56 from PhysioNet Database’s

original 64. The discarded channels, highlighted in Figure 3.3, were AF7, AF8, FT7,

FT8, T9, T10, OZ, and IZ.

While originally designed with the PhysioNet Database in mind, these features

were readily adapted to the TUH-EEG. Recordings were resampled to 100Hz and

pared down to the match the abbreviated 56 channel layout.
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Figure 3.3. Layout of La Rocca’s PSD and COH Channels. The channel layout La
Rocca et al used removed 8, highlighted in blue, channels from the
overal 64 channel configuration of the PhysioNet Database.

3.2.4.3 Spectral Coherence Features

The COH features were proposed by La Rocca as an improvement over PSD features

for subject classification. Measuring coherence between electrodes had been used prior

for distinguishing ADHD [139], a general connectivity measure of the brain [34] and

auditory oddball paradigms for BCI/P300 responses [82]. Thus they were not novel

features, but applied to a broad range of applications beyond subject classification.

These features were generated by quantifying the amount of synchronous energy

at each frequency band of each electrode. This was achieved by first building the PSD

features and then using them to generate a COH value for each frequency f between

two different electrodes i and j, outlined as follows:

COHi,j(f) =
|Si,j(f)|2

Si,i(f) · Sj,j(f)
(3.2-4)
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The resultant values were scaled by arctan to normalize their distribution making

them bounded on the range (0, π
2
). This configured the final feature set as 1540

‘channel’ which La Rocca called elements. Each with the 40 distinct frequency bins

found through the PSD feature process.

3.2.4.4 Aggregated Datasets

The UBM-TVM Relationship experiments needed subject and condition variation

to test classification performance. To achieve, this aggregated datasets were built by

combining the PhysioNet Database and TUH-EEG datasets. The combinations of

PhysioNet Database’s motion data and the TUH-EEG’s normal, TUH-EEG’s

abnormal and normal, or TUH-EEG abnormal, normal, and seizure datasets allowed

classification of subjects and known characteristics within a single experiment. This

was important to address algorithm robustness and to mitigate any benefits

conferred based upon a given dataset-feature-algorithm combination. Each

combination was given a designation, Table 3.3 to streamline documentation and

discussion.

3.3 Evaluation Metrics

All experiments were run as subject verification tests. This was inline with La

Rocca’s experiment which used Correct Recognition Rate (CRR) as their sole

evaluation metric. However, given the depth of the datasets and parameter testing

to be conducted it was necessary to also include the EER as well. The performance

of I-Vectors has typically been reported in terms of EER, while the EEG research

community is typically more broadly focused more on CRR. Exceptions in the

literature [86, 103, 163] show results in terms of EER, FAR, FRR, HTER, or
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Table 3.3. Combine Dataset Designations

Designation Dataset 1 Dataset 2 Dataset 3

AbnNrm TUH Abnormal TUH Normal -
AbnSzr TUH Abnormal TUH Seizure -
NrmSzr TUH Normal TUH Seizure -

AbnMot TUH Abnormal Physio Motion -
NrmMot TUH Normal Physio Motion -
SzrMot TUH Seizure Physio Motion -

AbnNrmSzr TUH Abnormal TUH Normal TUH Seizure
AbnNrmMot TUH Abnormal TUH Normal Physio Motion
NrmSzrMot TUH Normal TUH Seizure Physio Motion
AbnSzrMot TUH Abnormal TUH Seizure Physio Motion

Detection Error Tradeoff (DET) curves. For the purposes of this research results

were reported in terms of CRR and EER to facilitate readers from both the I-Vector

and EEG communities being able to contextualize the experiment performances.

In this work CRR was calculated based on the testing data correctly matching

into the enrollment data. The EER was calculated over the entire distance matrix

ensuring it evaluated the strength of all matches. This meant if subject 100s second

best score was stronger than subject 4’s score the EER would be none zero. This is

why it was critical to include it for the parameter sweeps, as the CRR masked the

majority of the nuance of the full system.

Even with the importance of both metrics, the intended parameter sweeps and

comparison points made always displaying both CRR and EER cumbersome and

ineffective to the end goal of comparative performance. AS such, the C Metric was

defined which combined the CRR and EER by subtracting the EER from the CRR.

Thus the threshold for an acceptable C Metric score was set at 0.75 which could

represent a CRR of 85% and an EER of 10%. This was primarily used for the
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expansive Algorithm Benchmarks to showcase performance differences between

GMM-UBMs, MD, and I-Vectors.

3.3.1 Mixture Size

For UBMs, TVMs, and I-Vectors the dimension of the underlying mixture model is

a critical parameter than can affect performance. Effectively, the n dimensional

feature space is modeled by m gaussians; these gaussians are used to train the

I-Vectors. As has been the case in the speech community [124, 168, 191], it was

necessary to determine the size of the mixture model that would optimize I-Vector

performance under different circumstances. While some experiments applied

GMM-UBMs previously, their protocols and datasets were not a sufficient starting

point[42, 163].

These experiments were used to inform the initial mixture sweep range {2, 4, 8,

16. 32, 64, 128, 256, 512, 1024} used as part of the Parameter Sweeps. After which

it was expanded to {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048} for the Algorithm

Benchmarks and UBM-TVM Relationship experiments. The smallest datasets

contained 50 subjects, but each dataset had at least 19 channels per subject

amounting to a lower bound of 950 distinct subject-channels each with 40 features.

From this lower subject-channel bound there the number of epochs in the training

and enrollment datastets would change based upon the epoch duration. With the

largest epoch duration of 10 seconds, there would be at minimum 9 epochs for each

of the 950 subject-channels producing 8,550 unique subject-channel-epochs to

model. This value exceeded the upper limits of the two mixture sweeps ensuring

overfitting was not a major influence on performance.
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3.3.2 TVM Dimensions

The size of the TVM was bounded by the number of mixtures and a dimension factor

called l from section Section 2.3.1. As stated, this l value had to be less than or

equal to the number of subjects, otherwise models would be built specifically for each

subject. Overfitting concerns were addressed with respect to the mixture sizes, but

limiting the TVM depth to the number of subjects assured overfitting was impossible

in the production of I-Vectors.

This was not strictly required, as the examples used to inform this work would

build TVMs with a depth beyond that of the number of subjects [166]. As the TVM

is an intermediate step before finalizing the I-Vectors with LDA, the dimension of the

TVM could be 1200 for processing data from 75 subjects [192]. However, such options

were based on datasets with an order of magnitude more epochs and contained feature

vectors double in size than was proposed in this work

Bounding the upper limit was necessary given the dynamic between mixture size,

TVM depth, and LDA depth. An upper bound of 200 was chosen because the majority

of datasets and aggregated datasets would not exceed 200 subjects. Additionally,

producing the TVM was the most computational intense components of the algorithm

requiring a tradeoff of the sweep range and execution time. The lower bound was set

at 25, half the smallest subject count. Three incremental values were used to step

between the lower and upper bound which resulted in the following sweep range: {25,

50, 75, 100, 200}.

3.3.3 LDA Dimension

The use of LDA to finalize the I-Vectors was well documented by the founders of

I-Vectors [121, 166] highlighting their own sweep for optimization with speech data.
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Thus LDA depth represented a third parameter to consider when building and

evaluating I-Vector performance. The upper bound of LDA is determined by the

size of its paired TVM. As the range of TVM dimensions was being aligned with

the various aggregated dataset subject counts, the LDA dimensions were aligned to

operate on a similar scaling.

The lower bound for the LDA dimensions was set to 15, slightly less than the TVM

lower bound, and the upper bound was set to 100, half the TVM upper bound. Five

intermediate values were chosen between the bounds which resulted in the following

sweep range: {15, 30, 45, 60, 75, 100}. By focusing on smaller increments this

parameter was designed to be less influential than the mixture size and the TVM

depth. This sweep range would later be adjusted following the results of the Parameter

Sweeps to: {5, 15, 20, 25, 25, 50, 75, 95, 100, 150, 195}.

3.3.4 Epoch Configuration

The final controllable parameters were the number and duration of epochs. Drawing

the experiments from the work of La Rocca et al, the initial epoch duration was 10

seconds with 6 epochs per subject, based around the resting trials of the

PhysioNet Database. The epoch durations were expanded to include 5, 2, and 1

second epochs. This naturally altered the number of epochs as the

PhysioNet Database contained 1 minute and 2 minute trials which split into a

various numbers of epochs for each epoch duration recording combination, show in

Table 3.4.

Based upon reviewer feedback to a prior publication [193] epoch generation was

altered to enabled the number of epochs to be independent of epoch duration. This

provided another parameter to sweep, number of epochs, which was previously

conflated with the epoch duration and trial duration.
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Table 3.4. Epoch Duration Configuration

Trial Duration (s) Epoch Duration (s)
10 5 2 1

60 6 12 30 60
120 12 24 60 120

3.3.5 Datasets and Features

Each experiment used all three feature sets, but not every combination of datasets

was explored. This was because finding an optimal feature set was beyond the scope

of the proposed work. There were not enough available resources in terms of datasets,

features, and time to satisfy a robust feature search. However, it was understood that

the proposed experiments could offer insight into feature selection which is why every

experiment used all three feature sets.

Despite this limitation, using all three feature sets for each experiment provided

a comparison point for understanding algorithm-dataset performance. It was

hypothesized that one feature set would generally outperform the others,

independent of data. Variations in relative performance triggered by mixture size,

TVM depth, LDA depth, or epoch settings were used to define areas of interest with

respect to these controllable parameters. Additionally, using multiple features

mitigated any potential bias generated for stumbling upon an ideal

dataset-feature-algorithm combination and being able to identify it as such given

the number of dataset-feature-algorithm pairings.
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3.4 Implementation

In keeping with the theme of publicly available datasets, the software and hardware

solutions were developed to be open sourced. As the research intersects multiple

communities it was important that access be given to all regardless of expertise in

software development or hardware support. Many of the latest data science solutions

required every updating tool kits running on large computing clusters which can limit

the use of novel tool kits.

3.4.1 Software

The initial search for I-Vector toolboxes yielded bob.spear[194], Kaldi[195], and

Microsoft Research (MSR) Identity Toolbox[196]. The bob.spear toolbox did not

work on Windows based machines and Kaldi had proven difficult to implement on

the NEDC computing cluster. However, the MSR Identity Toolbox was developed

with MATLAB and was easily setup locally and on the computing cluster.

The majority of software was developed specifically for this research with minor

components drawn from public sources. A MATLAB toolbox called VOICEBOX3 was

used to support handling of the CEP features generated as Hidden Markov Toolkit

(HTK) files. All EDF EEG files were manipulated using edfREAD available through

Mathworks MATLAB File Exchange4.

The decision was made to build using Matlab because it provided a known

functional model in the MSR toolbox, would be accessible to both the speech

processing and EEG communities, and be robust to hardware/software

configurations, and scalable for use on computing clusters. In hindsight there were

3http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
4https://www.mathworks.com/matlabcentral/fileexchange/31900-edfread
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tradeoffs in terms of performance and flexibility that may have been mitigated by

developing the software tools in Python, but the development of this software

package was a tertiary goal. Over the duration of the research the Matlab versions

started with R2015A and finished on R2017B.

A review of the major facets of the software’s workflow is provided in this section.

All experiments started with feature creation as the data already existed within the

NEDC file system. Once features were produced, a parameter file was written to

control the experiment. This file outlined how each process would operate. The

experiments were run sequentially to assure each algorithm used the same randomly

generated epoch splits for training, enrollment, and testing data. Ultimately, all

experiments were run on the NEDC clustering requiring Bash scripts to interface

with our Slurm Workload Manager. Those interested in the individual classes and

functions should refer to public Git repository’s ReadMe5.

3.4.1.1 Feature Creation

The conversion of EEG recordings, stored as EDF files, into CEP, COH, and PSD

features was independent of the experiments. This was done to ensure static feature

sets and simplified the structure of processing the features during the experiments.

Given the number of ‘channels’ produced from COH features, all feature data was

indexed and saved in relation to their epochs.

Thus the number of files produced for each feature set was dependent on subject

and number of epochs with channel data organized inside each epoch file. These file

lists were the inputs to the experiments where they were aggregated. This tool was

written to run with multiple Matlab workers and was supported via a Slurm base

script.

5https://github.com/izlandman
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3.4.1.2 UBM Class

The use of UBMs was handled through the development of a Universial Background

Model (UBM) class in Matlab called UniBacMod.m. This simplified the generation,

evaluation, and loading/saving of existing models. The generation of the UBMs

leveraged Matlab’s Single Program Multiple Data (SPMD) parallel computing feature

to carry out the EM process on the training data. The enrollment models were built

using a parallel MAP adaptation from the generated models and enrollment data.

These enrollment models were compared against the testing data to produce log-

likelihood ratios which were scored for CRR and EER.

This class controlled the number of UBMs mixtures, the number of EM iterations,

and the downsample factor. In addition it held the number of epochs and the resultant

UBMs. All of these variables were saved after converting the class to a structure

enabling subsequent I-Vector experiments to use the same UBMs.

3.4.1.3 TVM Class

The use of TVMs was handled through the development of a total variability

matrix (TVM) class in Matlab called TotVarMat.m. This simplified the generation,

evaluation, and loading/saving of existing models. Again the EM process used to

build the TVM was run using the same parallel processes for the UBM class. The

generation of I-Vectors was done in parallel as well, with the option to produce a set

of LDA constrained I-Vector in addition to the native TVM I-Vectors. Final

evaluations between the I-Vectors were carried out through a parallel cosine

distance function to produce the CRR and EER metrics.

The class retained the enrollment and testing I-Vectors and performance metrics

binary files, with all other parameters saved as a Matlab structure. Control over the
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depth of the TVM, depths of the LDA variants, and training steps for the TVM EM

were carried out in this class. The constraints previously laid out by the imported

UBM are inherited by the TVM class. This assured the number of epochs and UBM

parameters were consistent between algorithms. Critically, this allowed the

production of I-Vectors from a static UBM produced in a prior experiment.

3.4.1.4 Mahalanobis Evaluation

The use of Mahalanobis Distance as a classifier was borrowed from the work of La

Rocca et al. [64]. They developed their experiments using Matlab using the built-in

Mahal function from the Statistics and Machine Learning Toolbox. Each

training/enrollment subject’s epochs were used to produce a subject mean. The

variances for each feature were drawn from a pooled covariance matrix built from all

subject’s epoch data.

Evaluation of the the distance matrix between all subjects was used to produce

CRRs and EERs aligned to the same epoch, mixture, LDA depth process as the

I-Vectors. The resultant distance matrices were saved for each step of the cross-

validation process as a binary file. No class was built for this process as it was not

the main focus of the proposed research.

3.4.2 Hardware

All of the experiments were run on the NEDC computing cluster, Neuronix. While the

cluster supported CPU and GPU parallel processes, the toolkit was written to only

support CPU parallelization. Neuronix contained four main identical CPU compute

nodes and two minor identical CPU compute nodes. The main nodes consisted of

two AMD Opteron 6378s with 16 cores supported by 128GB of DDR3 Ram. The
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minor nodes consisted of two Intel Xeon E5-2603s with 8 cores supported by 128GB

of Ram. The data server consisted of over 2TB of disk space shared by all the users

of NeuroNix.
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Chapter 4

I-VECTOR DEVELOPMENT

I-Vectors were developed for use by the speech recognition community as in

improvement to JFA[197]. At that time, JFA was “a model used to treat the

problem of speaker and session variability in [speech] GMMs” [198]. These GMMs

were built from UBMs that showed strong performance in speaker verification

tasks [120]. Similar work was attempted on EEGs [103] indicating the potential of

this technique on EEG data [199] which has properties similar to speech data [137].

While I-Vectors were being actively developed for speech data, there was no such

published research at the onset of this work in 2016 [200]. Thus the preliminary

research goals were (1) to build and verify a software package capable of producing and

evaluating I-Vectors from EEG recordings, (2) explore the impact of UBM mixture

size on performance, (3) compare performance on a subject and session levels, and

(4) contrast with existing modeling techniques, GMM-UBM.

With minimal documentation on the feasibility of I-Vectors as an EEG

discriminator, preliminary research was necessary to show efficacy. This was

achieved by carrying out a series of experiments using both the synthetic data and

the PhysioNet Database. First, the synthetic dataset was used to validate the the

performance of the developed software in a controlled environment. Secondly,

subject verification across the PhysioNet Database was carried out. Finally,

intra-subject trial and channel verification testing was performed to test the

classification and modeling processes on different facets of the data.
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Each of these experiments used a range of UBM mixtures for the I-Vector and

GMM based verification tests. In this verification testing scheme, all data used

(training, enrollment, and testing) was identical to focus on performance

independent of data variations. This helped to satisfy the four preliminary research

goals: build and verify software, explore impact of mixtures, compare classification

on distinct facets of the dataset (channel, subject, and trial), and evaluate against a

known technique. Using GMM-UBM as the alternative classifier provided

verification for the creation of UBMs as well as the I-Vector performance.

These results were used to inform the research aims and gave rise to the Core,

Principal, and Comparison Experiments. Therefore this preliminary research used a

different experimental protocol as La Rocca’s experimental protocols were adopted

later with the Parameter Sweeps. All data was sourced from the PhysioNet Database

and only CEP features were used. Each subject verification experiment was carried

out once as the datasets were identical making it impossible to perform any sort of

leave one out cross validation (LOOCV).

The initial experiment utilized synthetic features and a small dataset to test and

validate the construction of the algorithm in software. Following on this were two

experiments, one testing all of the PhysioNet Database on the subject level and

another testing on the trial level. This lead to trial specific experiments where the

two calibration trials were withheld and included and also subject specific trial

verification. Lastly, the data was partitioned on the channel level and evaluated

against matching to its native subject-trial and subject.

The range of UBMs was 2 to 1024 mixutres and the TVM dimension was set for

the number of subjects. LDA was used to finalize all I-Vectors to a maximum size of

one less than the number of subjects. This resulted in an I-Vector dimension of 11
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for the synthetic data and 108 for the PhysioNet Database. Only EER was used, as

that was the defining performance metric in the majority of I-Vector papers.

4.1 Synthetic Experiments

The initial version of the software was validated by testing on the controlled

synthetic data set outlined in section 3.2.3. There was concern over proper epoch

duration, mixture size, channel organization, and data quality issues that needed to

be addressed. Using a synthetic set based upon real world data mitigated issues of

epoch duration, channel organization and data quality because they became

dependent variables in the experiments (see Table 3.1). This enabled the synthetic

experiments to focus on mixture size versus dataset composition and the

performance of GMM-UBMs versus I-Vectors.

4.1.1 GMM-UBM

The GMM-UBM classification provided a performance target for the I-Vectors

technique to compare against. Figure 4.1 provides the EERs of subject verification

for each of the six synthetic datasets and the original PhysioNet Database subject.

The original and synthetic datasets classifications using GMM-UBM improved with

larger mixture sizes. The rate of EER reduction in the two unique datasets (Unique

3GMM and Unique 4GMM) was the strongest, reaching zero at 32 mixtures. The

remaining datasets reduced their EER by roughly 10% over the 10 mixture sizes.

4.1.2 I-Vector

The I-Vectors classification results, Figure 4.2, showed the majority of datsets

achieved near zero EER with 4 mixtures in the UBM. The two exceptions, Static
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3GMM and Static 4GMM, required 8 mixtures to achieve equivalent performance.

Unlike their UBM based counterpart none of the datasets ever settle to an EER of

zero. However, the overall performance indicated that the mixture size was more

influential than dataset composition.

4.1.3 Discussion

The classification results of the GMM-UBM and I-Vector experiments showed the

initial software development was successful. While not presented in a figure, all of the

subject verification matches produced CRRs of 100%. The reported EERs came from

inconsistency in the strength of the verification matches. As the best CDs produced

for a given subject’s verification match many not have exceeded those values produced
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Figure 4.1. Synthetic TUH Corpus GMM-UBM Results. EER of UBMs on the
seven data sets (l to r) Original, Simulated 3GMM, Simulated 4GMM,
Unique 3GMM, Static 3GMM, Unique 4GMM, Static 4GMM. The EER
for two unique data sets reaches 0% when the models exceed 16
mixtures.
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from secondary matches of other subjects. Thus the best 109 CDs were not linked

with the primary matches for each subject.

The I-Vectors produced more robust CDs which lead to a strong EER performance,

figure 4.2, it was clearly difficult for the GMM-UBMs to produce consistently strong

evaluations for all 109 subjects when the dataset lacked distinct features, figure 4.1,

regardless of UBM mixtuer size. The I-Vectors performed well across all mixture

sizes and datasets. The ability of the I-Vectors to reduce EER below 5% for all

datasets showed the impact of the TVM in further differentiating the subjects. This

stark contrast in overall performance supported the hypothesis that I-Vector would

exceed GMM-UBM performance. However, this was not true for all combinations of

datasets and mixtures as the GMM-UBM achieved an EER of zero on the unique

datasets when using a 32 mixture UBM or larger.

Equal Error Rate of I-Vectors

2 4 8 16 32 64 128 256 512 1024

UBM Mixture Size

0

5

10

15

20

25

30

35

40

E
q

u
a

l 
E

rr
o

r 
R

a
te

Original

Simulated 3GMM

Simulated 4GMM

Unique 3GMM

Static 3GMM

Unique 4GMM

Static 4GMM

Figure 4.2. Synthetic TUH Corpus I-Vector Results. EER of I-Vectors on the seven
datasets (l to r) Original, Simulated 3GMM, Simulated 4GMM, Unique
3GMM, Static 3GMM, Unique 4GMM, Static 4GMM. A strong
reduction in EER is seen when transitioning from 2 to 4 mixtures for
modeling. Beyond this transition changes to the EERs at higher
mixture sizes are minimal.
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In these experiments the datasets were randomly generated, leading to each

algorithm-mixture combination using distinct training, enrollment, and test

datasets. This mean a distinct UBMs was built for each of the algorithms, the 8

mixture UBMs used for the I-Vector and GMM-UBM classifications were only as

similar as the UBM training process made them. Once a UBM was developed it was

determined that the TVM generation process was deterministic. This was tested as

a response to a paper revision question by confirming the similarity between five

repetitions of building a TVM from a static UBM and enrollment dataset pairing.

This indicated any variance in the UBM or enrollment data would be passed on to

its TVM. This likely attributed to the outliers in the results, such as the EER of the

unique 4GMM dataset in Figure 4.2. The GMM-UBM EER trends were shared, in

that each dataset experienced equivalent performance improvements as a function of

mixture size. However, the strength of that performance improvement was dependent

on the content of the dataset with the unique datasets improving more rapidly with

increases in UBM mixture size.

From this initial experiment it was evident that a variety of datasets would be

necessary to understand the impact of mixture size on performance. While the

performance of the GMM-UBM classification appeared more dependent on dataset

composition, it still served as an acceptable performance goal of I-Vector

classification.

4.2 Verification Experiments

After confirming the development of the software and its performance, verification

experiments were run on real data drawn from the PhysioNet Database. The purpose

of these experiments was to see if the synthetic performances could be replicated on
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a real EEG dataset. This increased the complexity of the task given each of the

109 subjects had 14 trials to process, far more than the 12 subjects in the synthetic

dataset. In total the PhysioNet Database contained 33,572 channels drawn from 1,526

trials belonging to 109 subjects making it possible to test the upper limits of the I-

Vectors which needed only a 4 mixture UBM on the synthetic dataset. The layers of

the data (channels, trials, and subjects) also allowed for classification beyond features

built at the subject level.

The first experiments, subject and trial verification, simply replicated the

synthetic experiments on the subject and trial levels using the full

PhysioNet Database. This was meant to assess the influence of the dataset

hierarchy on classification performance, since speech-based applications had found

I-Vectors capable of performing more than just subject verification, such as

language recognition [121] and word recognition [201]. Additionally, the synthetic

experiments showed that dataset composition impacted performance so the

verification experiments used a full dataset and one devoid of resting state trials.

As each subject’s recordings were split into 14 trials, intra-subject trial verification

was performed to determine the full dataset’s trial verification performance. This

required outlining the potential groupings of the trials which could be classified as

as resting Eyes Closed (EC) or Eyes Opened (EO), and one of four repeated motion

tasks depicted in ??.

This created a natural split between the repeated motion tasks and the resting

states shown in table 4.1 as distinct groups (G) based upon their content. Given

this protocol it was possible to generated an expected likelihood of the outcomes

for matching each grouping, table 4.2. This experiment used only the data within

a given subject providing far less training, enrollment, and testing data than those

experiments using all 109 subjects.
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Table 4.1. [PhysioNet Trial Cohort Groups

Label Data Group Cohort Groups Search Interval

Motion 3/3
G1, G2,
G3, G4

{G1}{G2}
{G3}{G4} [1-3] of 12

Full 3/3
G0, G1,

G2, G3, G4
{G1}{G2}
{G3}{G4} [1-3] of 14

Full 3/5
G0, G1

G2, G3, G4
{G1}{G2}
{G3}{G4} [1-5] of 14

Full 5/5
G0, G1

G2, G3, G4
{G0 G1}{G0 G2}
{G0 G3}{G0 G4} [1-5] of 14

The Data Group specifies the trials given for the search space. The Cohort
Groups show which trials are considered a distinct group. The Search Interval
defines the acceptable positions [a-b] out of the available trials presented in
the Data Group.

Table 4.2. Expected PhysioNet Database Cohort Likelihoods

Combinations 1 Match 2 Matches 3 Matches 4 Matches 5 Matches

Motion 3 of 3 65.45 32.73 1.82 - -
Full 3 of 3 70.51 28.21 1.28 - -
Full 3 of 5 49.45 24.73 2.75 - -
Full 5 of 5 17.62 47.00 30.18 5.04 0.14

The probabilities are generated from p choose n using the parameters
set forth in Table 4.3.

Lastly, subject verification at the channel was tested by evaluating how well

channel I-Vectors matched into their native subject and trial I-Vectors sets. This

used the full PhysioNet Database split into channels whose cosine distances were

averaged across channels to find a resultant subject and trial match. Operating on
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the channel level allowed for matches on the trial level to match into any of the

subject’s trials. This provided a comparison to the trial matching of the

intra-subject trial verification. In addition, these classifications were reversed to also

test subject and trial groupings against their native channels.

4.2.1 Subject and Trial Verification

The subject verification experiment of the synthetic data was replicated using all of

the subjects in the PhysioNet Database. This was expanded to include verification

of subject-trials into subjects as well. For the subject experiment 109 I-Vectors were

built from each of the enrollment and testing data. For the subject-trial experiment

1526 acpIV were built, one for each trial of each subject, from each of the enrollment

and testing data. The subject I-Vectors were evaluated directly by their CD, while

the subject-trial I-Vectors were evaluated based upon the consensus of the enrollment

I-Vectors voting in favour of match to the testing I-Vector. As this organization was

carried out by altering what the algorithm defined as a ‘subject’, the GMM-UBM

operated on an identical datasets performing equivalent evaluations.

The performance of the GMM-UBM classifier improved on both datasets as the

UBM mixture size increased, consistent with the behavior seen on the synthetic

data. However, the I-Vectors classification EERs was inconsistent across the two

datasets. When evaluating the subject verification the general trend of increased

mixtures leading to reduced EER was observed. The subject-trial experiments

yielded equivalent or worsen performance beyond an eight mixture UBM. This

resulted in the GMM-UBMs being better suited for the subject-trial data, and the

I-Vectors being better suited for the subject data. Although, the GMM-UBMs

required a 512 mixture UBM to match the I-Vectors performance before exceeding

it with 1024 mixtures.
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Figure 4.3. PhysioNet Verification Testing Results. PhysioNet Database UBM and
I-Vector verification test results as a function of mixture size. The
leftmost bars represent Subject UBMs and I-Vectors and the rightmost
bars represent Trial UBMs and I-Vectors.

This behavior was further examined by evaluating on the subject-trials directly

against each other, removing the consensus evaluation. Now a subject-trial in the

testing dataset would be required to match to its twin in the enrollment dataset.

Given the discrepancy in duration of the trials (1 minute for resting trials and 2

minutes for motion trials) two different datasets were evaluated, one with the resting

trials and one without them, figure 4.4. These results exhibited a gradual GMM-UBM

improvement over the range of UBMs. Meanwhile, the I-Vectors displayed a near step-

wise improvement over the first three UBM mixture sizes as performance leveled off

with the sixteen mixture UBM. The performance of the GMM-UBMs reached that of

the I-Vectors when given a 256 mixture UBM and then exceeded it by 1024 mixtures.

The removal of the resting trials reduced the amount of data for the training,

enrollment, and testing datasets, which manifested as a worse EER for the GMM-

UBMs and an improved EER for the I-Vectors (after reaching 8 mixtures). However,
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Figure 4.4. PhysioNet Trials’ EER]. The averaged EERs of each
PhysioNet Database subjects’ trials as a function of mixture size. Error
bars represent +/- one standard deviation across the entire subject set.
The I-Vectors’ EER plateaus after 8 mixtures, while the UBMs’ EER
decreases as the mixture size grows.

the one sigma error bars of the I-Vectors results show an overlap between the means

of the two data sets, while the GMM-UBM error bars do not reach the other dataset’s

mean. This suggested the I-Vectors produced stronger classifications given the two

datasets were well within each others variances. The same was not possible for the

GMM-UBMs, as the addition of the resting trials pushed performance beyond the

standard deviation of the motion data significantly improving performance.

4.2.2 Intra-Subject Trial Verification

The strong I-Vector subject-trial performance suggested the possibility of clustering

a the trials unique to a given subject based upon their groupings; Recall that the four

motion trials were repeated 3 times in the original experimental protocol, table 4.1.

Evaluating the within-trial clustering for the 109 subjects provided enough samples to
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generate statistical significance, table 4.3, with respect to the expected distributions,

table 4.2. The previous subject-trial results indicated an eight mixture UBM would

be ideal, there was concern that the number of mixtures was greater than half the

number of trials. This lead to the experiment being conducted with the four mixture

UBM data which likely increased the difficulty, but ensured the number of models

would be less than the number of unique trials (EC,EO, and four motions).

Table 4.3. Experimental PhysioNet Database Cohort Likelihoods

1 2 3 4 5

Motion 3 of 3 55.66ˆ 41.13ˆ 3.21* - -
Full 3 of 3 66.44ˆ 33.72ˆ 2.14* - -
Full 3 of 5 38.00ˆ 51.07ˆ 10.93ˆ - -
Full 5 of 5 15.29ˆ 43.88ˆ 33.64ˆ 6.88ˆ 0.31*

Values indexed with * are significant at p<0.005 and with ˆ are
significant at p<0.001.

Recall that value values represent the likelihood of these events given
the expected probabilities of 4.2.

All results were found to be statistically significant in terms of improving the

ability to cluster the subject’s trials. For each cohort, the top ranking match was

the native trial with the remaining cohort trials filling out the additional matches.

The most important result was that the inclusion of the two resting trials (“Motion

3 of 3” versus “Full 3 of 3”) reduced the performance of 2+ from 44.34% to 35.86%.

However, Full 3 of 5 resolved 62.00% of the subjects with 2+ matches and Full 5 of

5 matched 84.71% of subjects with 2+ matches and 40.83% with 3+ matches.

The inclusion of the resting trials, Full 3 of 5, complicated the classification because

the motion trials are comprised of rest states between the motion tasks, Figure ??.

Despite their addition, the I-Vectors were able to find an additional motion trial at
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a rate of 60% which was in excess of the expected 27.48%. These results further

validated the ability of I-Vector as a classification technique while suggesting motion

trials were distinct from each other.

4.2.3 Channel Verification

Channel-based subject and trial verification testing extended the previous

experiments by operating on the lowest level of the data hierarchy

(subject→ trial→ channel). In these experiments each of the 33,572 total channels

was turned into an I-Vector. By comparison, for the subject and subject-trial

verification in 4.2.1, each of the 109 subjects’ data was converted into its own

I-Vector; for the subject-trial verification, each of the 1526 subject-trials was

converted into an I-Vector. The results, given in Table 4.5, were built by ordering

the CDs for a given channel from strongest to weakest. This allowed the remaining

21 channels to be evaluated for their similarity to their native subject’s trial cohort

(primary) and any subject’s matching trial cohort matches (secondary).

Figure 4.5. PhysioNet Subject and Trial Matching

Data Verification Primary Secondary

Sub to Chan 76.15 - -
Chan to Sub 82.57 - -
Trial to Chan 81.06 52.43 9.48
Chan to Trial 96.66 63.23 7.61

Despite the large number of channels, subjects, and trials to model, the verification

was performed with an 8-mixture UBM, since Figure 4.4 showed no improvement

beyond 8 mixtures. The results are reported as true positive percentage, as the

experiment focused on the ability of I-Vectors to match/cluster into subsets of relevant

135



data. Channel I-Vectors performed well when verified against their native subject

(82.57%) and subject-trial (96.66%). Reversing the verification process showed it was

more difficult to verify subjects (76.15%) and trials (81.06%) to individual channels.

This was likely caused by averaging the channel cosine distances to build the models,

making channel outliers more distant than their median counterparts.

Of the 21 remaining channels, the majority (70.84%) matched with a channel from

the same subject’s trial cohort or the same trial cohort from a different subject. This

was not as strong (61.91%) when classifying a trial toward it’s channels or similar

trials. This suggested the I-Vectors had captured data relevant to their subject and

trial, which was consistent with the capabilities reported in speech recognition.

4.2.4 Discussion

Performing verification experiments on each of layer PhysioNet Database data

hierarchy showed that I-Vectors met or exceeded the performance of their

GMM-UBM precursor. Only when evaluating trial data for subject verification did

the I-Vectors perform poorly in terms of EER, 4.3. The follow-on experiments

focused on intra-subject verification suggested this could have been caused by the

strength of a subject-trial to subject match overpowering the ideal subject-trial to

subject-trial match. Thus the subject was likely correct, but the incorrect

subject-trial was chosen. After all, simple intra-trial verification did not perform

perfectly, 4.3. Still, when the subject-trial verification was evaluated it showed

robust I-Vector performance, suggesting the organization of the datasets directly

impacts performance across the hierarchy.

The influence of the hierarchy was why the channel verification experiments were

critical. They took this one step farther by indicating that channel I-Vectors could

be used to find their original subject and trial. In addition, they were capable of
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finding the majority of their associated trial channels too. These results showcased

the power of I-Vector when applied with minimal domain knowledge to EEGs and

to the technique itself. However, the limited experimental scope provided no insight

into why or how this was possible.

These results confirmed the already well documented application of EEG as a bio-

metric application and hinted at being simultaneously capable of BCI applications

given its intra-channel performance. Further experiments should have been conducted

using epochs built from the channel data and from diverse datasets. However, there

are few substantial EEG datasets for BCI, seizure, sleep, and artifacts. Without

those, and without a standardized EEG feature set, direct algorithm comparisons

were impractical with current published research.

4.3 Conclusion

The preliminary research experiments showed that I-Vectors could be applied to

EEG for biometric applications and potentially clustering/cohort retrieval tasks.

The verification performance on the subject, trial, and channel levels indicated that

complexity of EEG signals can be discerned by this factor analysis technique.

However, the limited dataset and feature set could have been the driving factors in

performance and not the algorithms themselves. It was therefore necessary to build

on these experimental results to validate the efficacy of I-Vectors as an EEG

classification technique.

A main concern was the variety of EEG data. Many studies operate on a specific

dataset tailored to their experimental protocol, but are seldom made public. This

makes it difficult to run experiments with multiple datasts and to offer comparative

results across diverse types of EEG data. However, the NEDC is amassing the
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largest publicly available EEG database, making it possible to develop diverse

datasets between the PhysioNet Database and the TUH-EEG. This allowed for the

creation of four new distinct datasets: TUH Abnormal, TUH Normal, TUH Seizure,

and Physio Motion.

These datasets are converted to three feature sets which allowed the more

commonly used COH and PSD features to serve as a benchmark against the novel

CEP features. In addition, the datasets were partitioned into epochs and structured

on the subject and trial level. With three feature sets and four proposed epoch

durations, each experiment had to be run twelve times for a given dataset. This was

done to track the impact of the feature sets and epoch duration across each dataset.

The range of UBM mixtures was enough to capture the major trends of the

GMM-UBM and I-Vector performance. While some experiments were minimally

impacted by larger mixtures, others showed strong gains with larger mixtures (see

Figures 4.3 and 4.4). If the number of subjects were to increase, in the instance of

building the aggregated datasets, it would be suggested to increase the range of

mixtures, but otherwise the range was acceptable.

Despite all of the positive results, nothing was done to refine the I-Vectors in any

meaningful way. Their lengths were set by the number of subjects in the datasets

and optimized by LDA after the generation of the TVM. While the dimension of the

TVM and the dimension of the resultant I-Vectors were frequently the focus advances

in the speech community, none of those adjustments were used in these experiments.

It is entirely possible a set of UBM, TVM and LDA parameters could improve the

I-Vector performance. This concern was the seed for the majority of test conditions

in the Parameter Sweeps.

These preliminary experiments were far from robust in terms of thoroughness

or diversity, but provided basic assurances about the applicaption of I-Vectors on
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EEGs. This foundation would need to be extended not only in terms of parameters

and datasets, but also in terms of features and protocol. Interest in EEGs as a

bio-metric tool focused on subject verification problems and was a natural starting

point for furthering the testing of I-Vectors. One such group’s work, La Rocca et

al [64], provided a streamlined experimental protocol that aligned with the intent of

the Parameter Sweeps.

Thus their research served as a benchmark for I-Vectors and the CEP features

as their experiments carried out subject verification using PSD and COH with a

MD classifier. Integrating their work to the development of I-Vectors formed the

basic feature set and algorithm comparisons that underpinned the Parameter Sweeps,

Algorithm Benchmarks, and UBM-TVM Relationship experiments in the ensuing

chapters.
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Chapter 5

PROTOCOL REPLICATION AND PARAMETER

SWEEPS

The purpose of the Experiment 2: Protocol Replication was to touch upon

Research Aim 1, competitive I-Vector performance, before expanding upon

Experiment 3: Parameter Sweeps. Ideally Research Aim 2, determining the optimal

operating conditions for I-Vectors by isolating the effects of the various I-Vector

parameters on performance, would have come first but the results of Experiment 1:

I-Vectors Development were not sufficient to prove the efficacy of I-Vectors in

Chapter 4. Those initial results showed that I-Vector based classification could

match the performance of a comparative classification algorithm, namely

GMM-UBM, but evaluation against published research was missing. This meant it

was necessary to compare I-Vectors and CEP features performance within a

protocol similar to that of the intended cohort retrieval process, which lead to the

inclusion of La Rocca et al’s work [64].

Thus Experiment 2: Protocol Replication was based on reproducing La Rocca’s

results with the inclusion of I-Vectors, GMM-UBMs and CEP features. La Rocca’s

systematic search for an optimal channel set for PSD and COH features was readily

adapted to include additional algorithms and features. This helped address

fundamental components of Research Aims 1 and 2, while drawing from

well-understood EEG techniques such as PSD features (commonly used in EEG

signal processing [105]) and MD based classifiers [110].
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Despite its adaptation to the current work, the original intent of the La Rocca

methodology was to find an optimal reduced set of channels for EEG analysis.

Channel reduction was (and remains) an active research area for the EEG

bio-metric community, as it decreases the computational and data needs of the

classification system [105, 42]. In this work, the La Rocca methodology was

rigorously adhered to, going so far as to reach out to the original La Rocca

experimental team in order to ensure that the Protocol Replication could be

directly compared to La Rocca’s published results. The Protocol Replication was a

recreation of La Rocca’s search for the minimum set of channels for each feature set

that produced the strongest CRR. The only modification in the current work was to

include EER as a performance metric of each algorithm and feature set combination.

Following completion of the Protocol Replication, all of the Experiment Sweeps

could be run. The purpose of these experiments was first to sweep epoch durations (to

determine the optimal size for working with I-Vectors) and then to sweep the actual

I-Vector parameters themselves. Unlike La Rocca’s experiments, which only used

the resting trials from the PhysioNet Database, these experiments used all of the

PhysioNet Database trials. In addition to sweeping the epoch duration, the UBM

mixture size was also varied. These changes in protocol required that instead of

independently testing each channel, the channel data was combined under the banner

of each test subject.

The I-Vector parameter sweeps evaluated the the size of the UBM, TVM

dimension, and LDA dimension using datasets from both the PhysioNet Database

and TUH-EEG. This provided broader context through the increased diversity of

the data (normal, abnormal, and seizure) and subject counts (over 400 in the

seizure dataset). These experiments used the same protocol as the previous sweeps,
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but their results are separated based upon the parameter (UBM, TVM, LDA and

I-Vector dimension).

5.1 La Rocca Based Protocol Experiments

The results of Replication and Sweep Experiments were published in 2019 [193]. They

represented the initial link between existing bio-metric verification experiments and

the formal introduction of I-Vectors for EEGs.1 The figures followed a format similar

to those in La Rocca’s work, focusing on the number of channels used to achieve a

resultant level of verification.

5.1.1 Results: Protocol Replication

The results from the Protocol Replication are shown in Figures 5.1–5.4. Specifically,

the CRR results for the MD, GMM-UBM, and I-Vector classifiers are shown in

Figures 5.1–5.3, respectively, while the EER results are shown in Figure 5.4. The

original experiment iteratively tested channels for inclusion in a super set where

each additional channel provided the strongest increase in classification

performance. This mean the strongest performance improvements were with the

first few channels, and the evaluation used mean Correct Recognition Rate (mCRR)

which was a product of each channel’s individual CRR.

Each of the CRR figures contains two plots. The left plots recreate La Rocca’s

presentation of the results of match score fusion by using mCRRs. The right plots

shows the distribution of the underlying CRRs used to build the mCRRs. These

distribution plots highlight the mean (central white dot), standard deviation (colored

bar), and range (markers) of CRRs for each algorithm and dataset. For clarity,

1Previous research was published in 2016 showing the nascent development of the technology
[202].
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the GMM-UBM and I-Vector plots all use a UBM of 32 mixtures, since minimal

performance gains occurred with larger mixtures.

Figure 5.1 shows the results of the MD classifier. Classification of the COH and

PSD features achieved a mCRR of 95% or better by the 6th channel, whereas the

CEP features reached mCRRs of 28.13% for EC and 32.57% for EO.

For the GMM-UBM classifier (Figure 5.2), the COH and PSD features achieved a

mCRR of 90% or better by the 6th channel while the CEP based features only reached

mCRRs of 8.10% for EC and 9.33% for EO.

Finally, for the I-Vector classifier (Figure 5.3), COH and PSD based features

were correctly classified with mCRR of 90% or better by the 6th channel, and the

CEP based features reached mCRRs of 4.13% for EC and 4.13% for EO. Figure 5.4

displays the mean Equal Error Rate (mEER) results on the EO data set. The three

best mEERs all corresponded to PSD features (6.64% PSD-GMM, 6.86% PSD-IVEC,

and 8.60% PSD-MHAL). Note that the CEP features all yielded mEERs values over

40%.

5.1.2 Results: Sweep Experiments

Figures 5.5–5.7 summarize the results from Parameter Sweeps. In these plots, the

CRR and EER means and standard deviations are presented as a function of epoch

size (bottom axis) and mixture size (top axis). Note that Mahalanobis classifiers do

not use mixtures, and therefore performance was independent of mixture size.

Figure 5.5 charts the performance of the classifiers when using the first four

PhysioNet Database motion trials. This made the dataset 8 times larger than the

EO and EC dataset used in the Protocol Replication. The strongest CRR of 91.4%

was achieved using 2s epochs with a GMM-UBM of 16 mixtures. For 1s epochs a
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Figure 5.1. Replication MD Performance. The results of the Protocol Replication
provide the match-score fusion mean Correct Recognition Rate (mCRR)
(y-axis) in the left plot as a function of the number included elements
(x-axis) for Mahalanobis classification. Elements in these plots refer to
channels for Power Spectral Density (PSD) and Cepstral
Coefficient (CEP) and channel pairings for Cepstral Coefficient (CEP)
features. The right plot shows the distribution of the 6-fold cross
validation Correct Recognition Rates (CRRs) (y-axis) with mean (dot),
standard deviation (bar), and full range (marker) for each
classifier-feature pairing. Its x-axis represents the Eyes Opened (EO)
and Eyes Closed (EC) pairings of each feature (PSD, COH, and CEP).
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Figure 5.2. Replication GMM-UBM Performance. Gaussian Mixture
Model-Universal Background Model (GMM-UBM) classification Correct
Recognition Rate (CRR) (y-axis) versus element count and feature set
(x-axis).

CRR of 87.46% was achieved using I-Vectors based on a 256 mixture UBM. For 5s

epochs a CRR of 89.79% was achieved using GMM-UBM with 64 mixtures.

Figure 5.6 charts the performance of the classifiers when using the first four

PhysioNet Database motion trials and the EO and EC trials. The resulting dataset

was therefore 10 times larger than the individual EO and EC datasets used in the

baseline experiments. The strongest CRR of 87.92% was achieved using 1s epochs

with I-Vectors based on a 512-mixture UBM. For 2s epochs a CRR of 84.2% was

achieved using I-Vectors based on a 512-mixture UBM. For 5s epochs a CRR of

87.05% was achieved using GMM-UBM with 64 mixtures.

Figure 5.7 shows classifier performance for all data in the PhysioNet Database

(26 times more data than the baseline experiments). The strongest CRR of 90.52%

was achieved using 1s epochs with I-Vectors based on a 512-mixture UBM. For 2s
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Figure 5.3. Replication I-Vector Performance. Identity Vector (I-Vector)
classification Correct Recognition Rate (CRR) (y-axis) versus element
count and feature set (x-axis).

epochs a CRR of 80.42% was achieved using I-Vectors with a 512-mixture UBM. For

5s epochs a CRR of 84.05% was achieved using GMM-UBM with 64 mixtures.

5.1.3 Discussion

The goal of these experiments was to demonstrate the ability of I-Vectors in

increasing the robustness and flexibility of EEG based bio-metrics/subject

verification. Overall the performance of the I-Vector based classifications met or

exceed those of GMM-UBM and MD when limited by channels, UBM size, or epoch

duration. However, the I-Vector process was limited by the cap of 100 elements for

the TVM and LDA dimensions, which was chosen to fit under the 109 subject limit.

Despite using a small and homogenous dataset, the impact of feature and

algorithm choice were starkly evident. The epoch and UBM sweep was carried out

only on the PSD features because the CEP features performed poorly and the COH
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Figure 5.4. ROC for Algorithms. ROC curves based on the EO trial false negatives
(y-axis) versus false positives (x-axis). The reported best in class
mEERs range from 6.64%, PSD-IVEC, to 46.97%, CEP-IVEC,
indicated by the diagonal.
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Figure 5.5. Four Trial PhysioNet Database Epoch Sweep. Classification
performance on the first four PhysioNet EEG Motor Movement/Imagery
Database (PhysioNet Database) motion trials. The equal error
rate (EER) (y-axis left) and Correct Recognition Rate (CRR) (y-axis
right) are evaluated as a function of epoch duration (x-axis) for each
classifier. The Universial Background Model (UBM) mixtures are shown
as individual distributions within each epoch duration.
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Figure 5.6. Six Trial PhysioNet Database Epoch Sweep. Classification performance
on the first four PhysioNet EEG Motor Movement/Imagery
Database (PhysioNet Database) motion trials and the resting trials Eyes
Opened (EO) and Eyes Closed (EC). The equal error rate (EER)
(y-axis left) and Correct Recognition Rate (CRR) (y-axis right) are
evaluated as a function of epoch duration (x-axis) for each classifier.
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Figure 5.7. Full Trial PhysioNet Database Epoch Sweep. Classification performance
on all 14 PhysioNet EEG Motor Movement/Imagery
Database (PhysioNet Database) trials, motion and resting. The equal
error rate (EER) (y-axis left) and Correct Recognition Rate (CRR)
(y-axis right) are evaluated as a function of epoch duration (x-axis) for
each classifier.

150



features were computational exhaustive at 1540 ‘elements’ per epoch. The number

of samples available for training the models was the number of channels times the

number of trials. Thus the inclusion of all the trial data would have produced

20,560 samples, introducing computational complexity beyond the scope of

introducing I-Vectors for use on EEGs.

Conversely, the CEP features may have benefited from the increase in samples;

with only 22 channels per trial, the 14 PhysioNet trials per subject would provide 308

samples. The PSD features drawn from La Rocca’s protocol were produced from 56

of the original 64 electrodes in the PhysioNet Database. Therefore the PSD feature

set contained 784 samples when using all 14 trials which exceeded all UBMs of 512

mixtures or less. By starting with 4 trials and then expanding to 6 and 14 performance

should have provided too few samples for many of the UBMs. This suggested that the

results of Figure 5.6 represent over-fitting of the 6 trial PSD dataset because it only

provided 336 samples, making results beyond 512 mixtures effectively over-fitted.

However, there was no guarantee that even with more samples all of the mixtures

would be used.

Overall, the results suggested that I-Vectors can perform on an equivalent level

as the other algorithms. Despite unintended setbacks in adequate sampling volumes,

feature set nuances, and data source variability, I-Vectors appeared the strongest

and produced the most consistent EERs. This performance was not strong enough

to suggest I-Vectors should replace other techniques, but that investing time in their

development would not be wasted. To that end, development of TVM, LDA, sample

pools, and more data variation could be pursued knowing the technique showed

viability in EEG applications.
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5.1.3.1 Protocol Replication

Replicating the original La Rocca experiment with an additional feature set (CEP)

and evaluation criteria (EER and mEER) helps contextualize the use cases of the

features and classification techniques. The successful implementation of the La Rocca

methodology [64] was established by achieving equivalent match-score fusion based

mCRRs for the MD trials (Figure 5.1) . The difficulty in perfectly replicating La

Rocca’s work could be attributed to using all 109 subjects whereas they used 108, the

process of averaging to the mean ear electrodes, or differences when using a ‘proper

anti-aliasing low-pass filter’ to restrict signals to 50Hz.

However, each classifier-feature pair’s mEER (Figure 5.4) suggests La Rocca’s

COH features require a considerable performance trade-off to achieve a 5%

improvement in mCRR. The PSD features (blue lines) produced the best EERs for

each algorithm. The next strongest was when the algorithms were paired with the

COH features (orange lines), but incurred at least a 10% increase in EER. In fact,

for the MD algorithm the increase in EEG was over 20%.

The range of CRRs (the secondary plots of Figures 5.1–5.3) confirms La Rocca’s

finding that aggregating channels is a simple but effective method for improving

performance relative to the mCRRs. Figures 5.1–5.3 indicate that, regardless of trial,

it takes at least MD 13 elements, GMM-UBM 6 elements, and I-Vectors 11 elements

to reach 90% mCRR for COH and PSD feature sets. Despite these successes, the best

performance of the CEP features barely reaches 30% mCRR with the MD classifier

and performs even worse for the other classifiers. However, within these benchmarks

there are trade-offs between mCRR and mEER for the COH and PSD features based

on the classifier.
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The GMM-UBM classifier provides equivalent mCRR performance to the MD

classifier while improving the mEER of PSD by 1.96% and of COH by 10.70%. The

I-Vector classifier provides similar performance to the other two classifiers, but fails

to significantly improve either mEERs, with PSD decreasing by 1.74% and COH

increasing by 0.57%. This may explain why MD is not frequently used for EEG

classification despite its acceptable classification performance [91, 98]. It also

suggested, in this instance, that I-Vectors could an acceptable alternative to both

classifiers given their mCRR on the dominant feature set, PSD.

Feature set performance was found to be clustered according to its mEER.

Notably, the mEERs of PSD are 15% stronger than those of the other features

(Figure 5.4), independent of classifier. This suggests that feature selection is the

most critical component in deciding EER. Conversely the mCRRs present with no

such trend, other than the overall poor performance of the CEP features and that

additional channels improves mCRR. Despite this, classifier choice does appear to

marginally improve the mEERs on these small datasets, a finding which was not

addressed in La Rocca’s original work.

5.1.3.2 Parameter Sweeps

Expanding the original experiments by incorporating smaller epochs and larger

datasets tested the modeling process of each algorithm. The inclusion of multiple

distinct motion trials as well as the resting trials increased the diversity of the

testing datasets, while producing smaller epochs tested the modeling of each

classifier. Typically EEG biometric experiments were more tightly regulated to

simplify the characteristics of the data, such as La Rocca using only the resting

trials or other groups using only the tasks and not the resting phases between them

[45, 66]. The speech community has addressed similar issues through tools like
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I-Vectors that address variations in the recording channel (landline, mobile phone,

microphone, and other speech modifiers) and residual noise to identify the speaker

[166, 203].

The impact increasing the characteristics of the dataset was immediately apparent

in the performance decrease seen when adding the resting trials, Figure 5.6, to the first

four motion trials, Figure 5.5. The addition of the resting trials caused a decrease

in CRR compared to the pure motion trials for all algorithms. Additionally, the

EERs of the MD and GMM-UBM classifiers were worse for the larger dataset. Both

of these occurrences were likely attributed to the presence of rest periods in the

motion trials being classified as resting trials. Furthermore, a false positive being

more likely than a true positive drove up the EER. This was more likely with the

expanded datasets because classification occurred across multiple recordings from the

same target subject, but the within trial subject remained the only correct answer.

Across the three datasets, Figures 5.5–5.7 show that the 10s epoch performance

decreases for all classifiers as the amount of data increases. However, smaller epochs

provide varying levels of improvement to the MD and I-Vector classifiers. As the epoch

duration shrinks, more epochs become available in the enrollment data to build the

subject-trial models which was the likely driver of the improving performance. This

was an interesting result because it does not fully align with the view that longer

sessions produce more stable subject verification results, as presented by Maiorana et

al [98].

Their work, however, limited feature generation to 5s epochs with 40% overlap,

which were evaluated after epoch-based fusion scoring algorithms, similar to the

match-score fusion, for a given recording duration (10s to 90s). Thus they did not

produce a 90s epoch, but rather evaluated a series of 5s epochs drawn from fewer

subjects (50) using only within-trial data (EO or EC). Their work clearly validates
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the longitudinal stability of the approach, with days and weeks between recording

sessions, but that is beyond the scope of introducing I-Vectors to the EEG

community. In contrast, the scope of this work was to introduce and establish

I-Vectors as a tool that could remove the requirements of specifically matched

datasets, arbitrary epoch lengths between experiments, and channel/epoch based

fusion schemes from EEG classification.

Toward those goals, the I-Vector CRR and EER improved with each subsequent

mixture across all epoch sizes. This was most evident in Figures 5.7 and 5.8, where

I-Vector CRR and EER (80.42%, 3.11% and 90.52%, 1.96%) exceed those of the

GMM-UBM (80.25%, 5.26% and 90.10%, 3.48%) for 2s and 1s epochs, respectively.

The performance margin is smaller in Figures 5.6 and 5.9, but I-Vectors (84.20%,

2.854% and 87.92%, 2.75%) are again superior to GMM-UBMs (82.7%, 4.67% and

86.24%, 3.52%) for the two smallest epochs. It is only when the resting EO and EC

datasets are removed that GMM-UBM outperforms the I-Vectors for the 2s epochs.

The seemingly varied GMM-UBM EERs for 2s and 1s epochs probably occurs

because at most there are 512 mixtures of 40 features working to account for numerous

subject-trial variations. Adjusting the MAP relevance factor, r, could help correct this

behavior by relying more on the enrollment data. The smaller epochs make for deeper

training and enrollment datasets, so it is likely the UBMs are producing articulated

mixtures that the MAP adaptation is unable to generate sufficiently diverse models

because the relevance factor αc is too small. It is difficult to optimize the relevance

factor because it applies to the weight of each mixture, in the UBM, produced during

BW estimation, where N c comes from Equation 2.3-8.

αc =
N c

N c + r
(5.1-1)
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Furthermore the performance discrepancy of the 2s and 1s epochs could have been

attributed to the epoch duration being less than the duration of the tasks in the

motion trials (4s). This meant that epochs could straddle rest and motion tasks.

As all three classifiers used data pooled across the channels, they could encounter

difficulty if an epoch split a tasks. The GMM-UBM and I-Vector classifiers were

built on the sensitivities of the individual variances by adapting the underlying UBMs,

which meant they may under-perform if the UBMs fail to capture all modes of the

data. The MD combined the variances making it sensitive to the combined variance

of the model.

It could be that the combined weighting of the MD prioritizes different facets of

the features than those of the UBMs, giving rise to different sets of outliers between

the classifiers. Given that outliers are likely to appear when epochs overlap tasks in

the recordings, 5s and 2s results could be a more unbiased measure of the classifier’s

strength. This may explain why there was minimal improvement, or often a decrease,

in classification performance between between 5s and 2s epochs, as the means are not

changing, only the variances. This would be problematic if the testing epochs were

drawn all drawn either rest or motion making them devoid of half the information the

models had learned. Even so, shorter epochs cannot be disregarded as the root cause

because, for event classification tasks, short epochs have proven successful [102, 204].

There are no such trends with the GMM-UBM classifier, as its EER grows for

each mixture size in the 2s and 1s epoch sets, which is the opposite of the 10s and 5s

epochs. Its CRRs shows minimal improvement, and often even a regression, at these

larger mixture sizes. This suggests the subject-trial models are generating scores

from non-matching subjects that exceed those found when matching subjects. The

models may be unable to overcome these edge cases despite increasing the mixture

sizes, suggesting the problem is inherent to the data itself and not to the modeling
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Figure 5.8. Full Trial PhysioNet Database Epoch Sweep, Expanded Mixtures. Mean
classifier performance, Correct Recognition Rate (CRR) and equal error
rate (EER), as a function of epoch duration and mixture size limited to
the five largest mixtures using all 14 trials. The color of lines represent
2s epochs (blue) and 1s epochs (red). The shape of markers represents
the algorithms with Mahalanobis (square), Gaussian Mixture
Model-Universal Background Model (GMM-UBM) (circle), Identity
Vector (I-Vector) (star).

process. While none of the algorithms avoid performance problems over all epochs

and datasets, only the I-Vectors show a continued progression towards improved CRR

and EER for all datasets, epochs, and mixture sizes. I-Vectors would therefore be

best suited for generalizing across additional data, similar to its adaption from speech

to EEGs.

5.1.4 Constraints

La Rocca’s findings showed COH features could improve subject verification via

individual channels and through their match-score fusion when compared to PSD

features. Reducing the required amount of data to perform subject verification is an

important goal for developing biometric-based EEG applications [68, 104, 105],

which is often achieved by incorporating novel features, new algorithms, or unique

dataset configurations. La Rocca focused on novel features by replacing PSD
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Figure 5.9. Six Trial PhysioNet Database Epoch Sweep, Expanded Mixtures. Mean
classifier performance, Correct Recognition Rate (CRR) and equal error
rate (EER), as a function of epoch duration and mixture size limited to
the five largest mixtures using the 4 motion trials and 2 resting trials.
The color of lines represent 2s epochs (blue) and 1s epochs (red). The
shape of markers represents the algorithms with Mahalanobis (square),
Gaussian Mixture Model-Universal Background Model (GMM-UBM)
(circle), Identity Vector (I-Vector) (star).

features for COH features given the influence of each channel’s “dynamic

relationship with other regions” of the brain [64].

Using the substantially larger channel set improved match-score fusion

classification performance to 100%, but only because channel reduction was

exchanged for an increase channel search space. Both feature sets were constructed

from the same raw data and classified using the same Mahalanobis distance

classifier. This suggests that the features were the driving factor in classification

improvement. However, by replicating the original work in the baseline experiments,

GMM-UBMs and I-Vectors provided equal if not better performance compared to

Mahalanobis classifiers where COH features were outperformed by PSD features. As

the epoch sizes became smaller and the datasets increased in the Baseline

Experiments, only I-Vectors maintained their performance. This suggests the epoch

duration and dataset size were the strongest performance factors for PSD features.
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The sweep experiments highlighted the impact of epoch duration and dataset

size/composition in classification performance. Needing to control for dataset

composition, dataset size, and epoch duration increases the difficulty of finding an

optimal feature set and classification algorithm pairing [52, 103]. La Rocca’s work

mitigated this with a static epoch duration, brain regions, and controlled datasets

because they understood their dataset and classification goal. Other research agreed

that performance could be improved and maintained over time through external

knowledge and adequate data preparation [66, 97, 98]. Despite success with such

measures, these steps were often laborious and some researchers chose not to

address the issues much like the goal of this work in developing a technique agnostic

to such concerns citeYang2016,Marcel2007a.

Conditions mitigated by data pre-processing are not always present, which

makes understanding the impact of epoch duration and dataset composition critical

for experimental success. The presence of a priori knowledge is only useful if it is

properly understood, otherwise it creates an unequal testing ground that impedes

the development of robust features and algorithms. When given an environment

lacking in this knowledge, I-Vector classification is able to mitigate these shortfalls.

This reduces the impact of epoch duration, dataset composition, and algorithm

performance so that the focus can be on feature selection and the level of

discrimination (subject, trial, channel, etc) leading to fundamental knowledge gains

about EEG behavior [200].

The results of Baseline Experiments showed that I-Vector EERs decreased and

CRRs increased in terms of both mean and variance with each subsequent mixture

size. Although the experiment stopped with a UBM of 512 mixtures, the speech

community has tested mixtures of size 2048 [171] and 4096 [174]. It is possible that

larger mixture sizes could produce stronger classification results for Baseline and
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Sweep Experiments. This would bringing their performance into line with the best

case results of La Rocca’s original experiment. Therefore future experiments should

increase the range of UBM mixture sizes and ensure enough samples are present in

the enrollment and testing datasets to support such modeling. This would increase

the computational needs of the experiments, but could also improve performance.

5.2 Parameter Sweeps

The results of the La Rocca-inspired Protocol Replication and Parameter Sweeps

indicated a new protocol was necessary for characterizing the performance of

I-Vectors. Testing each parameter in an isolated fashion was not tenable given their

connected nature. The number of UBM mixtures could vary, but exceeding the

available samples for enrollment and testing sets did not produce reliable results.

The number of epochs available for a given dataset was dependent on the channels,

trials, and epoch duration. The number of available epochs and trials was

dependent on the dataset. Lastly, the performance of each feature set was

dependent on all of these conditions as well as the algorithm it was paired with for

the given experiment.

To gain any understanding of one parameter with respect to the others, static

configurations were organized around epoch duration and number of samples for all

experiments. This enabled sweeps of UBM mixture, TVM dimension, and LDA

dimension. There was no way to control for algorithm or feature set influence, as no

benchmarks existed for the proposed experiments. This required each variation of

dataset and algorithm to be tested for each parameter configuration. A few

considerations were made to make the experiments tractable.
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First, a “slim” version of each feature set was developed based upon the most

common electrode configuration found in the TUH-EEG corpus, recall Figure

Figure 2.2. This linked all feature sets to the same number of recording electrodes,

equalizing the disparity in samples encountered previously. This made the CEP and

COH feature sets contain 22 matching channels, and the PSD features were limited

to 19 original electrodes. This sped up the PSD and COH based experimental

computations and better aligned the dimensions of each feature set which helped

mitigate performance variation based upon the feature sets.

Secondly, bounds had to be set on the ranges of the TVM and LDA dimensions.

While the step size and range of the UBMs were organized in base 2 increments, the

TVM and LDA dimensions only had a ceiling defined by the number of subjects. The

software was built to ensure the LDA dimension would never exceed subjects − 1,

but the TVM was allowed to be larger than the number of subjects as LDA would

reduce the length of the I-Vector.

Table 5.1. Identity Vector Parameter Sweep

UBM TVM LDA

2 4 8 16 32 64
128 256 512
1024 2048

25 15
50 45 30 15
75 60 45 30 15
100 75 60 45 30 15
200 100 75 60 45 30 15

Thirdly, the number of samples was indirectly tested during the epoch sweep

experiments, but was directly tested during these experiments. Sample depth for the

test datasets was controlled for with experiments focusing on 1, 4, 6, and 14 epochs

with a duration of 10 and 2 seconds. This was done because 10s represented the
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original case tested in La Rocca’s work, while 2s appeared the strongest for both

I-Vectors and GMM-UBMs. In addition, 5s duration epochs only provided 20 epochs

for PhysioNet Database’s 1 minute recordings making the testing dataset the majority

of the data (12 of 20 epochs) which was not ideal.

The results of these experiments are presented using a novel metric formulated by

subtracting the EER from the CRR. Recall that the CRR represented the subject

verification performance of a correct matching meaning there can be no false positive.

This prevented the use of an F1 score as a comprehensive metric. Thus the so-called

“C metric”, representing the combination of CRR and EER, is reported; a C score

of 0.75 represents with a minimum acceptable threshold. A system with a CRR of

80% and an EER of 5% or one with a CRR of 90% and an EER of 15% would be

considered acceptable given the early stages of this research.

5.2.1 Results: I-Vector Parameters

The first sweep experiment, see Figures 5.10–5.12, was done to show the performance

when using a single epoch in the testing dataset. This was sourced from the TUH-EEG

datasets of abnormal, normal, and seizure over the three feature sets. Performance

was poor across all datasets and feature sets aside from the TVM built from CEP

based normal data (see Figure 5.10). The use of PSD and COH features provided

similar results which is as expected given that the COH features are built off of the

PSD features.

Those initial results served as a benchmark allowing comparisons as the number

of samples in the training dataset was increased. Performing the same analysis, but

focusing only on the normal dataset, the impact of increasing the samples is shown

in Figures 5.13–5.15. Here the impact of altering epoch duration and number was
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Figure 5.10. I-Vector with CEP TUH-EEG, Single Test Epoch. This C Metric plot
shows the CEP based TUH-EEG abnormal, normal, and seizure data
performance as a function of UBM mixture and TVM dimension when
using one epoch in the testing data. The peak performances achieved
were 0.84 with the normal (NRM) dataset using a 512 mixture UBM
with a TVM dimension of 25, 0.46 with the abnormal (ABN) dataset
using a 256 mixture UBM with a TVM dimension of 25, and -0.07 with
the seizure (SZR) dataset using a 1024 mixture UBM with a TVM
dimension of 50.
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Figure 5.11. I-Vector with PSD TUH-EEG, Single Test Epoch. This C Metric plot
shows the PSD based TUH-EEG abnormal, normal, and seizure data
performance as a function of UBM mixture and TVM dimension when
using one epoch in the testing data. The peak performances achieved
were 0.368 with the normal (NRM) dataset using a 4 mixture UBM
with a TVM dimension of 100, 0.39 with the abnormal (ABN) dataset
using a 64 mixture UBM with a TVM dimension of 25, and 0.28 with
the seizure (SZR) dataset using a 256 mixture UBM with a TVM
dimension of 50.
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Figure 5.12. I-Vector with COH TUH-EEG, Single Test Epoch. This C Metric plot
shows the COH based TUH-EEG abnormal, normal, and seizure data
performance as a function of UBM mixture and TVM dimension when
using one epoch in the testing data. The peak performances achieved
were 0.2059 with the normal (NRM) dataset using a 4 mixture UBM
with a TVM dimension of 100, 0.30 with the abnormal (ABN) dataset
using a 64 mixture UBM with a TVM dimension of 25, and 0.17 with
the seizure (SZR) dataset using a 2 mixture UBM with a TVM
dimension of 75.
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detailed as sets of 2 epochs 10s in duration, solid red lines, and 4 epochs 10s in

duration, blue dashed lines, and 4 epochs 2s in duration, black dotted lines, epochs.

Doubling the number of epochs from one to two had a marginal impact across

all feature sets. However, increasing to four boosted the performance of CEP and

PSD features for TVMs using 32 mixtures or more. The performance of the CEP

features at the lowest TVM size provided near perfect performance for 4 epochs of 2s

duration. This was followed closely by 4 epochs of 10s duration.

When the dataset shifted to using 2s epochs, a spike in performance was found for

the COH features at 128 mixtures for the TVM of size 50. A similar event was seen

in the PSD features for the TVM of size 50 between 32 and 256 mixtures. This did

not make the overall performance acceptable, but was significant given the preceding

mixtures showed declining performance.

The COH features failed to produce a metric score over 0.5, despite their

underlying PSD features reaching this threshold across the sample and epoch

permutations. Instead the overall trend was declining performance as the UBM

mixture size increased.

Given the trend of normal TUH-EEG performance increasing as sample size

increased, sample sets of 6 and 14 were added. This was done to mirror the nature

of the PhysioNet Database based experiments where 4 motion trials, 4 motion trials

and the two resting trials, and all 14 trials were used in Section 5.1.3.2. Here all the

sample sets use the 2s duration epochs to produce Figures 5.16–5.18. Using 14

samples matched the natural number of trials in the PhysioNet Database data,

providing a normalized comparison point.

With the inclusion of more samples in the training dataset, the CEP results

continued to show strong performance for TVMs of size 25 for a range of mixture

sizes, but also a performance spike at 128 mixtures when using a TVM of size 50.
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Figure 5.13. I-Vector with CEP Nrm, Multiple Test Epochs. This C Metric plot
shows the CEP based TUH-EEG normal dataset performance as a
function of UBM mixture and TVM dimension. This data was split
into three groups: 2 testing epochs of 10s duration, 4 testing epochs of
10s duration, and 4 testing epochs of 2s duration. The peak
performances achieved were 0.86 with the 2 epochs 10s in duration
configuration using a 512 mixture UBM with a TVM dimension of 25,
0.93 with the 4 epochs 10s in duration configuration using a 512
mixture UBM with a TVM dimension of 25, and 0.98 with the 4 epoch
2s in duration configuration using a 1024 mixture UBM with a TVM
dimension of 25.
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Figure 5.14. I-Vector with PSD Nrm, Multiple Test Epochs. This C Metric plot
shows the PSD based TUH-EEG normal dataset performance as a
function of UBM mixture and TVM dimension. This data was split
into three groups: 2 testing epochs of 10s duration, 4 testing epochs of
10s duration, and 4 testing epochs of 2s duration. The peak
performances achieved were 0.51 with the 2 epochs 10s in duration
configuration using a 32 mixture UBM with a TVM dimension of 25,
0.68 with the 4 epochs 10s in duration configuration using a 2 mixture
UBM with a TVM dimension of 75, and 0.54 with the 4 epochs of 2s
duration configuration using a 32 mixture UBM with a TVM
dimension of 25.
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Figure 5.15. I-Vector with COH Nrm, Multiple Test Epochs. This C Metric plot
shows the COH based TUH-EEG normal dataset performance as a
function of UBM mixture and TVM dimension. This data was split
into three groups: 2 testing epochs of 10s duration, 4 testing epochs of
10s duration, and 4 testing epochs of 2s duration. The peak
performances achieved were 0.38 with the 2 epochs 10s in duration
configuration using a 2 mixture UBM with a TVM dimension of 50,
0.45 with the 4 epochs 10s in duration configuration using a 4 mixture
UBM with a TVM dimension of 75, and 0.20 with the 4 epochs of 2s
duration configuration using a 2 mixture UBM with a TVM dimension
of 75.
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However, the increased samples are lowering the performance of smaller sized

UBMs.

The trend of performance declining for smaller mixture UBMs was seen for the

PSD and COH feature sets as well. In the same manner, the performance spike around

128 mixtures was found across all mixtures. Regardless of feature set, the strongest

performances came from the 14-sample sets and the weakest from the 4-sample sets.

The results of the PhysioNet Database experiments, Figures 5.19–5.21, drew

additional samples from different trials. Thus each increase in samples represented

an increase in trials with the 4-sample sets being only motion trial data, the

6-sample sets being motion trial data and calibration trial data, and the 14-sample

sets containing all trial data. By using 10s duration epochs, these results provided a

baseline for subsequent epoch duration variations and a comparison point for the

initial TUH-EEG results of Figures 5.13–5.15. Within these results, distinct trends

were seen for each feature set.

When using CEP features (see Figure 5.19) performance improved as UBM

mixture size increased for all but the largest sized TVM. For each combination of

UBM and TVM size the best reported result came from the dataset with the larger

number of samples, with the 14-sample set outperforming the 6-sample set which in

turn surpassed the 4-sample set.

The PSD results, Figure 5.20, showed a slight performance increase with UBM

mixture size for the smaller sized TVMs. However, there was a strong performance

roll-off of the larger TVMs at larger UBM mixture sizes. This was more pronounced

for the smaller sample sets of 4 and 6. The majority of this behavior occurred at

UBM mixture sizes of 16 and 32.
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Figure 5.16. I-Vector with CEP Nrm, Multiple Test Epochs. This C Metric plot
shows the CEP based TUH-EEG normal dataset performance as a
function of UBM mixture and TVM dimension. This data was split
into three groups: 4 testing epochs of 2s duration, 6 testing epochs of 2s
duration, and 14 testing epochs of 2s duration. The peak performances
achieved were 0.98 with the 4 epochs of 2s duration configuration using
a 1024 mixture UBM with a TVM dimension of 25, 0.9615 with the 6
epochs of 2s duration configuration using a 1024 mixture UBM with a
TVM dimension of 25, and 0.99 with the 14 epochs of 2s duration
configuration using a 512 mixture UBM with a TVM dimension of 25.
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Figure 5.17. I-Vector with PSD Nrm, Multiple Test Epochs. This C Metric plot
shows the PSD based TUH-EEG normal dataset performance as a
function of UBM mixture and TVM dimension. This data was split
into three groups: 4 testing epochs of 2s duration, 6 testing epochs of 2s
duration, and 14 testing epochs of 2s duration. The peak performances
achieved were 0.54 with the 4 epochs of 2s duration configuration using
a 32 mixture UBM with a TVM dimension of 25, 0.66 with the 6
epochs of 2s duration configuration using a 64 mixture UBM with a
TVM dimension of 25, and 0.79 with the 14 epochs of 2s duration
configuration using a 16 mixture UBM with a TVM dimension of 25.
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Figure 5.18. I-Vector with COH Nrm, Multiple Test Epochs. This C Metric plot
shows the COH based TUH-EEG normal dataset performance as a
function of UBM mixture and TVM dimension. This data was split
into three groups: 4 testing epochs of 2s duration, 6 testing epochs of 2s
duration, and 14 testing epochs of 2s duration. The peak performances
achieved were 0.20 with the 4 epochs of 2s duration configuration using
a 2 mixture UBM with a TVM dimension of 75, 0.31 with the 6 epochs
of 2s duration configuration using a 2 mixture UBM with a TVM
dimension of 50, and 0.45 with the 14 epochs of 2s duration
configuration using a 2 mixture UBM with a TVM dimension of 75.
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The COH results showed a similar overall strong performance at lower UBM

mixture sizes as the PSD features. However, the only performance roll-off was

attributed to TVMs of size 200 until the UBM reach 2048 mixtures.

The results of TUH-EEG seizure data experiments, Figures 5.22–5.24, tracked the

growth of the testing data from 4 epochs to 6 epochs where the epoch duration was

reduced from 10s to 2s. This overlapped with previously tested configurations for the

PhysioNet Database data and the TUH-EEG normal dataset. While the TUH-EEG

normal dataset contained 50 subjects, and the PhysioNet Database dataset contained

109 subjects, the TUH-EEG seizure dataset contained 411 subjects. This mitigated

dimensional constraints previously imposed on the TVM of dimension 200.

The use of CEP features, Figure 5.22, for any combination of TVM, sample size

or epoch duration failed to reach a C score of 0.5. Increasing the size of the UBM

improved performance until 1024 mixtures after which it appeared to roll-off or

plateau at 2048 mixtures. The smaller sized TVMs performed best with the

6-sample sized experiments as the peak performer. Conversely, the PSD and COH

feature sets performed far better even at smaller UBM sizes.

The PSD features, Figure 5.23, were able to produce scores between 0 and 0.5 for

the majority of the UBM mixture sizes. Again, the best performances were seen from

the 6 epoch 2s duration epoch dataset. However, moving between epoch durations

for the 4 epoch sets showed the 10s epochs with better performance at smaller UBM

mixture sizes and 2s epochs with better performance at higher UBM mixture sizes.

The COH features, Figure 5.24, produced scores below their PSD counterparts,

but higher than those of the CEP features. Using 10s epochs and 4 epoch sets

outperformed the other approaches for the majority of the UBM mixtures. The

notable exceptions was at a mixture size of 8, where only the TVM of size 25 did
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Figure 5.19. I-Vector with CEP Mot, Multiple Test Epochs. This C Metric plot
shows the CEP based PhysioNet Database dataset performance as a
function of UBM mixture and TVM dimension. This data was split
into three groups: 4 testing epochs of 10s duration, 6 testing epochs of
10s duration, and 14 testing epochs of 10s duration. The peak
performances achieved were 0.57 with the 4 epochs of 2s duration
configuration using a 512 mixture UBM with a TVM dimension of 50,
0.64 with the 6 epochs of 2s duration configuration using a 128 mixture
UBM with a TVM dimension of 50, and 0.91 with the 14 epochs of 2s
duration configuration using a 512 mixture UBM with a TVM
dimension of 50.
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Figure 5.20. I-Vector with PSD Mot, Multiple Test Epochs. This C Metric plot
shows the PSD based PhysioNet Database dataset performance as a
function of UBM mixture and TVM dimension. This data was split
into three groups: 4 testing epochs of 10s duration, 6 testing epochs of
10s duration, and 14 testing epochs of 10s duration. The peak
performances achieved were 0.99 with the 4 epochs of 2s duration
configuration using a 64 mixture UBM with a TVM dimension of 25, 1
with the 6 epochs of 2s duration configuration using a 128 mixture
UBM with a TVM dimension of 75, and 1 with the 14 epochs of 2s
duration configuration using a 64 mixture UBM with a TVM
dimension of 100.
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Figure 5.21. I-Vector with COH Mot, Multiple Test Epochs. This C Metric plot
shows the COH based PhysioNet Database dataset performance as a
function of UBM mixture and TVM dimension. This data was split
into three groups: 4 testing epochs of 10s duration, 6 testing epochs of
10s duration, and 14 testing epochs of 10s duration. The peak
performances achieved were 0.99 with the 4 epochs of 2s duration
configuration using a 128 mixture UBM with a TVM dimension of 50,
1 with the 6 epochs of 2s duration configuration using a 128 mixture
UBM with a TVM dimension of 75, and 1 with the 14 epochs of 2s
duration configuration using a 64 mixture UBM with a TVM
dimension of 100.
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not decrease, before a performance roll-off for all tested configurations started at a

mixture size of 128.

The TUH-EEG seizure dataset was tested again, Figures 5.25–5.27, with sample

sets on the order used for the PhysioNet Database datasets. Using the 2s duration

epochs, an additional 14 epoch set was included. Overall the scoring trend was that

the larger sample sets performed better, but the extent varied by feature set.

For the CEP features, Figure 5.25, the increased samples allowed TVMs of size

25, 50, and 75 to exceed those previously reported for the 6-sample sets before rolling

off when the UBM contained 2048 mixtures. The PSD features, Figure 5.26, met and

exceed the 0.75 score threshold when the UBM was between 32 and 1024 mixtures.

This occurred for TVMs of size 50, 75, and 100.

Previously, the COH features were best served by the 10s duration 4 epoch set,

but the 2s duration 14 epoch set included here matched their performance. However,

this was only for a TVM of size 50 despite the larger sample set out performing its

counterparts in Figure 5.27.

5.2.2 Results: LDA Parameters

The performance impact of the LDA was run on a subset of the optimized parameter

space of epoch duration, sample set parameters, and UBM size. The UBMs built from

32 to 128 mixtures appeared the strongest across datasets and feature sets. Epoch

duration was chosen as 2 seconds with a sample set size of 14 for the TUH-EEG normal

and seizure datasets. For the PhysioNet Database dataset the epoch duration was

10s with an epoch set size of 14.

The scores of the TUH-EEG normal dataset, Figures 5.28–5.30, are limited in

scope by the number of subjects (50), making the largest LDA dimension 49.

Overall performance appeared linked to TVM size more than UBM mixture size.
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Figure 5.22. I-Vector with CEP Szr, Multiple Test Epochs. This C Metric plot
shows the CEP based TUH-EEG seizure dataset performance as a
function of UBM mixture and TVM dimension. This data was split
into three groups: 4 testing epochs of 10s duration, 4 testing epochs of
2s duration, and 6 testing epochs of 2s duration. The peak
performances achieved were 0.13 with the 4 epochs 10s in duration
configuration using a 1024 mixture UBM with a TVM dimension of 50,
0.06 with the 4 epochs of 2s duration configuration using a 2048
mixture UBM with a TVM dimension of 50, and 0.14 with the 6
epochs of 2s duration configuration using a 1024 mixture UBM with a
TVM dimension of 50.
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Figure 5.23. I-Vector with PSD Szr, Multiple Test Epochs. This C Metric plot
shows the PSD based TUH-EEG seizure dataset performance as a
function of UBM mixture and TVM dimension. This data was split
into three groups: 4 testing epochs of 10s duration, 4 testing epochs of
2s duration, and 6 testing epochs of 2s duration. The peak
performances achieved were 0.57 with the 4 epochs 10s in duration
configuration using a 4 mixture UBM with a TVM dimension of 100,
0.55 with the 4 epochs of 2s duration configuration using a 512 mixture
UBM with a TVM dimension of 50, and 0.64 with the 6 epochs of 2s
duration configuration using a 256 mixture UBM with a TVM
dimension of 50.
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Figure 5.24. I-Vector with COH Szr, Multiple Test Epochs. This C Metric plot
shows the COH based TUH-EEG seizure dataset performance as a
function of UBM mixture and TVM dimension. This data was split
into three groups: 4 testing epochs of 10s duration, 4 testing epochs of
2s duration, and 6 testing epochs of 2s duration. The peak
performances achieved were 0.19 with the 4 epochs 10s in duration
configuration using a 2 mixture UBM with a TVM dimension of 50, 1
with the 4 epochs of 2s duration configuration using a 128 mixture
UBM with a TVM dimension of 75, and 0.32 with the 6 epochs of 2s
duration configuration using a 128 mixture UBM with a TVM
dimension of 50.
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Figure 5.25. I-Vector with CEP Szr, Multiple Test Epochs. This C Metric plot
shows the CEP based TUH-EEG seizure dataset performance as a
function of UBM mixture and TVM dimension. This data was split
into three groups: 4 testing epochs of 2s duration, 6 testing epochs of 2s
duration, and 14 testing epochs of 2s duration. The peak performances
achieved were 0.0589 with the 4 epochs of 2s duration configuration
using a 2048 mixture UBM with a TVM dimension of 50, 0.14 with the
6 epochs of 2s duration configuration using a 1024 mixture UBM with
a TVM dimension of 50, and 0.27 with the 14 epochs of 2s duration
configuration using a 1024 mixture UBM with a TVM dimension of 50.
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Figure 5.26. I-Vector with PSD Szr, Multiple Test Epochs. This C Metric plot
shows the PSD based TUH-EEG seizure dataset performance as a
function of UBM mixture and TVM dimension. This data was split
into three groups: 4 testing epochs of 2s duration, 6 testing epochs of 2s
duration, and 14 testing epochs of 2s duration. The peak performances
achieved were 0.55 with the 4 epochs of 2s duration configuration using
a 256 mixture UBM with a TVM dimension of 50, 0.64 with the 6
epochs of 2s duration configuration using a 256 mixture UBM with a
TVM dimension of 50, and 0.82 with the 14 epochs of 2s duration
configuration using a 128 mixture UBM with a TVM dimension of 50.
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Figure 5.27. I-Vector with COH Szr, Multiple Test Epochs. This C Metric plot
shows the COH based TUH-EEG seizure dataset performance as a
function of UBM mixture and TVM dimension. This data was split
into three groups: 4 testing epochs of 2s duration, 6 testing epochs of 2s
duration, and 14 testing epochs of 2s duration. The peak performances
achieved were 0.19 with the 4 epochs of 2s duration configuration using
a 128 mixture UBM with a TVM dimension of 50, 0.32 with the 6
epochs of 2s duration configuration using a 128 mixture UBM with a
TVM dimension of 50, and 0.50 with the 14 epochs of 2s duration
configuration using a 64 mixture UBM with a TVM dimension of 50.
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The reduction in LDA dimensions had minimal impact on performance over the

range of 49, 45, and 30. The major loss occurred at stepping down to 15 dimensions

for any TVM that was larger than 25.

For the CEP features, the best scores came from TVMs of size 25 for any UBM

and a TVM of size 50 when using a 128 mixture UBM. The PSD features showed

similar scores, with the TVMs of size 25 setting the benchmark near a score of 0.75

that the others attempted to reach. The COH features also had the top scores for the

TVMs of size 25. However, when using a UBM with 64 mixtures the scores of TVMs

of size 75 and 100 were on par with that of the 128 mixture UBM’s size 25 TVM.

The same experiment with the PhysioNet Database dataset, Figures 5.31–5.33,

contained 109 subjects enabling the full spread of LDA dimensions listed in Table 5.1.

Again the smallest TVM appeared to provide consistently strong scores, however the

impact of the remaining TVMs varied based upon feature set.

For the CEP features, decreasing the LDA dimensions weakened performance for

TVMs of size 50. However, the same dimensional reduction applied to UBMs of size

32 and 64 resulted in improved performance for larger TVMs at smaller LDA sizes.

This behavior partially occurred for the 128 mixture UBM as the performance of

the 75 TVM decreased as the LDA dimensions were reduced, while the 100 TVM

performance eventually increased.

The unique performance of the 128 mixture UBM continued for the PSD

features with the 100 TVM score increasing and decreasing as the LDA dimension

was decreased. However, a strong performance loss was seen for all 200 TVMs and

minimal loss was seen for TVMs below 100.

This behavior was most stark in the COH features as only the 200 TVMs showed

significant changes with a reduction in the LDA dimensions. For all TVMs below
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Figure 5.28. I-Vector and LDA with CEP Szr. This C Metric plot shows the CEP
based TUH-EEG normal dataset performance as a function of LDA
dimension for specific UBM mixture sizes over a range of TVM
dimensions. This data was drawn from the 14 epoch set of 2s epochs
presented previous in Figure 5.16. The best 32 mixture UBM score was
0.82 using a 25-15 TVM LDA pairing, 0.87 using a 25-15 TVM LDA
pairing with 64 mixtures, and 0.9419 using a 25-15 TVM LDA pairing
with 128 mixtures.
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Figure 5.29. I-Vector and LDA with PSD Szr. This C Metric plot shows the PSD
based TUH-EEG normal dataset performance as a function of LDA
dimension for specific UBM mixture sizes over a range of TVM
dimensions. This data was drawn from the 14 epoch set of 2s epochs
presented previous in Figure 5.17. The best 32 mixture UBM score was
0.76 using a 25-15 TVM LDA pairing, 0.7481 using a 25-15 TVM LDA
pairing with 64 mixtures, and 0.72 using a 25-15 TVM LDA pairing
with 128 mixtures.
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Figure 5.30. I-Vector and LDA with COH Szr. This C Metric plot shows the COH
based TUH-EEG normal dataset performance as a function of LDA
dimension for specific UBM mixture sizes over a range of TVM
dimensions. This data was drawn from the 14 epoch set of 2s epochs
presented previous in Figure 5.18. The best 32 mixture UBM score was
0.378 using a 25-15 TVM LDA pairing, 0.2851 using a 25-15 TVM
LDA pairing with 64 mixtures, and 0.172 using a 25-15 TVM LDA
pairing with 128 mixtures.
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200, the only significant performance changes occurred at 15 and 30 dimensions while

at 200 the shift occurred between 45 and 60 dimensions.

The final LDA experiment involved the TUH-EEG seizure data, Figures 5.34–5.36.

This dataset contained 411 subjects ensuring all variations of TVM and LDA could

be tested. Breaking the trend of the previous experiments, the best performance was

not found when using a TVM of size 25 for all feature sets.

When using the CEP features, Figure 5.34, performance was poor for all parameter

configurations. Only the TVM of size 25 built from the 128 mixture UBM were able

to exceed a score of zero. Even with such poor performance the larger UBMs scored

better and decreasing the LDA dimensions had a noticeable impact of further reducing

performance.

The PSD features, Figure 5.35, produced results that met or exceeded the size 25

TVMs across all UBM mixture sizes. These included the 128 mixture UBM using

TVM LDA pairings of 100-75, 75-60, 75-45, 50-45, and 50-30. As well as the 64

mixture UBM using TVM LDA pairings of 75-60, 75-45, 50-45, and 50-30. Only a

pairing of 50-45 for the 32 mixture UBM met or exceeded the 25 TVMs performance.

All TVMs showed the largest reduction in performance when operating with with an

LDA of 15.

The impact of LDA on the COH features, Figure 5.36, produced similar results

to the PSD features with the larger UBMs mixtures outperforming the smaller

mixtures. The TVM LDA pairings of 50-45 and 50-30 for all UBMs met or exceed

the performance of the 25-15 TVM LDA pairing. While only the 75-60 pairing of

the 64 and 128 mixture UBMs met or exceeded that benchmark. The 200 TVM

results produced scores at or below zero for all UBM mixtures.

To validate that the selection of 32, 64, and 128 were the optimal UBM mixture

sizes, two alternative ranges were tested using the TUH-EEG normal dataset. The
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Figure 5.31. I-Vector and LDA with CEP Mot. This C Metric plot shows the CEP
based PhysioNet Database dataset performance as a function of LDA
dimension for specific UBM mixture sizes over a range of TVM
dimensions. This data was drawn from the 14 epoch set of 10s duration
presented previous in Figure 5.19. The best 32 mixture UBM score was
0.7289 using a 25-15 TVM LDA pairing, 0.8333 using a 25-15 TVM
LDA pairing with 64 mixtures, and 0.8885 using a 25-15 TVM LDA
pairing with 128 mixtures.
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Figure 5.32. I-Vector and LDA with PSD Mot. This C Metric plot shows the PSD
based PhysioNet Database dataset performance as a function of LDA
dimension for specific UBM mixture sizes over a range of TVM
dimensions. This data was drawn from the 14 epoch set of 10s duration
presented previous in Figure 5.20. The best 32 mixture UBM score was
0.9998 using a 25-15 TVM LDA pairing, 0.999 using a 25-15 TVM
LDA pairing with 64 mixtures, and 1 using a 25-15 TVM LDA pairing
with 128 mixtures.
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Figure 5.33. I-Vector and LDA with COH Mot. This C Metric plot shows the COH
based PhysioNet Database dataset performance as a function of LDA
dimension for specific UBM mixture sizes over a range of TVM
dimensions. This data was drawn from the 14 epoch set of 10s duration
presented previous in Figure 5.21. The best 32 mixture UBM score was
0.99 using a 50-45 TVM LDA pairing, 1 using a 100-75 TVM LDA
pairing with 64 mixtures, and 1 using a 75-45 TVM LDA pairing with
128 mixtures.
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Figure 5.34. I-Vector and LDA with CEP Szr. This C Metric plot shows the CEP
based TUH-EEG seizure dataset performance as a function of LDA
dimension for specific UBM mixture sizes over a range of TVM
dimensions. This data was drawn from the 14 epoch set of 2s epochs
presented previous in Figure 5.25. The best 32 mixture UBM score was
0.07 using a 25-15 TVM LDA pairing, -0.03 using a 25-15 TVM LDA
pairing with 64 mixtures, and 0.09 using a 25-15 TVM LDA pairing
with 128 mixtures.
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Figure 5.35. I-Vector and LDA with PSD Szr. This C Metric plot shows the PSD
based TUH-EEG seizure dataset performance as a function of LDA
dimension for specific UBM mixture sizes over a range of TVM
dimensions. This data was drawn from the 14 epoch set of 2s epochs
presented previous in Figure 5.26. The best 32 mixture UBM score was
0.77 using a 50-45 TVM LDA pairing, 0.8016 using a 50-45 TVM LDA
pairing with 64 mixtures, and 0.82 using a 50-45 TVM LDA pairing
with 128 mixtures.
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Figure 5.36. I-Vector and LDA with COH Szr. This C Metric plot shows the COH
based TUH-EEG seizure dataset performance as a function of LDA
dimension for specific UBM mixture sizes over a range of TVM
dimensions. This data was drawn from the 14 epoch set of 2s epochs
presented previous in Figure 5.27. The best 32 mixture UBM score was
0.4903 using a 50-45 TVM LDA pairing, 0.4312 using a 50-45 TVM
LDA pairing with 64 mixtures, and 0.3604 using a 50-45 TVM LDA
pairing with 128 mixtures.
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first alternative used 8, 16, and 32 mixture UBMs and the second alternative used

128, 256, and 512 mixture UBMs. The first alternative repeated the smallest mixture

size and the second alternative repeated the largest mixture size providing context

for the results.

When using the smaller mixtures, Figures 5.37–5.39, the strongest scores came

from the 32 mixture UBM based TVMs. Only in the case of the CEP features

was the performance of the 32 mixture UBM exceed by the two smaller mixtures.

However, the only acceptable scores came from the 25 TVM which clearly favored the

32 mixture UBM. For the PSD and COH features the 32 mixture UBM significantly

outperformed its counterparts for all TVM LDA combinations, aside from at the

25-15 pairing.

Expanding the UBM to larger mixtures, Figures 5.40–5.42, produced distinct

behavior for each feature set. The CEP feature performance improved with each

increase in the UBM mixture size. However, these improvements were not enough to

match the performances of the PSD or COH feature sets.

Conversely, the PSD feature set showed minimal if any difference in performance

for the TVM LDA pairings, aside from the 200 TVM which improved with the larger

UBM mixtures. When the TVM LDA pairings of 100-75, 75-50, and 50-45 were used,

their performance exceeded a score of 0.75 for all UBM mixture sizes.

The COH feature set showed that performance was better or equal when using the

128 mixture UBM except when using the 200 TVM. However, none of the pairings

exceeded a score of 0.5.

5.2.3 Discussion

The initial sweeps of dataset, UBM mixture, TVM dimension, and sample set size

were natural follow up experiments to the La Rocca based experiments. While the
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Figure 5.37. I-Vector and LDA with CEP Nrm. This C Metric plot shows the CEP
based TUH-EEG normal dataset performance as a function of LDA
dimension for specific UBM mixture sizes over a range of TVM
dimensions. This data was drawn from the 14 epoch set of 2s epochs
presented previous in Figure 5.16. The best 8 mixture UBM score was
0.4641 using a 25-15 TVM LDA pairing, 0.6728 using a 25-15 TVM
LDA pairing with 16 mixtures, and 0.8159 using a 25-15 TVM LDA
pairing with 32 mixtures.
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Figure 5.38. I-Vector and LDA with PSD Nrm. This C Metric plot shows the PSD
based TUH-EEG normal dataset performance as a function of LDA
dimension for specific UBM mixture sizes over a range of TVM
dimensions. This data was drawn from the 14 epoch set of 2s epochs
presented previous in Figure 5.17. The best 8 mixture UBM score was
0.7746 using a 25-15 TVM LDA pairing, 0.791 using a 25-15 TVM
LDA pairing with 16 mixtures, and 0.7604 using a 25-15 TVM LDA
pairing with 32 mixtures.
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Figure 5.39. I-Vector and LDA with COH Nrm. This C Metric plot shows the COH
based TUH-EEG normal dataset performance as a function of LDA
dimension for specific UBM mixture sizes over a range of TVM
dimensions. This data was drawn from the 14 epoch set of 2s epochs
presented previous in Figure 5.18. The best 8 mixture UBM score was
0.3612 using a 25-15 TVM LDA pairing, 0.4112 using a 25-15 TVM
LDA pairing with 16 mixtures, and 0.378 using a 25-15 TVM LDA
pairing with 32 mixtures.
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Figure 5.40. I-Vector and LDA with CEP Szr. This C Metric plot shows the CEP
based TUH-EEG seizure dataset performance as a function of LDA
dimension for specific UBM mixture sizes over a range of TVM
dimensions. This data was drawn from the 14 epoch set of 2s epochs
presented previous in Figure 5.25. The best 128 mixture UBM score
was 0.0688 using a 25-15 TVM LDA pairing, 0.1655 using a 25-15
TVM LDA pairing with 256 mixtures, and 0.2007 using a 25-15 TVM
LDA pairing with 512 mixtures.
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Figure 5.41. I-Vector and LDA with PSD Szr. This C Metric plot shows the PSD
based TUH-EEG seizure dataset performance as a function of LDA
dimension for specific UBM mixture sizes over a range of TVM
dimensions. This data was drawn from the 14 epoch set of 2s epochs
presented previous in Figure 5.26. The best 128 mixture UBM score
was 0.8192 using a 50-45 TVM LDA pairing, 0.8133 using a 50-45
TVM LDA pairing with 256 mixtures, and 0.7924 using a 50-45 TVM
LDA pairing with 512 mixtures.
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Figure 5.42. I-Vector and LDA with COH Szr. This C Metric plot shows the COH
based TUH-EEG seizure dataset performance as a function of LDA
dimension for specific UBM mixture sizes over a range of TVM
dimensions. This data was drawn from the 14 epoch set of 2s epochs
presented previous in Figure 5.27. The best 128 mixture UBM score
was 0.4903 using a 50-45 TVM LDA pairing, 0.4312 using a 50-45
TVM LDA pairing with 256 mixtures, and 0.3604 using a 50-45 TVM
LDA pairing with 512 mixtures.
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three feature sets were tested along with each iteration, there was no intent to select

a best feature. As such the three feature sets were reported throughout these

experimental parameter sweeps. Following the major parameter sweeps, attention

was paid to the impact of LDA on the resultant TVMs. Those LDA sweeps

highlight the performance of I-Vectors when using the optimal configuration of

UBM mixture, epoch duration, and sample set size.

5.2.3.1 I-Vector Parameters

The goal of these experiments was to find an optimal parameter range for the UBM

mixture size, TVM dimension, LDA dimension, samples in a testing set, and epoch

duration. Two distinct datasets, the PhysioNet Database dataset of Figures 5.5–5.7

and TUH-EEG dataset of Figures 5.10–5.12, were used to ensure the robustness of

these solutions. Given the scope of the experiments it was necessary to determine if all

three TUH-EEG datasets needed to be tested in addition to the PhysioNet Database

dataset.

From the results of Figures 5.10–5.12 it was determined that the TUH-EEG

abnormal and normal datasets produced similar scores for each feature set.

Conversely the TUH-EEG seizure dataset produced scores distinct from both the

abnormal and normal datasets. The CEP features appeared best suited for the

abnormal and normal datasets and the PSD features for the seizure dataset.

However, the overall performances were far from acceptable aside from the scores

produced by the normal dataset using a TVM dimension of 25 with UBMs between

128 and 1024 mixtures.

During these experiments the epoch duration was decreased from 10 seconds to 2

seconds, see Figures 5.13–5.15. This provided insight into the influence of altering the

balance of enrollment and testing data, as decreasing the epoch duration increased
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the total number of samples in the recordings. Using 2 minute recordings with 10s

duration epochs produced 12 total epochs, which meant 4 epochs represented 25% of

the data. With 2s duration epochs, withholding 4 epochs meant 5.7% of the data was

reserved, 6 epochs meant 10%, 12 epochs meant 20%, and 14 epochs meant 23% of the

data. Across all three feature sets, the 4 sample testing set met or outperformed the

2 sample testing set when using 10s duration epochs. Comparatively, the 2s duration

4 epoch testing set was the optimal choice only for CEP as it was also bested by the

10s duration 4 epochs on the PSD and COH feature sets.

The choice of testing sets was designed around the PhysioNet Database trial

configuration (2 resting trials, 4 motion trials repeated 3 times) allowing for a

variety of intermediate epoch sets with maximum of 14 epochs in the testing data.

The reported scores using epoch sets of 4, 6, and 14 with 2s durations in

Figures 5.16–5.18 indicated similar performance trends even as the size of the

training data grew. In fact, the 14 sample sets for all features matched or exceeded

scores of smaller sets across all features for each TVM dimension. The majority of

these performance gains happened when progressing from a 32 mixture UBM up to

a 128 mixture UBM.

However, comparing these performances was difficult because each epoch set also

corresponded to a distinct dataset. The 6 and 14 epoch datasets contained resting

data which was absent from the 4 epoch dataset. Likewise, the 15 epoch dataset

contained an overwhelming amount of motion data, 12 trials to the 2 resting trials.

While performance clearly improved as more data was added, it was difficult to

determine how much impact the characteristics (resting versus motion) of the data

had on performance.

Similar performance trends were seen in the TUH-EEG datasets. While 2 epoch

testing datasets were tested on the normal data, seizure data started with 4 epoch

204



testing datasets using 10s duration epochs, just like the PhysioNet Database

experiments, as well as 4 epoch 2s duration and 6 epoch 2s duration testing

datasets. However, these tests also tracked the impact of the feature sets.

Contrasting with the TUH-EEG normal results, the CEP features produced the

worst scores while the PSD features showed the most promise with the 6 epochs of

2s duration, Figures 5.22–5.24. However, the strongest scores for the COH features,

Figure 5.24, were the 4 epoch of 10s duration. It was difficult to infer anything from

these results as only the PSD features scored above 0.5, which lead to repeating this

experiment with a 14 epoch testing dataset, Figures 5.25–5.27.

The trend of larger epoch sets improving performance was verified through these

seizure based experiments, but it also suggested feature sets might be suited for

specific datasets. The PhysioNet Database scored better using the PSD and COH

features than the CEP features. The COH tracking with the PSD was expected as

they are built on the PSD values, however the seizure results showed COH were better

than PSD, Figures 5.22–5.24. For the 14 epoch 2s duration testing seizure dataset,

the PSD feature set exceeded a score of 0.75 with multiple TVMs dimensions (50, 75,

and 100) while the COH features could only reach 0.5 with a TVM of dimension 50.

Meanwhile, the CEP features failed to match the performance of the other features

directly opposing the performance seen for the equivalent normal data experiments.

Despite the presence of 411 subjects in the seizure dataset, performance peaked

when using between 32 and 128 mixture UBMs for the PSD and COH features.

This trend was consistent across datasets, while the CEP features often continued

to improve as the number of mixtures in the UBM increased. This was the case in

Figure 5.25, as well as the prior CEP Figures 5.13 and 5.19. However, the majority

of the classification gains were made in the 32 to 128 mixture range with additional

mixtures providing less significant improvement.
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5.2.3.2 LDA Parameters

The LDA parameter sweep used 14 samples in the testing data with 2 epochs for

the TUH-EEG datasets and 14 samples with 10s epochs for the PhysioNet Database

dataset. The PhysioNet Database experiments used a larger epoch duration because

the smaller duration epochs performed exceptionally well leaving minimal remove

for improvement, Figures 5.19–5.21. By reducing the number of UBM mixtures, the

importance of TVM dimension became more apparent given the subsequent reduction

via LDA. Of course, the smaller sized TVMs had fewer reduced configurations, but the

intent was to see how performance shifted as the number of classification elements

was reduced. This directly addressed if the natural discriminators of the the data

could be reduced to a closed reproducible set of elements regardless of initial TVM

dimension.

The initial focus was on the TUH-EEG normal dataset, Figures 5.28–5.30, which

had poor performance for large TVM dimensions. This behavior was mostly

consistent across feature sets, but for the CEP features. They were capable of

producing a C score over 0.75 for all LDA dimensions when using a 128 mixture

UBM and a TVM of 49 dimensions. This suggested many of the original elements

were not critical to classification, which was supported by the strength of the other

15 dimension LDA scores across the 3 UBM mixture sizes. However, the PSD and

COH feature results had a more pronounced decrease in performance at the lowest

LDA dimension. Despite the disparate results at the lowest LDA dimension,

reducing the dimension from 49 to 45 showed little adverse impact to the reported

score for any configuration across the feature sets.

The TUH-EEG normal data had 50 subjects which limited the number of LDA

dimensions. This was not the case for the 109 subject PhysioNet Database dataset,
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Figures 5.31–5.33, which allowed the full range of the LDA dimensions, Table 5.1.

With the inclusion of LDA dimensions, the performance of CEP features was the

worst of all three feature sets. As the TVMs were reduced via LDA, the performance

for each configuration decreased until rebounding at 15 dimensions. The 32 mixture

UBM performed the worst with the 64 mixture UBM only surpassing it for TVMs of

dimension 25, 50, and 75. The 128 mixture UBM produced the top score overall of

0.89 for a TVM of dimension 25 reduced to 15 and matched the best performance of

the 64 mixture UBM with a score of 0.83 for a TVM of 50 reduced to 45 dimensions.

The PSD features produced acceptable performance when using a TVMs of

dimension 75, 50, and 25. However, the larger TVMs were inconsistent with the 64

mixture UBM being optimal with a TVM of dimension 100 and the 32 mixture

being best with a TVM of dimension 200. The 128 mixture UBM was notable

because a TVM of dimension 100 improved when reduced to LDA dimensions of 45

and 30. All TVM configurations larger than 50 showed significant performance loss

when reduced to 15 dimensions.

Conversely, the COH features performed well for TVMs dimensions of 100 or

smaller. Even the TVMs of dimension 200 showed promise in the higher LDA

dimensions. Aside from the largest TVMs, all configurations produced near perfect

scores until reduced to an LDA dimension of 15. These features were the clear

favorite of the PhysioNet Database dataset in terms of performance and stability

over the LDA dimensions.

The TUH-EEG seizure dataset performance as a function of LDA dimensions,

Figures 5.34–5.36, highlighted the difficulty of using CEP features. Performance

appeared to improve with the larger UBM mixture sizes and larger LDA dimensions.

Only the 128 mixture UBM was able to exceed a score of 0 when using a TVM of

dimension 25 with 15 LDA dimensions with a score of 0.0688. This was anticipated
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as the original UBM mixture sweep indicated the CEP features performance peaked

at 1024 mixtures, Figure 5.25, with a score of 0.27.

The PSD features, however, peaked within the 32 to 128 mixture range producing

a number of acceptable scores for LDA reduced I-Vectors. Despite this, every tested

configuration showed gradual performance loss as the LDA tested small dimensions.

The results, Figure 5.35, showed an increasing performance gap among the UBMs as

the TVM dimension was increased. The performance of each UBM when using a TVM

of dimension 25 was identical. As the TVM dimension increased, performance of the

UBMs’ scores widened. This also occurred during the LDA dimension reduction, with

larger differences at the lower dimensions.

The trend of improved performance with larger sized UBMs, TVMs, and LDA

dimensions continued with the COH features. While not nearly as pronounced as

those in the PSD features, the 32 mixture UBM was competitive for only the TVM

of dimension 25 and outpaced by the 64 mixture UBM for second place against

the 128 mixture UBM results. Overall this feature set was unable to break to the

0.75 threshold, as the PSD features did, but they did perform better than the CEP

features.

Given the TUH-EEG normal dataset experiments showed an early decrease in

performance before rising across the 8 to 32 mixture UBMs, an alternative set of

LDA sweeps were performed, Figures 5.37–5.39. Their results showed that regardless

of feature set, a TVM of dimension 25 outperformed all other configurations at these

mixture sizes. For the larger TVM dimensions, the 32 mixture UBM provided superior

performance when paired with PSD and COH features. The case for CEP features was

the opposite with the 8 mixture UBM producing superior scores with larger TVMs

and LDA dimensions. However, changes to any of the UBMs via LDA, regardless of

feature set, showed minimal impact. This suggested the UBM modeling had generally
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been a failure, with only the 32 mixture UBM showing major shifts in performance

as the LDA dimensions reached 15 for the PSD and COH features.

In contrast, the TUH-EEG seizure data needed larger UBMs to maximize

performance, Figures 5.25–5.27. This was explored in a set of expanded UBM

mixtures, Figures 5.40–5.42. The CEP features showed improvement from the larger

UBM mixtures, but it was not enough to exceed a score of 0.5. This suggested the

larger mixtures had captured additional information making them distinct from

each other.

The PSD features met and exceeded the 0.75 threshold, but the improvement

of the 256 and 512 mixture UBMs was marginal compared to the scores of the 128

mixture UBM. Only when a TVM of dimension 200 was used did the 128 mixture

UBM fail to be competitive with its counterparts, but none of these exceeded a score

of 0.75. The COH features showed the 128 mixture UBM outperformed the other

mixtures when the TVM dimension was at or below 75. It was competitive at a

TVM dimension of 100, and struggled to break a score of 0 at a dimension of 200.

Thus these two features were not readily gaining new insight into the datasets as their

performances tracked across TVM dimension.

5.2.4 Constraints

Performance over each feature set was improved by increasing the number of samples

in the training data. However, each sample assigned to the testing data was removed

from the training and enrollment dataset. This trade-off is common, but had unique

considerations given the modeling of the datasets during UBM generation and BW

statistics estimation. The UBM needed to be given enough samples to at least exceed

the desired number of mixtures. However, there was no assurance that the samples

would be unique to the point of requiring the number of desired mixtures. This was
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why using the 2s duration epochs was critical. It provided a sufficient number of

epochs for the training, enrollment and testing datasets.

By splitting the 2 minute recordings into 2s epochs, 60 epochs were available from

each channel. At 19 channels per subject, this provided, at minimum, 1140 epochs

per subject in total or a split of 266 epochs for the testing data and 874 epochs for

the training/enrollment data. These values were outside the range of UBM mixtures

tested, but this was acceptable because the UBMs were trained using the aggregated

subject training/enrollment dataset. Therefore, a given UBM constructed its models

using at least 43,700 epochs if built on the small 50 subject TUH-EEG datasets.

With a 2048 mixture UBM this provided more than 20 times the minimum number

of epochs required. Thus the suggested over-fitting int the epoch duration sweeps of

Section 5.1.3.2 was not well founded.

Once constructed the UBMs were used to guide the BW estimation process. The

extracted statistics generated log-likelihoods of each UBM mixture’s presence in the

given dataset. If presented with data lacking in epochs or data lacking in diversity of

epochs, very low probabilities were returned. Therefore the number of testing epochs

was important, not because a statistical threshold needed to be exceeded, but more

epochs ensured an accurate representation of the testing subject.

The same functions were used to model the UBMs and TVMs as were used to

extract data for I-Vector generation. Given the occurrence of these near zero

probabilities, the software would generate poor matrices in terms of NaN or Inf

values, or poorly conditioned ones that could not be inverted. This behavior

required the BW statistical estimation to have an artificial floor, a minimum

likelihood to avoid computational under and overflows. This impacted the

construction of the UBM and TVM because they relied on the same log-likelihood
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generator so changes to this floor would likely impact performance making it an

untested parameter.

Another constraint on the I-Vector generation process was that the original TVM

I-Vectors were not produced; only I-Vectors corresponding to the LDA dimensions

were generated. This was done to ensure the I-Vector dimension was was always less

than the number of tested subjects. However, the TVM dimensions was similarly

constrained to be one less than the number of subjects to protect against a GMM

being built on a per subject basis. However, in instances when the number of subjects

exceed the rows of the TVM, the TUH-EEG seizure dataset and UBMs with less than

8 mixtures, the solution was likely overdetermined. Thus the extreme cases of few

subjects large UBMs and many subjects small UBMs had the potential to produce

poorly conditioned TVMs.

This was likely why smaller TVMs dimensions performed poorly when paired with

large mixture sized UBMs. Using only 25 or 50 elements to control the means of over

1000 mixtures became difficult when the dataset was large and diverse, Figure 5.25,

compared to a smaller procedural dataset, Figure 5.19. This happened across all

feature sets, but appeared to be influenced more by the dataset as the TUH-EEG

seizure dataset was the only one capable of leveraging the 200 dimension TVM across

all UBMs.

5.3 Conclusion

The results of this work indicated that, although the choice of feature set affected

subject verification, epoch duration was a stronger predictor of performance. While

reducing the epoch duration generated more epochs for the training and enrollment

datasets, it did not change the number of epochs in the testing datasets for the
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sweep experiments, Figures 5.5–5.7. Expanding on this with the TUH-EEG normal

dataset, Figures 5.13–5.15, showed that adding two epochs to the testing dataset

(and removing two from the training/enrolllment dataset) improved performance, but

shifting from 4 10s duration epochs to 4 2s duration epochs was not an improvement

across all feature sets.

Once all epochs were 2s in duration, increasing the number of testing data epochs

showed improved performance across all feature sets, Figures 5.16–5.18. When the

TUH-EEG seizure dataset explored 4 epochs of 10s and 2s duration, the 10s epochs

met or exceeded the performance of the 2s epochs, Figures 5.22–5.24. And again,

when using only 2s duration epochs an increase in the number of testing data epochs

resulted in improved performance across all feature sets, Figures 5.25–5.27.

It was thus re-affirmed that for PSD features an epoch duration of 2s was better

than 10 seconds [193]. However, it appeared that by decreasing the epoch duration

the overall number of epochs increased which allowed better UBMs to be constructed.

Minor shifts in the number of testing data epochs, 2 to 4 or 4 to 6, had minimal impact

on overall performance when the epoch duration was held constant. Conversely a

constant number of testing epochs could be improved by lowering the epoch duration.

Despite the intent to resolve the impact of epoch duration and testing epochs, it was

clear far more expansive experiments were necessary.

Understand the role of epochs would have also required a deeper understanding

of the datasets and feature sets given the impact they have on each other,

Figures 5.43–5.45. In these figure, where the UBM mixtures were swept using a

TVM dimension of 25 with an LDA dimension of 15, performance was shown to be

dependent on dataset. The aggregated datasets were split up into sets of two (blue)

and three (red), with the extra AbnNrm dataset being assigned red as well. The

CEP features showed improved performance at larger UBM mixtures, while the
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PSD and COH features performance waned with larger UBM mixtures. Critically,

the best performing aggregated datasets, AbnMot and NrmMot datasets, contained

the PhysioNet Database dataset and the worst contained the TUH-EEG seizure

dataset for the PSD and COH features. Whereas the CEP features performance

subverts this with the AbnSzr dataset performing as well as the AbnNrm dataset.

The top performances of the PSD and COH featrue sets had the fourth and fifth

highest scores when using CEP features. For all feature sets, the AbnNrmMot

dataset had the third highest score.

Even by combining the datasets, it remained difficult to determine the main driver

(feature, epoch, dataset) of performance with respect to each algorithm. Evaluating

each dataset independently was thought to be a way to isolate these components,

but in hindsight it seemed the experiments were not exhaustive enough to form a

consensus on the ideal dataset parameters. Ideally, the number of experiments would

have quadrupled by performing sweeps over each epoch duration (1s, 2s, 5s, and 10s)

in addition to an incremental number of epochs per testing dataset (1, 2, 4, 6, 8, 10,

12, 14). The entirety of this was impracticable, but Research Aim 1 could be partially

address through Experiment 4: Algorithm Benchmarks based on the refinements to

the I-Vector algorithm gained within these Parameter Sweeps.

A poorly chosen epoch duration appeared to negatively impact an otherwise

acceptable feature set, Figures 5.5–5.7. This made it difficult to select an

appropriate classifier-feature pairing in the La Rocca Based Protocol Experiments

which was why the follow-on Identity Vector Parameter Experiments used all three

feature sets. Through the course of these experiments it was noted that each feature

had a natural affinity for a specific type of EEG dataset: the TUH-EEG normal and

CEP features, Figure 5.16; the PhysioNet Database and the COH features, Figure

5.21; the TUH-EEG seizure data and the PSD features, Figure 5.26. This was not
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Figure 5.43. I-Vector on aggregated datasets using CEP. This C Metric plot shows
the CEP based aggregated datasets performance as a function of UBM
mixture size. This data was drawn from the 4 epoch set of 10s
duration.
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Figure 5.44. I-Vector on aggregated datasets using PSD. This C Metric plot shows
the PSD based aggregated datasets performance as a function of UBM
mixture size. This data was drawn from the 4 epoch set of 10s
duration.
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Figure 5.45. I-Vector on aggregated datasets using COH. This C Metric plot shows
the COH based aggregated datasets performance as a function of UBM
mixture size. This data was drawn from the 4 epoch set of 10s
duration.
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unexpected as many studies have attempted to improve performance though novel

feature sets [64, 81, 98, 110].

Epoch duration was known to influence performance [13, 42, 48, 91] and did in

these experiments, but feature selection and UBM mixture size appeared to have a

more dominant role in classification. Given a single testing epoch, I-Vectors were able

exceed a score of 0.75 on the TUH-EEG normal dataset using CEP features, Figure

5.10. I-Vectors were able to exceed a score of 0.75 on the PhysioNet Database dataset

with a variety of COH feature epochs because performance appeared dependent on

TVM and UBM mixture size, Figure 5.19. Acceptable performance on the TUH-EEG

seizure dataset was dependent on increasing the UBM mixture size and using as many

epochs in the testing dataset as possible. Therefore the 2s duration epochs were set

as the basis for the UBM-TVM Relationship experiments with 12 epochs per testing

dataset. The number of epochs was reduced from 14 because it was felt the two

shorter non-motion resting trials weakened the divergent nature of the four datasets

(abnormal, normal, seizure, and motion).

To say this applied to all EEG circumstances would be premature as there was

no sleep data [141], no P300 data [138], nor emotion/workload data [107] included

in the Parameter Sweeps. Additionally, accounting for longitudinal data was not

addressed despite its presence in the TUH-EEG seizure data. As a whole the tested

data represented new ground within EEG subject verification, but left much to be

desired for classifying beyond subjects. The PhysioNet Database and some of the

TUH-EEG data lacked external documentation to characterize the subjects (age,

gender, handedness, etc) or their conditions with complete clinical annotations.

Ideally all of these conditions would be met which would enable such a dataset to

enable a comprehensive analysis of features, algorithms and parameters.
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Therefor the best path forward was to aggregate the datasets into groups of two

or three in an effort to provided an unbiased experimental protocol. This increased

the complexity of the classification task via larger subject counts, 50 to 570, and

their associated statistical patterns, such as motion and seizure phenomena. The

goal was to provide a more competitive set of benchmarks for evaluating the three

classification algorithms and feature sets. Critically, EEG data was rarely processed

from such disparate sources making these result a nexus of comparison across a

variety of commonly tested data types because of them being publicly accessible.

Successful classification by I-Vectors could then be inferred as the missing

benchmark tool capable of linking EEG subject identification/verification tests

together.

A technique capable of handling such variety needed to be developed because of

the multimodal nature of EEG data itself and the amount of variability from subject

to subject in larger datasets [205]. The majority of signal processing techniques

for EEGs have typically been focused on specific use cases such as seizure detection,

BCIs, and biometrics. Specifically, investigators have sought techniques for both data

optimization and modeling that were unique to their particular EEG signals. By

tuning data parameters such as channel count, feature type, and recording duration,

investigators have been able to successfully classify data according to subject [105]

and waveform [162].

Thus the work presented here was consistent with the goals of the EEG signal

processing community in that it supported techniques for subject classification

[103, 64, 105, 68], BCI applications [206, 151], session variability [66, 86, 42], and

noise classification [11]. The most logical application of I-Vectors would within EEG

biometrics [64, 68, 86] because those align with I-Vectors’ original intent of speaker

verification, defined here as one-to-one matching of an unknown recording to a
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known recording. However, the aim was to develop I-Vectors as a broad data

agnostic subject verification tool. The EEGs community had no such tool and it

was clearly necessary given the diversity of solutions for classification (BCI [205],

seizure detection and prediction [6], and cohort retrieval [200]) tasks found

throughout the EEG processing community.

These Parameter Sweeps outlined how I-Vector parameters should be tuned for

use given the tested feature sets and datasets. Ultimately, a set of UBM mixtures

(32, 64, 128) was chosen instead of a single mixture given how each feature and

dataset performance varied, Table 5.2. It was clear only the TUH-EEG seizure dataset

took advantage of the range of TVM dimensions so they remained unchanged going

forward. The LDA were also rarely influential and so they were retained but reworked

to align better to the TVM dimensions. The major parameter reduction took place

by resolving to use 2s duration epochs and use 12 epochs in the testing datasets. This

mean the training and enrollment data would be given 48 epochs for a reasonable 80%

training and 20% testing split of the data.

Table 5.2. Identity Vector Parameter Sweep, Optimized

UBM TVM LDA

32
64
128

25 20 15 5
50 45 25 15
75 70 50 25
100 95 75 50 25
200 195 100 75 50 25
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Chapter 6

ALGORITHM BENCHMARKS

The Parameter Sweeps in Chapter 5 provided an understanding of how to

configure the datasets, UBMs, TVM dimensions and LDA dimensions to apply

I-Vectors for use with EEGs. A portion of Chapter 5 presented a limited

comparison of the GMM-UBM, I-Vector, and MD algorithms within the context of

La Rocca’s experimental protocol and the Parameter Sweep protocol. From these

experiments, it was found that I-Vectors performed competitively relative to MD

and GMM-UBM classification using PSD features of the PhysioNet Database

dataset. Results were also comparable to the performance of MD-based

[7, 64, 98, 110] and GMM-UBM classifiers [42, 163] as published by other groups.

Thus even without optimizing epoch duration and TVM configurations, I-Vectors

provided competitive performance, suggesting strong results would be possible for

the Algorithm Benchmarks reported in this chapter.

The comparative results of the Protocol Replication in Section 5.1.2 were limited

to the PSD feature set and PhysioNet Database dataset. This meant fully inclusive

experiments, using the CEP and COH features in addition to the PSD features and the

TUH-EEG datasets in addition to the PhysioNet Database dataset, would be used

for the Algorithm Benchmarks. Unlike the single-dataset experiments carried out

in the Parameter Sweeps Section 5.2.1, the Algorithm Benchmarks in this chapter

were applied to larger and more heterogeneous aggregated datasets, as outlined in

Chapter 3 and summarized here again in Table 6.1. As established in the conclusions
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of Chapter 5, each of these datasets fixed at epochs of 2s duration (with 12 epochs

used for the testing dataset) and UBMs consisting of 32, 64, and 128 mixtures.

Table 6.1. Combined Dataset Designations and Subject Count

Designation Dataset 1 Dataset 2 Dataset 3 # Subjects

AbnNrm TUH Abnormal TUH Normal - 100
AbnSzr TUH Abnormal TUH Seizure - 461
NrmSzr TUH Normal TUH Seizure - 461

AbnMot TUH Abnormal Physio Motion - 159
NrmMot TUH Normal Physio Motion - 159
SzrMot TUH Seizure Physio Motion - 520

AbnNrmSzr TUH Abnormal TUH Normal TUH Seizure 511
AbnNrmMot TUH Abnormal TUH Normal Physio Motion 209
NrmSzrMot TUH Normal TUH Seizure Physio Motion 570
AbnSzrMot TUH Abnormal TUH Seizure Physio Motion 570

Consequently, the free parameters of the Algorithm Benchmarks in this chapter

were the feature sets, TVM dimensions, and LDA dimensions. All three feature sets

(PSD, COH, and CEP) were included because the CEP features performed well in

Chapter 4’s I-Vector development, as did the PSD features in Chapter 5’s Parameter

Sweeps. The COH features had worked well for La Rocca and others in bio-metric and

BCI classification tasks [59, 64]. Although the larger TVM dimensions (100 and 200)

had performed poorly for the majority of the tested datasets, they showed promise on

the 411-subject TUH-EEG seizure data. This suggested that the largest subject pools

of the aggregated datasets would benefit from the larger TVM dimensions. Likewise,

the increased complexity (via the mixing of abnormal, normal, motion, and seizure

data) was thought to provide an opportunity for LDA to refine the native TVMs and

thus improve the I-Vector classification.

The purpose of evaluating these algorithms and parameters over the 10 unique

datasets listed in Table 6.1 was to produce a strong understanding how the
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relationships between datasets, features, and algorithms affects I-Vector

performance. This was in line with Research Aim 1: Can I-Vectors perform as well

as or better than similar techniques. Although this chapter focuses on the

pre-selected UBM sizes (34, 64, and 128), summary results are also presented

without limits on the UBM mixture sizes. This assured the transparency of the

results with the hope that these datasets would be used by others in an effort to

promote a common evaluation platform for algorithm and feature development.

The experiments followed the same protocol of Parameter Sweeps (see Chapter 5)

by presenting the C-Metric scores of the algorithms as a function of their UBM sizes

and TVM dimensions when applicable. Even though the the MD classifier produced a

single score for each dataset, this score was repeated for each mixture size, even though

mixtures are not applicable to its operation. Similarly, the GMM-UBM classifier,

while dependent on the UBMs, was not impacted by the TVM dimension. This was

also true when analyzing the impact of the LDA dimensions, since neither MD and

GMM-UBM techniques were impacted.

The only difference in methods introduced in this chapter was that a set of

I-Vectors was generated for each TVM prior to any LDA. This enabled a ‘raw’

evaluation of the TVMs prior to refinement by LDA. This assured as direct as

possible of a comparison between the three algorithms labeled as the “Native TVM

Performance”. In contrast, the impact of LDA on these native TVMs was labeled

LDA Enhanced Performance. These LDA experiments were the final component of

Research Aim 2’s parameter testing while Research Aim 1 was directly addressed by

the Native TVMs experiments.
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6.1 Native TVM Performance

The Native TVM experiments tracked the performance of I-Vectors based on the

TVM dimension. In the existing literature, I-Vectors were not typically derived

directly from a TVM as post processing, like LDA, channel normalization, or length

normalization, was shown to further improve performance [170, 192, 207]. While

this was established practice within the speech community, such steps would have

added too much complexity (degrees of freedom and algorithm choices) to the

benchmarking process. The restriction on not allowing the TVM dimension to

exceed the number of subjects in the dataset meant that the AbnNrm, AbnMot, and

NrmMot had maximum TVM dimensions of 99, 158, and 158 respectively.

6.1.1 Results

Just as in Chapter 5, each dataset was evaluated using each feature set, producing

a total of 30 figures. The first experiment, Figures 6.1–6.3, tested the algorithms’

performances across the three feature sets when using the TUH-EEG Abnormal and

Normal datasets. This combined dataset served as a basline comparison point as it

consisted of smallest number of subjects, 100. The MD algorithm exceeded the 0.75

score threshold for the CEP and PSD features. The GMM-UBM algorithm exceeded

the 0.75 score threshold with multiple UBM mixtures for all three feature. I-Vectors

were also able to exceed the 0.75 score threshold with a variety of UBM mixtures and

TVM dimensions for the CEP and PSD features. All three algorithms reported their

best scores when using the CEP features.

The second experiment, Figures 6.4–6.6, tested the algorithms’ performances

when using the TUH-EEG Abnormal and Seizure datasets, consisting of 461

subjects. The MD algorithm exceeded the 0.75 score threshold for the PSD features.
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Figure 6.1. C Metric Plot of CEP AbnNrm. This C Metric plot shows the CEP based
TUH-EEG Abnormal and Normal datasets performance as a function of
algorithm selection. The UBM mixture sizes are given for the I-Vector,
red solid line, and GMM-UBM, blue dashed line, results. The MD,
black dotted line, results were not dependent on UBM mixtures. The
dataset contained 100 subjects, limiting the TVM dimensions to a
maximum of 99.
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Figure 6.2. C Metric Plot of PSD AbnNrm. This C Metric plot shows the PSD based
TUH-EEG Abnormal and Normal datasets performance as a function of
algorithm selection. The UBM mixture sizes are given for the I-Vector
and GMM-UBM results. The MD results were not dependent on UBM
mixtures. The dataset contained 100 subjects, limiting the TVM
dimensions to a maximum of 99.
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Figure 6.3. C Metric Plot of COH AbnNrm. This C Metric plot shows the COH
based TUH-EEG Abnormal and Normal datasets performance as a
function of algorithm selection. The UBM mixture sizes are given for
the I-Vector and GMM-UBM results. The MD results were not
dependent on UBM mixtures. The dataset contained 100 subjects,
limiting the TVM dimensions to a maximum of 99.
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The GMM-UBM algorithm exceeded the 0.75 score threshold with multiple UBM

mixtures for all three features. The I-Vectors were able to exceed the 0.75 score

threshold with a variety of UBM mixtures and TVM dimensions for the PSD

features. All three algorithms reported their best scores when using the PSD

features.

The third experiment, Figures 6.7–6.9, tested the algorithms’ performances when

using the TUH-EEG Normal and Seizure datasets consisting of 461 subjects. The MD

algorithm exceeded the 0.75 score threshold for the PSD features. The GMM-UBM

algorithm exceeded the 0.75 score threshold with multiple UBM mixtures for all three

features. The I-Vectors were able to exceed the 0.75 score threshold with a variety

of UBM mixtures and TVM dimensions for the PSD features. All three algorithms

reported their best scores when using the PSD features.

The fourth experiment, Figures 6.10–6.12, tested the algorithms’ performances

when using the TUH-EEG Abnormal and the PhysioNet Database Motion datasets

consisting, of 159 subjects. The MD algorithm exceeded the 0.75 score threshold

for the CEP and PSD features. The GMM-UBM algorithm exceeded the 0.75 score

threshold with multiple UBM mixtures for all three features. The I-Vectors were

able to exceed the 0.75 score threshold with a variety of UBM mixtures and TVM

dimensions for the PSD and COH features, but only at a TVM dimension of 25 for

the CEP features. The MD algorithm reported its best score with the CEP features,

while the GMM-UBM and I-Vectors reported their best scores with the PSD features.

The fifth experiment, Figures 6.13–6.15, tested the algorithms’ performances when

using the TUH-EEG Normal and the PhysioNet Database Motion datasets, consisting

of 159 subjects. The MD algorithm exceeded the 0.75 score threshold for the CEP

and PSD features. The GMM-UBM algorithm exceeded the 0.75 score threshold with

multiple UBM mixtures for all three features. The I-Vectors were able to exceed the
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Figure 6.4. C Metric Plot of CEP AbnSzr. This C Metric plot shows the CEP based
TUH-EEG Abnormal and Seizure datasets performance as a function of
algorithm selection. The UBM mixture sizes are given for the I-Vector
and GMM-UBM results. The MD results were not dependent on UBM
mixtures.
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Figure 6.5. C Metric Plot of PSD AbnSzr. This C Metric plot shows the PSD based
TUH-EEG Abnormal and Seizure datasets performance as a function of
algorithm selection. The UBM mixture sizes are given for the I-Vector
and GMM-UBM results. The MD results were not dependent on UBM
mixtures.
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Figure 6.6. C Metric Plot of COH AbnSzr. This C Metric plot shows the COH
based TUH-EEG Abnormal and Seizure datasets performance as a
function of algorithm selection. The UBM mixture sizes are given for
the I-Vector and GMM-UBM results. The MD results were not
dependent on UBM mixtures.
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Figure 6.7. C Metric Plot of CEP NrmSzr. This C Metric plot shows the CEP based
TUH-EEG Normal and Seizure datasets performance as a function of
algorithm selection. The UBM mixture sizes are given for the I-Vector
and GMM-UBM results. The MD results were not dependent on UBM
mixtures.
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Figure 6.8. C Metric Plot of PSD NrmSzr. This C Metric plot shows the PSD based
TUH-EEG Normal and Seizure datasets performance as a function of
algorithm selection. The UBM mixture sizes are given for the I-Vector
and GMM-UBM results. The MD results were not dependent on UBM
mixtures.
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Figure 6.9. C Metric Plot of COH NrmSzr. This C Metric plot shows the COH
based TUH-EEG Normal and Seizure datasets performance as a
function of algorithm selection. The UBM mixture sizes are given for
the I-Vector and GMM-UBM results. The MD results were not
dependent on UBM mixtures.
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Figure 6.10. C Metric Plot of CEP AbnMot. This C Metric plot shows the CEP
based TUH-EEG Abnormal and the PhysioNet Database Motion
datasets performance as a function of algorithm selection. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures. The dataset
contained 159 subjects, limiting the TVM dimensions a maximum of
158.
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Figure 6.11. C Metric Plot of PSD AbnMot. This C Metric plot shows the PSD
based TUH-EEG Abnormal and the PhysioNet Database Motion
datasets performance as a function of algorithm selection. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures. The dataset
contained 159 subjects, limiting the TVM dimensions a maximum of
158.
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Figure 6.12. C Metric Plot of COH AbnMot. This C Metric plot shows the COH
based TUH-EEG Abnormal and the PhysioNet Database Motion
datasets performance as a function of algorithm selection. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures. The dataset
contained 159 subjects, limiting the TVM dimensions a maximum of
158.
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0.75 score threshold with a variety of UBM mixtures and TVM dimensions for all

features. The MD algorithm reported its best score when using the CEP features,

while the GMM-UBM and I-Vectors algorithms reported their best scores when using

the PSD features.

The sixth experiment, Figures 6.16–6.18, tested the algorithms’ performances

when using the TUH-EEG Seizure and the PhysioNet Database Motion datasets,

consisting of 520 subjects. The MD algorithm exceeded the 0.75 score threshold for

the PSD features. The GMM-UBM algorithm exceeded the 0.75 score threshold

with multiple UBM mixtures for all three features. The I-Vectors were able to

exceed the 0.75 score threshold with a variety of UBM mixtures and TVM

dimensions for the PSD features. All three algorithms reported their best scores

when using the PSD features.

The seventh experiment, Figures 6.19–6.21, tested the algorithms’ performances

when using the TUH-EEG Abnormal, Normal, and Seizure datasets, consisting of

511 subjects. The MD algorithm exceeded the 0.75 score threshold for the PSD

features. The GMM-UBM algorithm exceeded the 0.75 score threshold with multiple

UBM mixtures for all three features. The I-Vectors were able to exceed the 0.75 score

threshold with a variety of UBM mixtures and TVM dimensions for the PSD features.

All three algorithms reported their best scores when using the PSD features.

The eighth experiment, Figures 6.22–6.24, tested the algorithms’ performances

when using the TUH-EEG Abnormal, Normal, and PhysioNet Database Motion

datasets consisting of 209 subjects. The MD algorithm exceeded the 0.75 score

threshold for the CEP and PSD features. The GMM-UBM algorithm exceeded the

0.75 score threshold with multiple UBM mixtures for all three features. The

I-Vectors were able to exceed the 0.75 score threshold with a variety of UBM

mixtures and TVM dimensions for the CEP and PSD features. The MD algorithm
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Figure 6.13. C Metric Plot of CEP NrmMot. This C Metric plot shows the CEP
based TUH-EEG Normal and the PhysioNet Database Motion datasets
performance as a function of algorithm selection. The UBM mixture
sizes are given for the I-Vector and GMM-UBM results. The MD
results were not dependent on UBM mixtures. The dataset contained
159 subjects, limiting the TVM dimensions a maximum of 158.
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Figure 6.14. C Metric Plot of PSD NrmMot. This C Metric plot shows the PSD
based TUH-EEG Normal and the PhysioNet Database Motion datasets
performance as a function of algorithm selection. The UBM mixture
sizes are given for the I-Vector and GMM-UBM results. The MD
results were not dependent on UBM mixtures. The dataset contained
159 subjects, limiting the TVM dimensions a maximum of 158.
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Figure 6.15. C Metric Plot of COH NrmMot. This C Metric plot shows the COH
based TUH-EEG Normal and the PhysioNet Database Motion datasets
performance as a function of algorithm selection. The UBM mixture
sizes are given for the I-Vector and GMM-UBM results. The MD
results were not dependent on UBM mixtures. The dataset contained
159 subjects, limiting the TVM dimensions a maximum of 158.
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Figure 6.16. C Metric Plot of CEP SzrMot. This C Metric plot shows the CEP
based TUH-EEG Seizure and the PhysioNet Database Motion datasets
performance as a function of algorithm selection. The UBM mixture
sizes are given for the I-Vector and GMM-UBM results. The MD
results were not dependent on UBM mixtures.
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Figure 6.17. C Metric Plot of PSD SzrMot. This C Metric plot shows the PSD
based TUH-EEG Seizure and the PhysioNet Database Motion datasets
performance as a function of algorithm selection. The UBM mixture
sizes are given for the I-Vector and GMM-UBM results. The MD
results were not dependent on UBM mixtures.
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Figure 6.18. C Metric Plot of COH SzrMot. This C Metric plot shows the COH
basedTUH-EEG Seizure and the PhysioNet Database Motion datasets
performance as a function of algorithm selection. The UBM mixture
sizes are given for the I-Vector and GMM-UBM results. The MD
results were not dependent on UBM mixtures.
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Figure 6.19. C Metric Plot of CEP AbnNrmSzr. This C Metric plot shows the CEP
based TUH-EEG Abnormal, Normal, and Seizure datasets performance
as a function of algorithm selection. The UBM mixture sizes are given
for the I-Vector and GMM-UBM results. The MD results were not
dependent on UBM mixtures.
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Figure 6.20. C Metric Plot of PSD AbnNrmSzr. This C Metric plot shows the PSD
based TUH-EEG Abnormal, Normal, and Seizure datasets performance
as a function of algorithm selection. The UBM mixture sizes are given
for the I-Vector and GMM-UBM results. The MD results were not
dependent on UBM mixtures.
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Figure 6.21. C Metric Plot of COH AbnNrmSzr. This C Metric plot shows the COH
based TUH-EEG Abnormal, Normal, and Seizure datasets performance
as a function of algorithm selection. The UBM mixture sizes are given
for the I-Vector and GMM-UBM results. The MD results were not
dependent on UBM mixtures.
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reported its best score when using the CEP features, while the GMM-UBM and

I-Vectors algorithms reported their best scores when using the PSD features.

The ninth experiment, Figures 6.25–6.27, tested the algorithms’ performances

when using the TUH-EEG Normal, Seizure, and PhysioNet Database Motion

datasets, consisting of 570 subjects. The MD algorithm exceeded the 0.75 score

threshold for the PSD features. The GMM-UBM algorithm exceeded the 0.75 score

threshold with multiple UBM mixtures for all three features. The I-Vectors were

able to exceed the 0.75 score threshold with a variety of UBM mixtures and TVM

dimensions for the PSD features. All three algorithms reported their best scores

when using the PSD features.

The tenth experiment, Figures 6.28–6.30, tested the algorithms’ performances

when using the TUH-EEG Abnormal, Seizure, and PhysioNet Database Motion

datasets consisting of 570 subjects. The MD algorithm exceeded the 0.75 score

threshold for the PSD features. The GMM-UBM algorithm exceeded the 0.75 score

threshold with multiple UBM mixtures for all three features. The I-Vectors were

able to exceed the 0.75 score threshold with a variety of UBM mixtures and TVM

dimensions for the PSD features. All three algorithms reported their best scores

when using the PSD features.

6.1.2 Discussion

The top scores for each algorithm, dataset, and feature set pairing are given in

Table 6.2. These represent the peak performance of each system within the tested

range of datasets, feature sets, and, when applicable, UBM mixture size and TVM

dimensions. The minimum acceptable score of 0.75 was not indicated in the table;

instead, the top two scores were highlighted for each dataset. The GMM-UBM

algorithm had the most high scores and the I-Vector had the most second highest
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Figure 6.22. C Metric Plot of CEP AbnNrmMot. This C Metric plot shows the
TUH-EEG Abnormal, Normal, and PhysioNet Database Motion
datasets performance as a function of algorithm selection. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures.
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Figure 6.23. C Metric Plot of PSD AbnNrmMot. This C Metric plot shows the PSD
based TUH-EEG Abnormal, Normal, and PhysioNet Database Motion
datasets performance as a function of algorithm selection. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures.
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Figure 6.24. C Metric Plot of COH AbnNrmMot. This C Metric plot shows the
TUH-EEG Abnormal, Normal, and PhysioNet Database Motion
datasets performance as a function of algorithm selection. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures.
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Figure 6.25. C Metric Plot of CEP NrmSzrMot. This C Metric plot shows the CEP
based TUH-EEG Normal, Seizure, and PhysioNet Database Motion
dataset performance as a function of algorithm selection. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures.
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Figure 6.26. C Metric Plot of PSD NrmSzrMot. This C Metric plot shows the PSD
based TUH-EEG Normal, Seizure, and PhysioNet Database Motion
datasets performance as a function of algorithm selection. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures.
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Figure 6.27. C Metric Plot of COH NrmSzrMot. This C Metric plot shows the COH
based TUH-EEG Normal, Seizure, and PhysioNet Database Motion
datasets performance as a function of algorithm selection. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures.
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Figure 6.28. C Metric Plot of CEP AbnSzrMot. This C Metric plot shows the CEP
based TUH-EEG Abnormal, Seizure, and PhysioNet Database Motion
datasets performance as a function of algorithm selection. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures.
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Figure 6.29. C Metric Plot of PSD AbnSzrMot. This C Metric plot shows the PSD
based TUH-EEG Abnormal, Seizure, and PhysioNet Database Motion
datasets performance as a function of algorithm selection. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures.
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Figure 6.30. C Metric Plot of COH AbnSzrMot. This C Metric plot shows the COH
basedTUH-EEG Abnormal, Seizure, and PhysioNet Database Motion
datasets performance as a function of algorithm selection. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures.
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scores, while the MD algorithm failed to produce any such scores. Regardless of

classifier, these scores were predominantly tied to the PSD features. Unlike the

algorithms’ themselves, each feature set found itself among the best reported at

least once.

It was not necessary to break out scores by TVM dimension because the same

dimension (25) consistently produced the best results. The exceptions were when

a TVM of dimension 50 outperformed 25 on the PSD AbnSzr and PSD AbnNrmSzr

datasets. The strength of the 25-dimension TVM was particularly noticeable when

paired with the CEP features, as exemplified in Figures 6.13, 6.16 and 6.22. However

the PSD features scores frequently peaked at the same score regardless of the TVM

dimension, as exemplified in Figures 6.5, 6.8 and 6.14. This occurred with the COH

features as well, but only once the UBM was built from 512 or more mixtures.

Generally all three algorithms performed worse when operating on the CEP or

COH features compared to their PSD counterparts. This trend was most pronounced

when the TUH-EEG seizure dataset was included. The scores for the AbnNrm AbnMot,

and NrmMot datasets were consistently strong across feature sets, but the AbnSzr and

NrmSzr scores were substantially worse for the CEP and COH features. In worst

case comparisons the GMM-UBM saw a 0.21 drop in score from the PSD to the

next strongest feature on the SzrMot dataset, a 0.72 drop for the MD on the AbnNrm

dataset, and 0.58 drop for I-Vectors on the AbnNrm dataset.

The relationship between dataset and feature was apparent from the scores of

AbnNrm dataset which had poor COH scores, but the AbnSzr and NrmSzr datasets

showed improved COH performance while decreasing the CEP and PSD

performance. COH feature performance improved further when the

PhysioNet Database motion dataset was added for two or three dataset

aggregations. The best two dataset performances of the COH features were AbnMot
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Table 6.2. Top C Metric Performances

Dataset Feature GU MD IV

AbnNrm

CEP 0.9900 0.9028 0.9956
PSD 0.9777 0.7800 0.8413
COH 0.8019 0.1851 0.4117

AbnSzr

CEP 0.7608 0.5835 0.4440
PSD 0.9313 0.7527 0.7796
COH 0.8200 0.2148 0.4323

NrmSzr

CEP 0.7583 0.5835 0.4261
PSD 0.9651 0.7657 0.8130
COH 0.8289 0.2126 0.4146

AbnMot

CEP 0.9391 0.9496 0.8991
PSD 0.9874 0.8994 0.9547
COH 0.9604 0.6849 0.8567

NrmMot

CEP 0.9272 0.9357 0.9036
PSD 0.9874 0.9080 0.9497
COH 0.9104 0.6981 0.7960

SzrMot

CEP 0.7383 0.6558 0.4953
PSD 0.9496 0.7635 0.8501
COH 0.8367 0.3769 0.5656

AbnNrmSzr

CEP 0.7730 0.5583 0.4950
PSD 0.9401 0.7613 0.7808
COH 0.7854 0.2192 0.3868

AbnNrmMot

CEP 0.9349 0.9043 0.9205
PSD 0.9856 0.8245 0.9354
COH 0.8756 0.5616 0.7072

NrmSzrMot

CEP 0.7834 0.6509 0.5384
PSD 0.9574 0.7754 0.8412
COH 0.8461 0.3491 0.5364

AbnSzrMot

CEP 0.7667 0.6579 0.5352
PSD 0.9439 0.7577 0.8166
COH 0.8246 0.3565 0.5135

The best score is in bold with the runner up in italic.
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followed closely by NrmMot. This was the case as well with the three dataset

performances of AbnNrmMot. Unsurprisingly, this was also the dataset with the best

CEP feature performance as well.

Overall, the PSD features were consistently strong regardless of algorithm and

dataset. Coupled with the strength of the GMM-UBM, this pairing represented the

optimal subject verification technique among the tested configurations. In instances

where this was not true (most notably the AbnNrm dataset where CEP features and I-

Vectors were the optimal combination) the second best options were the COH features

paired with GMM-UBMs or PSD features paired with I-Vectors. The hierarchy of

features for GMM-UBMs and I-Vectors was always PSD, followed by COH, and then

CEP. Contrary to this, the MD performance produced three instances outside the

AbnNrm dataset where the CEP feature produced better performance than the PSD

features: AbnMot, NrmMot, and AbnNrmMot.

Despite I-Vectors not outperforming the GMM-UBMs, they were consistently the

reported the second best score for PSD features. At worst they trailed by 0.16 for the

AbnSzr, NrmSzr, and AbnNrmSzr datasets. The TUH-EEG Seizure dataset was their

weakness as their performance on that dataset was closer to the MD algorithm then

than the GMM-UBM algorithm. However, when that dataset was not included its

performance the I-Vectors tracked the performance of the GMM-UBMs. These results

suggested I-Vectors were a viable alternative for subject verification, reaffirming what

was previously reported, but now using larger and more diverse datasets [193].

Significantly, the I-Vector performance was strongest when built from TVMs of

only 25 dimensions. Using only cosine distance to evaluate these vectors for each

subject set, performance was comparable to two far more elaborate techniques. The

MD technique is reliant on a pooled covariance matrix used to determine the distance

between the averaged means of each subject [64]. It uses vectors with sizes equal to the
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number of features (26 to 40) and a similarly sized covariance matrix to evaluate the

testing data. Its results occasionally bested the I-Vectors when using CEP features,

failed to produce competitive results with COH features, and always trailed I-Vectors

when using PSD features. When the MD CEP performance exceed that of the I-

Vectors, the equivalent PSD features performance favored I-Vectors and exceeded the

MD CEP performance.

While the MD performance represented a minimum performance threshold, the

GMM-UBM performance represented a target threshold for the I-Vectors to meet

or potentially exceed [42, 163, 200]. Unfortunately, the I-Vectors were unable to

exceed the performance of the GMM-UBM when using the same sized UBM. On

most datasets, the GMM-UBM performance using 4 mixture UBMs eclipsed the 0.75

threshold and often outperformed the MD results and the I-Vector for any sized UBM.

However, as the UBM mixture size continued to increase its performance would begin

to diminish when reaching the 1024 and 2048 mixture sizes.

When the GMM-UBM used a 4-mixture UBM it was effectively operating with

160 degrees of freedom (40 elements in a PSD feature vector times 4 mixtures) for

each enrollment model and the target model. The MD classifier was a 40× 40 pooled

covariance matrix and 40-element enrollment and testing feature vectors. However,

the I-Vectors were only 25-element vectors for each enrollment and testing subject,

making them an order of magnitude smaller than the GMM-UBM approach and

nearly half the size of the MD approach. The PSD and COH feature vectors contained

the same number of elements, while the CEP feature vector was only 26 elements.

The CEP features put the MD and I-Vectors on a very similar scale, but both retained

an order of magnitude reduction over the GMM-UBM’s 104 elements.

Taking the functional aspects of the algorithms into account, it appeared that

I-Vectors were far more efficient at distilling the critical components of the datasets
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into a functional low dimensional space. The subject specific I-Vectors matched the

order of vectors generated by the MD algorithm produced while producing

performance scores comparable to the GMM-UBMs. If these techniques were

expanded to produce channel classifications or epoch classifications, the GMM-UBM

would produce significantly more data (an additional full set of UBM mixtures for

each subject) and the MD would be forced to constrain even more subjects, (2,398

subject-channels from the 109 PhysioNet Database subjects) through its 40 × 40

mean centered covariance matrix.

This would increase the GMM-UBM training and computation time in conjunction

with increasing its memory and disk needs, while the dimensionality constraints of the

MD would likely continue to hinder its performance as the worst of the three classifiers.

However, the I-Vector technique would only produce more 25 element feature vectors

and require only a linear increase in computation cycles and no increase in memory

or disk storage. Thus it is likely that I-Vectors represent the best balance within the

context of these experiments and possess an extensible framework with a confined

resource footprint.

6.1.3 Constraints

The results were limited by the datasets due to the differing number of subjects. It

was beneficial to include diverse data in terms of quality and quantity, but

additional insight would have been gained if each dataset was constrained to a

common subject count. Adding in larger datasets that were known to be easier

(Mot) or those known to be harder (Szr) to classify made them the dominant

statistical components when paired with smaller datasets (Abn and Nrm). Thus,

performance of AbnMot and NrmMot was an indirect evaluation on the Mot dataset as
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it represented over 2/3 of the aggregated dataset, 50 subjects to 109 subjects, and

even moreso for the AbnSzr and NrmSzr with 411 versus 50 subjects.

When comparing the performance of the algorithms between the AbnNrm and

the AbnSzr and NrmSzr datasets, the performance for the CEP and PSD features

decreased, roughly 0.40 and 0.04, respectively. Conversely, the performance for the

COH features increased slightly by 0.02 on average. When evaluated against the

AbnMot and NrmMot, it was the PSD and COH feature sets that improved performance

while the CEP features decreased for the GMM-UBM and I-Vector algorithms. The

MD algorithm instead had improvements across all feature sets, nearly 0.50 for the

COH features.

The wide range of the algorithms’ performances were thought to be caused by the

training data, which produced the UBMs and the pooled covariance matrices, being

biased by overwhelming amount of Mot or Szr data in the aggregated datasets. This

could have been the reason the AbnSzr and NrmSzr results were so similar to those

of the AbnNrmSzr results, since the majority of modeled data comes from the Szr

dataset.

Understanding the impact of these training data discrepancies would have required

replicating these ten experiments using controlled datasets of 50 subjects each (the

subject counts of the Nrm and Abn datasets). While balancing the weight of each source

of data, this would have also reduced the total amount of data available for training

the UBMs. Comparing only 150 subjects, or even 200 subjects if all four datasets were

combined would also have been too small to test the desired TVMs dimensions, and

would barely double the previously tested 109 subjects of the PhysioNet Database.

Given that some of best GMM-UBM performances required UBM mixtures of

size 64 (see Figures 6.26 and 6.29) it was likely the complexity of the data was

underestimated relative to the UBM mixture sweep. This was suggested in
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Figures 6.4, 6.7, 6.19, 6.20, 6.25 and 6.28, where the larger TVM dimensions began

to produce steadily increasing scores while the smaller TVMs’ performances began

to wane. These listed figures represented all tests using the Szr dataset. This

supported the idea that the TUH-EEG Seizure data was very robust in that the

GMM-UBM achieved maximum performance with just a 64 mixture UBM. As each

mixture was on the order of 41 components, using 64 mixtures meant that there

were 2,624 independent degrees of freedom to build the 570 subject models used in

classification.

Comparatively, the I-Vector’s best score relied on 570 vectors of 25 elements for

the AbnSzrMot and NrmSzrMot datasets. In each experiment, larger dimension TVMs

did not provide improved performance. In the larger datasets the TVMs frequently

converged at the larger mixture sizes, Figures 6.23, 6.26 and 6.29. This suggested

they were constrained by the smaller dimensional space produced by the previous

UBMs. This was affirmed by the previously noted CEP feature plots when the Szr

dataset was used.

6.2 LDA Enhanced Performance

The impact of LDA did not yield any performance improvements during the

Parameter Sweeps of Section 5.2.1. This result disagreed with performance

improvements documented by the speech recognition community, where reduction in

the I-Vectors’ dimensionality was met with improved classification performance

[203, 208, 192]. The Algorithm Benchmarks provided another chance to test the

impact of LDA on the TVM, since the datasets had increased in quality and

quantity. As the LDA only apply to the I-Vectors, the optimal UBM mixtures were
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chosen and compared against the best scores of the GMM-UBM over the given

UBM mixture range.

This allowed the continued use of the C Metric style plots with the x-axis modified

to represent the LDA dimension. However, the LDA dimensions were updated to align

better with the chosen TVM dimensions and to provide at least three LDA iterations

for each TVM. This new alignment,Table 6.3, represented an improvement from the

search space seen in Chapter 5, Table 5.1. This allowed for the unmodified TVM

result to be shown (when the LDA dimension matches the TVM dimension) and all

ensuing LDA dimensions linked by a common line style.

Table 6.3. Updated LDA Dimensions

UBM TVM LDA

32 64 128

25 20 15 5
50 45 25 15
75 70 50 25
100 95 75 50 25
200 195 100 75 50 25

6.2.1 Results

These experiments mirrored the ten experiments of the previous Native TVM

Performance, which thus produced a total of 30 new figures. The initial experiment,

Figures 6.31–6.33, tested the impact of LDA on the reduced UBM mixtures for each

of the three feature sets when using the TUH-EEG Abnormal and Normal datasets.

This combined dataset served as a basline comparison point as it consisted of the

smallest number of subjects, 100. The MD algorithm exceeded the 0.75 score
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threshold for the CEP and PSD features. The GMM-UBM algorithm exceeded the

0.75 score threshold for the CEP and PSD features. The I-Vectors were able to

exceed the 0.75 score threshold with each of the UBM mixtures when using an LDA

improved TVM for the CEP and PSD features. All three algorithms reported their

best scores when using the CEP features.

Despite a TVM dimension of 25 being the strongest for the native TVM, LDA was

unable to improve upon its performance. However, the next largest TVM dimensions,

50 and 75, showed significant performance gains when LDA reduced them to 45 and 70

dimensions, respectively. These improvements were enough to make the 45 dimension

I-Vectors on par with the native 25 dimension I-Vectors, and the 70 dimension I-

Vectors exceed the MD performance. The two largest dimensions, 100 and 200, did

not improve their performance when paired with LDA.

The second experiment, Figures 6.34–6.36, tested the impact of LDA on the

reduced UBM mixtures for each of the three feature sets when using the TUH-EEG

Abnormal and Seizure datasets. This combined dataset consisted of 461 subjects.

The MD algorithm exceeded the 0.75 score threshold for the PSD features. The

GMM-UBM algorithm exceeded the 0.75 score threshold for all three features. The

I-Vectors were able to exceed the 0.75 score threshold with each of the UBM

mixtures when using an LDA improved TVM for the PSD features. All three

algorithms reported their best scores when using the PSD features.

When paired with the CEP features, LDA was able to improve the performance

of the TVMs in dimensions 25, 50, 75, and 100 for each UBM mixture when it

reduced them to 20, 45, 70, and 95, respectively. The PSD and COH features saw

improvements for the TVMs of dimension 50, 75, and 100. In both cases LDA only

decreased the performance of TVMs of dimension 25.

265



5
1
5

2
0

2
5

4
5

5
0

7
0

7
5

9
5

1
0
0

2
0
0

LDA Dimension

-0.5

0

0.5

0.75

1

C
 M

e
tr

ic

CEP Performance versus LDA Dimension

IV-tvm25-32

IV-tvm50-32

IV-tvm75-32

IV-tvm100-32

IV-tvm200-32

IV-tvm25-64

IV-tvm50-64

IV-tvm75-64

IV-tvm100-64

IV-tvm200-64

IV-tvm25-128

IV-tvm50-128

IV-tvm75-128

IV-tvm100-128

IV-tvm200-128

GU-Best

MD-Best

Figure 6.31. C Metric Plot of CEP AbnNrm with LDA. This C Metric plot shows the
CEP based TUH-EEG Abnormal and Normal datasets performance as
a function of LDA dimension. The UBM mixture sizes are given for the
I-Vector and GMM-UBM results. The MD results were not dependent
on UBM mixtures. The dataset contained 100 subjects, limiting the
100 and 200 dimension TVMs to a dimension of 99.
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Figure 6.32. C Metric Plot of PSD AbnNrm with LDA. This C Metric plot shows the
PSD based TUH-EEG Abnormal and Normal datasets performance as
a function of LDA dimension. The UBM mixture sizes are given for the
I-Vector and GMM-UBM results. The MD results were not dependent
on UBM mixtures. The dataset contained 100 subjects, limiting the
100 and 200 dimension TVMs to a dimension of 99.
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Figure 6.33. C Metric Plot of COH AbnNrm with LDA. This C Metric plot shows the
COH based TUH-EEG Abnormal and Normal datasets performance as
a function of LDA dimension. The UBM mixture sizes are given for the
I-Vector and GMM-UBM results. The MD results were not dependent
on UBM mixtures. The dataset contained 100 subjects, limiting the
100 and 200 dimension TVMs to a dimension of 99.
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Figure 6.34. C Metric Plot of CEP AbnSzr with LDA. This C Metric plot shows the
CEP based TUH-EEG Abnormal and Seizure datasets performance as
a function of LDA dimension. The UBM mixture sizes are given for the
I-Vector and GMM-UBM results. The MD results were not dependent
on UBM mixtures.
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Figure 6.35. C Metric Plot of PSD AbnSzr with LDA. This C Metric plot shows the
PSD based TUH-EEG Abnormal and Seizure datasets performance as
a function of LDA dimension. The UBM mixture sizes are given for the
I-Vector and GMM-UBM results. The MD results were not dependent
on UBM mixtures.
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Figure 6.36. C Metric Plot of COH AbnSzr with LDA. This C Metric plot shows
the COH based TUH-EEG Abnormal and Seizure datasets
performance as a function of LDA dimension. The UBM mixture sizes
are given for the I-Vector and GMM-UBM results. The MD results
were not dependent on UBM mixtures.
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The third experiment, Figures 6.37–6.39, tested the impact of LDA on the reduced

UBM mixtures for each of the three feature sets when using the TUH-EEG Normal

and Seizure datasets. This combined dataset consisted of 461 subjects. The MD

algorithm exceeded the 0.75 score threshold for the PSD features. The GMM-UBM

algorithm exceeded the 0.75 score threshold for all three features. The I-Vectors were

able to exceed the 0.75 score threshold with each of the UBM mixtures when using

an LDA improved TVM for the PSD features. All three algorithms reported their

best scores when using the PSD features.

When paired with the CEP features, LDA was able to improve the performance of

the TVMs in dimensions 25, 50, 75, and 100 for each UBM mixture when it reduced

them to 20, 45, 70, and 95 respectively. The PSD and COH features saw improvement

of the TVMs in dimensions 50, 75, 100, and 200 for each UBM mixture. In both cases

LDA only decreased the performance of TVMs of dimension 25.

The fourth experiment, Figures 6.40–6.42, tested the impact of LDA on the

reduced UBM mixtures for each of the three feature sets when using the TUH-EEG

Abnormal and PhysioNet Database Motion datasets. This combined dataset

consisted of 159 subjects. The MD algorithm exceeded the 0.75 score threshold for

the CEP and PSD features. The GMM-UBM algorithm exceeded the 0.75 score

threshold for all three features. The I-Vectors were able to exceed the 0.75 score

threshold with the 64 and 128 mixtures UBMs when using an LDA improved TVM

for all three features. The 32 mixture UBM only exceeded this threshold for the

PSD and COH features. All three algorithms reported their best scores when using

the PSD features.

When paired with the CEP features, LDA was able to improve the performance of

the TVMs in dimensions 25, 50, 75, and 100 for each UBM mixture when it reduced

them to 20, 45, 70, and 95 respectively. The PSD features experienced minimal if any
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Figure 6.37. C Metric Plot of CEP NrmSzr with LDA. This C Metric plot shows the
CEP based TUH-EEG Normal and Seizure datasets performance as a
function of LDA dimension. The UBM mixture sizes are given for the
I-Vector and GMM-UBM results. The MD results were not dependent
on UBM mixtures.
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Figure 6.38. C Metric Plot of PSD NrmSzr with LDA. This C Metric plot shows the
PSD based TUH-EEG Normal and Seizure datasets performance as a
function of LDA dimension. The UBM mixture sizes are given for the
I-Vector and GMM-UBM results. The MD results were not dependent
on UBM mixtures.
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Figure 6.39. C Metric Plot of COH NrmSzr with LDA. This C Metric plot shows
the COH based TUH-EEG Normal and Seizure datasets performance
as a function of LDA dimension. The UBM mixture sizes are given for
the I-Vector and GMM-UBM results. The MD results were not
dependent on UBM mixtures.

275



improvement for each TVM dimension. However, the COH features saw improvement

of the TVMs in dimensions 50, 75, and 100 for the 32 and 64 mixture UBMs. In both

cases LDA only decreased the performance of TVMs of dimension 25 and 200.

The fifth experiment, Figures 6.43–6.45, tested the impact of LDA on the reduced

UBM mixtures for each of the three feature sets when using the TUH-EEG Normal

and Seizure datasets. This combined dataset consisted of 461 subjects. The MD

algorithm exceeded the 0.75 score threshold for the PSD features. The GMM-UBM

algorithm exceeded the 0.75 score threshold for the PSD and COH features. The I-

Vectors were able to exceed the 0.75 score threshold with each of the UBM mixtures

when using an LDA improved TVM for the PSD features. All three algorithms

reported their best scores when using the PSD features.

When paired with the CEP features, LDA was able to improve the performance of

the TVMs in all dimensions for the first iteration of LDA across all UBM mixtures.

The PSD features for TVM dimensions of 75, 100, and 200 improved when LDA

reduced them down to 70, 95, and 109. Continued used of LDA only decreased

performance as was the case of TVM dimensions of 25 and 50. The COH features

experience improvement with the initial use of LDA for all dimensions except 25. In

many cases this reduction of dimensions drove I-Vector performance above that of

the MD performance for the PSD and COH features.

The sixth experiment, Figures 6.46–6.48, tested the impact of LDA on the reduced

UBM mixtures for each of the three feature sets when using the TUH-EEG Seizure

and PhysioNet Database Motion datasets. This combined dataset consisted of 520

subjects. The MD algorithm exceeded the 0.75 score threshold for the PSD features.

The GMM-UBM algorithm exceeded the 0.75 score threshold for the PSD and COH

features. The I-Vectors were able to exceed the 0.75 score threshold with each of the
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Figure 6.40. C Metric Plot of CEP AbnMot with LDA. This C Metric plot shows the
CEP based TUH-EEG Abnormal and PhysioNet Database Motion
datasets performance as a function of LDA dimension. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures. The dataset
contained 159 subjects, limiting the 200 dimension TVM to 158
dimensions.
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Figure 6.41. C Metric Plot of PSD AbnMot with LDA. This C Metric plot shows the
PSD based TUH-EEG Abnormal and PhysioNet Database Motion
datasets performance as a function of LDA dimension. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures. The dataset
contained 159 subjects, limiting the 200 dimension TVM to 158
dimensions.
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Figure 6.42. C Metric Plot of COH AbnMot with LDA. This C Metric plot shows
the COH based TUH-EEG Abnormal and PhysioNet Database Motion
datasets performance as a function of LDA dimension. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures. The dataset
contained 159 subjects, limiting the 200 dimension TVM to 158
dimensions.
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Figure 6.43. C Metric Plot of CEP NrmSzr with LDA. This C Metric plot shows the
CEP based TUH-EEG Normal and Seizure datasets performance as a
function of LDA dimension. The UBM mixture sizes are given for the
I-Vector and GMM-UBM results. The MD results were not dependent
on UBM mixtures.
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Figure 6.44. C Metric Plot of PSD NrmSzr with LDA. This C Metric plot shows the
PSD based TUH-EEG Normal and Seizure datasets performance as a
function of LDA dimension. The UBM mixture sizes are given for the
I-Vector and GMM-UBM results. The MD results were not dependent
on UBM mixtures.
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Figure 6.45. C Metric Plot of COH NrmSzr with LDA. This C Metric plot shows
the COH based TUH-EEG Normal and Seizure datasets performance
as a function of LDA dimension. The UBM mixture sizes are given for
the I-Vector and GMM-UBM results. The MD results were not
dependent on UBM mixtures.
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UBM mixtures when using an LDA improved TVM for the PSD features. All three

algorithms reported their best scores when using the PSD features.

When paired with the CEP features, LDA was able to improve the performance of

the TVMs in dimensions 25, 50, 75, and 100 for each UBM mixture when it reduced

them to 20, 45, 70, and 95 respectively. The 32 mixture UBM PSD feature TVMs

of dimension 75, 100, and 200 were improved by LDA. The 64 and 128 mixture

UBMs only experienced improvement for TVMs of dimension 100 and 200. The

COH features were improved by LDA for every TVM dimension aside from 25 for

each UBM mixture. Again, these improvements drove the I-Vector scores over that

produced by the MD algorithm.

The seventh experiment, Figures 6.49–6.51, tested the impact of LDA on the

reduced UBM mixtures for each of the three feature sets when using the TUH-EEG

Abnormal, Normal, and Seizure datasets. This combined dataset consisted of 511

subjects. The MD algorithm exceeded the 0.75 score threshold for the PSD features.

The GMM-UBM algorithm exceeded the 0.75 score threshold for all three features.

The I-Vectors were able to exceed the 0.75 score threshold with using 64 and 129

mixture UBMs paired with native TVMs of dimension 50 and all mixtures when

paired with native TVM of dimension 25 for the PSD features. All three algorithms

reported their best scores when using the PSD features.

When paired with the CEP features, LDA was able to improve the performance of

the TVMs in dimensions 25, 50, 75, and 100 for each UBM mixture when it reduced

them to 20, 45, 70, and 95 respectively. The PSD features saw improvement of the

TVMs of dimension 75, 100, and 200 for all UBMs. The 32 mixture UBM also saw

improvement for the TVM of dimension 50. The COH features saw improvement of

the TVMs in dimensions 50, 75, 100, and 200 for each UBM mixture. For TVMs
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Figure 6.46. C Metric Plot of CEP SzrMot with LDA. This C Metric plot shows the
CEP based TUH-EEG Seizure and PhysioNet Database Motion
datasets performance as a function of LDA dimension. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures.
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Figure 6.47. C Metric Plot of PSD SzrMot with LDA. This C Metric plot shows the
PSD based TUH-EEG Seizure and PhysioNet Database Motion
datasets performance as a function of LDA dimension. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures.
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Figure 6.48. C Metric Plot of COH SzrMot with LDA. This C Metric plot shows
the COH based TUH-EEG Seizure and PhysioNet Database Motion
datasets performance as a function of LDA dimension. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures.
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of dimension 50, 75 and 100 the impact of LDA drove the I-Vector scores over that

produced by the MD algorithm.

The eighth experiment, Figures 6.52–6.54, tested the impact of LDA on the

reduced UBM mixtures for each of the three feature sets when using the TUH-EEG

Abnormal, Normal, and PhysioNet Database Motion datasets. This combined

dataset consisted of 209 subjects. The MD algorithm exceeded the 0.75 score

threshold for the CEP and PSD features. The GMM-UBM algorithm exceeded the

0.75 score threshold for all three features. The I-Vectors were able to exceed the

0.75 score threshold with each of the UBM mixtures when using a native or LDA

improved TVM for the PSD features. For the CEP features only the 64 and 128

mixture UBMs using TVMs of dimension 25 exceeded the threshold. All three

algorithms reported their best scores when using the PSD features.

When paired with the CEP features, LDA was able to improve the performance of

the TVMs in dimensions 25, 50, 75, and 100 for each UBM mixture when it reduced

them to 20, 45, 70, and 95 respectively. The PSD features saw improvement of the

32 mixture UBM for TVM dimensions of 50, 75, and 100. The 64 and 128 mixture

UBMs saw improvement for the TVM dimensions of 75, 100, and 200. The COH

features saw improvement of all UBMs for the TVMs in dimensions 50, 75, 100, and

200. For TVMs of dimension 50, 75 and 100 the impact of LDA drove the I-Vector

scores over that produced by the MD algorithm.

The ninth experiment, Figures 6.55–6.57, tested the impact of LDA on the reduced

UBM mixtures for each of the three feature sets when using the TUH-EEG Normal,

Seizure, and PhysioNet Database Motion datasets. This combined dataset consisted

of 570 subjects. The MD algorithm exceeded the 0.75 score threshold for the PSD

features. The GMM-UBM algorithm exceeded the 0.75 score threshold for all three

features. The I-Vectors were able to exceed the 0.75 score threshold with each of the
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Figure 6.49. C Metric Plot of CEP AbnNrmSzr with LDA. This C Metric plot shows
the CEP based TUH-EEG Abnormal, Normal, and Seizure datasets
performance as a function of LDA dimension. The UBM mixture sizes
are given for the I-Vector and GMM-UBM results. The MD results
were not dependent on UBM mixtures.
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Figure 6.50. C Metric Plot of PSD AbnNrmSzr with LDA. This C Metric plot shows
the PSD based TUH-EEG Abnormal, Normal, and Seizure datasets
performance as a function of LDA dimension. The UBM mixture sizes
are given for the I-Vector and GMM-UBM results. The MD results
were not dependent on UBM mixtures.

289



5
1
5

2
0

2
5

4
5

5
0

7
0

7
5

9
5

1
0
0

1
5
0

1
9
5

2
0
0

LDA Dimension

-0.5

0

0.5

0.75

1

C
 M

e
tr

ic

COH Performance versus LDA Dimension

IV-tvm25-32

IV-tvm50-32

IV-tvm75-32

IV-tvm100-32

IV-tvm200-32

IV-tvm25-64

IV-tvm50-64

IV-tvm75-64

IV-tvm100-64

IV-tvm200-64

IV-tvm25-128

IV-tvm50-128

IV-tvm75-128

IV-tvm100-128

IV-tvm200-128

GU-Best

MD-Best

Figure 6.51. C Metric Plot of COH AbnNrmSzr with LDA. This C Metric plot shows
the COH based TUH-EEG Abnormal, Normal, and Seizure datasets
performance as a function of LDA dimension. The UBM mixture sizes
are given for the I-Vector and GMM-UBM results. The MD results
were not dependent on UBM mixtures.
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Figure 6.52. C Metric Plot of CEP AbnNrmMot with LDA. This C Metric plot shows
the CEP based TUH-EEG Abnormal, Normal, and
PhysioNet Database Motion datasets performance as a function of
LDA dimension. The UBM mixture sizes are given for the I-Vector and
GMM-UBM results. The MD results were not dependent on UBM
mixtures.
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Figure 6.53. C Metric Plot of PSD AbnNrmMot with LDA. This C Metric plot shows
the PSD based TUH-EEG Abnormal, Normal, and
PhysioNet Database Motion datasets performance as a function of
LDA dimension. The UBM mixture sizes are given for the I-Vector and
GMM-UBM results. The MD results were not dependent on UBM
mixtures.
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Figure 6.54. C Metric Plot of COH AbnNrmMot with LDA. This C Metric plot shows
the COH based TUH-EEG Abnormal, Normal, and
PhysioNet Database Motion datasets performance as a function of
LDA dimension. The UBM mixture sizes are given for the I-Vector and
GMM-UBM results. The MD results were not dependent on UBM
mixtures.
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UBM mixtures when using an LDA improved TVM for the PSD features. All three

algorithms reported their best scores when using the PSD features.

When paired with the CEP features, LDA was able to improve the performance of

all TVMs built from the 128 mixture UBM. For the 64 mixture UBM, the TVMs of

dimension 25, 50, 75, and 100 was improved by LDA. For the 32 mixture UBM, the

TVMs of dimension 25, 50, 75, and 100 was improved by LDA. When paired with the

PSD features, LDA was able to improve the performance of the TVMs of dimension

75, 100, and 200. For the 64 mixture UBM, the TVMs of dimension 75, 100, and 200

was improved by LDA. For the 32 mixture UBM, the TVMs of dimension 50, 75,

100, and 200 was improved by LDA. For the TVMs of dimension 50, 75, and 100 the

impact of LDA drove the I-Vector score over that produced by the MD algorithm.

When paired with the COH features, LDA was able to improve the performance of

the TVMs of dimension 50, 75, 100, and 200 for all UBMs. These improvements

drove the I-Vector score over that produced by the MD algorithm for the TVMs of

dimension 50, 75, and 100.

The tenth experiment, Figures 6.58–6.60, tested the impact of LDA on the reduced

UBM mixtures for each of the three feature sets when using the TUH-EEG Abnormal,

Seizure, and PhysioNet Database Motion datasets. This combined dataset consisted

of 570 subjects. The MD algorithm exceeded the 0.75 score threshold for the PSD

features. The GMM-UBM algorithm exceeded the 0.75 score threshold for all three

features. The I-Vectors were able to exceed the 0.75 score threshold with each of the

UBM mixtures when paired with the native TVM of dimension 25. The 64 mixture

UBM exceeded the threshold with a TVM of dimension 50 and the 128 mixture UBM

exceeded the threshold with TVMs of dimension 50, 75, and 100. All three algorithms

reported their best scores when using the PSD features.
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Figure 6.55. C Metric Plot of CEP NrmSzrMot with LDA. This C Metric plot shows
the CEP based TUH-EEG Normal, Seizure, and PhysioNet Database
Motion datasets performance as a function of LDA dimension. The
UBM mixture sizes are given for the I-Vector and GMM-UBM results.
The MD results were not dependent on UBM mixtures.
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Figure 6.56. C Metric Plot of PSD NrmSzrMot with LDA. This C Metric plot shows
the PSD based TUH-EEG Normal, Seizure, and PhysioNet Database
Motion datasets performance as a function of LDA dimension. The
UBM mixture sizes are given for the I-Vector and GMM-UBM results.
The MD results were not dependent on UBM mixtures.
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Figure 6.57. C Metric Plot of COH NrmSzrMot with LDA. This C Metric plot shows
the COH based TUH-EEG Normal, Seizure, and PhysioNet Database
Motion datasets performance as a function of LDA dimension. The
UBM mixture sizes are given for the I-Vector and GMM-UBM results.
The MD results were not dependent on UBM mixtures.
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When paired with the CEP features, LDA was able to improve the performance of

all TVMs built from the 128 mixture UBM. For the 64 mixture UBM, the TVMs of

dimension 25, 50, 75, and 100 was improved by LDA. For the 32 mixture UBM, the

TVMs of dimension 25, 50, 75, and 100 was improved by LDA. When paired with the

PSD features, LDA was able to improve the performance of the TVMs of dimension

75, 100, and 200. For the 64 mixture UBM, the TVMs of dimension 75, 100, and 200

was improved by LDA. For the 32 mixture UBM, the TVMs of dimension 50, 75,

100, and 200 was improved by LDA. For the TVMs of dimension 50, 75, and 100 the

impact of LDA drove the I-Vector score over that produced by the MD algorithm.

When paired with the COH features, LDA was able to improve the performance of

the TVMs of dimension 50, 75, 100, and 200 for all UBMs. These improvements

drove the I-Vector score over that produced by the MD algorithm for the TVMs of

dimension 50, 75, and 100.

6.2.2 Discussion

The top scores for each algorithm, dataset, and feature set pairing are given in

Figure 6.61. These represent the peak performance of each system within the closed

range of UBMs. The minimum acceptable score of 0.75 was not indicated in the

table, instead of the top two scores were highlighted for each dataset. The

GMM-UBM algorithm had the most high scores with the I-Vector producing the

most second highest scores. The MD algorithm failed to produce a single score

capable of a top two performance. Regardless of classifier, these scores were

predominately tied to the PSD features just like the native results in Table 6.2.

Unlike the algorithms’ performances, each feature set found itself among the top

two scores for a given dataset at least once.

298



5
1
5

2
0

2
5

4
5

5
0

7
0

7
5

9
5

1
0
0

1
5
0

1
9
5

2
0
0

LDA Dimension

-0.5

0

0.5

0.75

1

C
 M

e
tr

ic

CEP Performance versus LDA Dimension

IV-tvm25-32

IV-tvm50-32

IV-tvm75-32

IV-tvm100-32

IV-tvm200-32

IV-tvm25-64

IV-tvm50-64

IV-tvm75-64

IV-tvm100-64

IV-tvm200-64

IV-tvm25-128

IV-tvm50-128

IV-tvm75-128

IV-tvm100-128

IV-tvm200-128

GU-Best

MD-Best

Figure 6.58. C Metric Plot of CEP AbnSzrMot with LDA. This C Metric plot shows
the CEP based TUH-EEG Abnormal, Seizure, and PhysioNet Database
Motion datasets performance as a function of LDA dimension. The
UBM mixture sizes are given for the I-Vector and GMM-UBM results.
The MD results were not dependent on UBM mixtures.
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Figure 6.59. C Metric Plot of PSD AbnSzrMot with LDA. This C Metric plot shows
the TUH-EEG Abnormal, Seizure, and PhysioNet Database Motion
datasets performance as a function of LDA dimension. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures.
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Figure 6.60. C Metric Plot of COH AbnSzrMot with LDA. This C Metric plot shows
the COH based TUH-EEG Abnormal, Seizure, and
PhysioNet Database Motion datasets performance as a function of
LDA dimension. The UBM mixture sizes are given for the I-Vector and
GMM-UBM results. The MD results were not dependent on UBM
mixtures.
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Figure 6.61. Top C Metric Performance with LDA. Top C
Metric Performance with LDA

Dataset Feature GU MD IV

AbnNrm
CEP 0.9900* 0.9028 0.9872 *
PSD 0.9777 0.7800 0.8413
COH 0.7247 0.1851 0.4306

AbnSzr
CEP 0.7604 0.5835 0.2871
PSD 0.9284 0.7527 0.7791
COH 0.7867 0.2148 0.4262

NrmSzr
CEP 0.7484 0.5835 0.3051
PSD 0.9651 0.7657 0.8130 *
COH 0.7787 0.2126 0.4221

AbnMot
CEP 0.9388 0.9496 0.8437
PSD 0.9874 0.8994 0.9547
COH 0.9563 0.6849 0.8567

NrmMot
CEP 0.9225 0.9357 0.8760
PSD 0.9874 0.9080 0.9497
COH 0.9104 0.6981 0.7960

SzrMot
CEP 0.7303 0.6558 0.2698
PSD 0.9496 0.7635 0.8501
COH 0.8367 0.3769 0.5594

AbnNrmSzr
CEP 0.7730 0.5583 0.3463
PSD 0.9345 0.7613 0.7808 *
COH 0.7768 0.2192 0.3921

AbnNrmMot
CEP 0.9349 0.9043 0.8700
PSD 0.9856 0.8245 0.9354
COH 0.8756 0.5616 0.7072

NrmSzrMot
CEP 0.7698 0.6509 0.3851
PSD 0.9574 0.7754 0.8412 *
COH 0.8248 0.3491 0.5360

AbnSzrMot
CEP 0.7561 0.6579 0.3859
PSD 0.9439 0.7577 0.8149
COH 0.8169 0.3565 0.5163

Changes in placement were marked with an *.
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In the native TVM table Table 6.2, the I-Vectors produced 1 top score and 3

second place scores. Confined to the closed UBM set, the I-Vectors were unable to

produce a top score, but managed seven second place scores. The majority of the

I-Vector scores were produced by TVMs of dimension 25 using the 128 mixture UBM.

There were only seven exceptions to this behavior, as shown in Figure 6.62.

Figure 6.62. Top C Metric I-Vector Exceptions. Top C
Metric I-Vector Exceptions

Dataset Feature Score TVM LDA UBM

AbnNrm
CEP 0.9872 50 45 128
COH 0.4306 50 45 128

AbnSzr COH 0.4262 50 45 64
NrmSzr COH 0.4221 50 45 128
SzrMot COH 0.5594 50 45 32

AbnNrmSzr COH 0.3921 50 45 64
AbnSzrMot COH 0.5163 50 45 128

These seven experiments were run again with an increased set of UBM mixtures

given that I-Vectors had performed better under those conditions in the native

TVM experiments. Unlike their smaller UBM mixture counterparts, these larger

mixtures produced clusters of results based on their TVM dimension,

Figures 6.63–6.69. The performance of larger TVMs was shown capable of matching

and in one case exceeding the performance, Figure 6.68, of the 25 dimension TVMs.

However, even with this increased UBM mixtures the impact of LDA was consistent

in improving the performance of all TVMs larger than 25 dimensions regardless of

mixture size.

These behaviors suggested that LDA was capable of improving the performance of

a given TVM under the right circumstances, but that was insufficient for improving

the performance of I-Vectors against the other classifiers. A distinct trend to this
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Figure 6.63. C Metric Plot of CEP AbnNrm with LDA, Larger UBMs. This C Metric
plot shows the CEP based TUH-EEG Abnormal and Normal datasets
performance as a function of LDA dimension. The UBM mixture sizes
are given for the I-Vector and GMM-UBM results. The MD results
were not dependent on UBM mixtures. The dataset contained 100
subjects, limiting the 100 and 200 dimension TVMs to a dimension of
99.
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Figure 6.64. C Metric Plot of COH AbnNrm with LDA, Larger UBMs. This C
Metric plot shows the COH based TUH-EEG Abnormal and Normal
datasets performance as a function of LDA dimension. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures. The dataset
contained 100 subjects, limiting the 100 and 200 dimension TVMs to a
dimension of 99.
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Figure 6.65. C Metric Plot of COH AbnSzr with LDA, Larger UBMs. This C
Metric plot shows the COH based TUH-EEG Abnormal and Seizure
datasets performance as a function of LDA dimension. The UBM
mixture sizes are given for the I-Vector and GMM-UBM results. The
MD results were not dependent on UBM mixtures.
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Figure 6.66. C Metric Plot of CEP NrmSzr with LDA, Large UBMs. This C Metric
plot shows the COH based TUH-EEG Normal and Seizure datasets
performance as a function of LDA dimension. The UBM mixture sizes
are given for the I-Vector and GMM-UBM results. The MD results
were not dependent on UBM mixtures.
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Figure 6.67. C Metric Plot of COH SzrMot with LDA, Larger UBMs. This C
Metric plot shows the COH based TUH-EEG Seizure and
PhysioNet Database Motion datasets performance as a function of
LDA dimension. The UBM mixture sizes are given for the I-Vector and
GMM-UBM results. The MD results were not dependent on UBM
mixtures.
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Figure 6.68. C Metric Plot of COH AbnNrmSzr with LDA, Larger UBMs. This C
Metric plot shows the COH based TUH-EEG Abnormal, Normal, and
Seizure datasets performance as a function of LDA dimension. The
UBM mixture sizes are given for the I-Vector and GMM-UBM results.
The MD results were not dependent on UBM mixtures.
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Figure 6.69. C Metric Plot of COH AbnSzrMot with LDA, Larger UBMs. This C
Metric plot shows the COH based TUH-EEG Abnormal, Seizure and
PhysioNet Database Motion datasets performance as a function of
LDA dimension. The UBM mixture sizes are given for the I-Vector and
GMM-UBM results. The MD results were not dependent on UBM
mixtures.
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point was the fall off in performance of the smaller UBM mixtures as the TVM

dimension was increased, as exemplified in Figures 6.49–6.51. For the smallest TVM

dimension, all UBM mixtures produce equivalent performance on the PSD and COH

features. Despite increasing the mixtures in the UBM, the larger TVM dimensions

appeared capable of only replicating the scores achieved by the 25 dimension TVM

for the PSD features. However, the strength of the larger 128 mixture UBM was

apparent when using CEP features with the 25 dimension TVM.

The AbnNrmSzr was one of the larger and more complex datasets tested, which

made it difficult to believe the best classification option would be one of the most

dimensional constricting. However, this appeared directly related to the TVM

dimension as the larger PSD UBMs, Figure 6.70, showed larger TVM dimensions

and their LDA children producing similar levels of performance. This behavior was

so consistent it nearly appeared as an artificial ceiling on I-Vector performance as

neither the larger TVM dimensions nor larger UBMs produced a stronger C Metric

score. This carried over to LDA only improving the 200 dimension TVMs and

replicating the native TVM scores for the first LDA steps of the 100 and 75

dimension TVMs.

Therefore the previously assumed operating range of UBMs mixtures was

incorrect. As the number of mixtures in the UBM approached and/or exceeded the

necessary threshold for a given dataset the TVMs matrices converged their

performance. Subtly, the use of LDA indicated this as well by no longer enhancing

the performance of the TVM, but suppressing it. On the two largest datasets,

Figures 6.71 and 6.72, containing both TUH-EEG Seizure and PhysioNet Database

Motion datasets, their trends are nearly mirrored to each other and follow that of

Figure 6.70. The C Metric scores appeared to flatten out for the native and first
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Figure 6.70. C Metric Plot of PSD AbnNrmSzr with LDA, Larger UBMs. This C
Metric plot shows the PSD based TUH-EEG Abnormal, Normal, and
Seizure datasets performance as a function of LDA dimension. The
UBM mixture sizes are given for the I-Vector and GMM-UBM results.
The MD results were not dependent on UBM mixtures.
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LDA reduction of the larger TVM dimensions, but are unable to improve overall

performance.

Using LDA when the mixtures of the UBM were insufficiently sized for the given

dataset improved performance by improving the independence of the TVM. Once the

UBM had achieved sufficient size relative to the dataset, those using the larger sized

seizure datasets were the only experiments to produce acceptable scores for TVMs of

dimension 100 and 200. LDA’s impact was negligible for properly sized UBMs with

the initial reduction of 5 dimensions, but would then rapidly degrade performance.

Overall, the largest TVMs did not outperform those of dimensions 25 and 50. The

same was true of the larger UBMs failing to improve upon the results of the 128, 256

and 512 mixture UBMs utilizing TVMs of 25 and 50 dimensions.

6.2.3 Constraints

The impact that LDA had on the various TVMs was linked to the associated UBM

mixture size. Unfortunately, for logistical reasons, the range of UBMs was limited

to models up to 2048 mixtures as the single datasets showed performance falling

off at the highest UBM mixture sizes. However, the larger aggregated datasets,

specifically those paired with the TUH-EEG Seizure dataset, such as in Figures 6.71

and 6.72, could have benefited from UBMs with larger mixture sizes. This was seen

in, Figures 6.73 and 6.74, where the TVM dimension and UBM pairings shifted from

optimal performance being TVM dimension 25 with a 128 mixture UBM to a 200

dimension TVM with a 2048 mixture UBM.

To control these larger UBMs, the range of TVM dimensions would have needed

to be larger as well. In fact, even without increasing the mixture sizes of the tested

UBMs, larger TVMs dimensions may have improved the performance of the 1024 and

2048 mixture UBMs and helped define the trend of LDA on those larger matrices.
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Figure 6.71. C Metric Plot of PSD NrmSzrMot with LDA, Larger UBMs. This C
Metric plot shows the PSD based TUH-EEG Normal, Seizure, and
PhysioNet Database Motion datasets performance as a function of
LDA dimension. The UBM mixture sizes are given for the I-Vector and
GMM-UBM results. The MD results were not dependent on UBM
mixtures.
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Figure 6.72. C Metric Plot of PSD AbnSzrMot with LDA, Larger UBMs. This C
Metric plot shows the COH based TUH-EEG Abnormal, Seizure, and
PhysioNet Database Motion datasets performance as a function of
LDA dimension. The UBM mixture sizes are given for the I-Vector and
GMM-UBM results. The MD results were not dependent on UBM
mixtures.
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Figure 6.73. C Metric Plot of PSD NrmSzrMot with LDA, Largest UBMs. This C
Metric plot shows the PSD based TUH-EEG Normal, Seizure, and
PhysioNet Database Motion datasets performance as a function of
LDA dimension. The UBM mixture sizes are given for the I-Vector and
GMM-UBM results. The MD results were not dependent on UBM
mixtures.
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Figure 6.74. C Metric Plot of PSD AbnSzrMot with LDA, Largest UBMs. This C
Metric plot shows the PSD based TUH-EEG Abnormal, Seizure, and
PhysioNet Database Motion datasets performance as a function of
LDA dimension. The UBM mixture sizes are given for the I-Vector and
GMM-UBM results. The MD results were not dependent on UBM
mixtures.
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However, if larger TVMs or UBMs decreased performance that would have been

insightful as well. Given that, the results suggested, for the chosen datasets and epoch

configurations, I-Vectors encountered a performance ceiling due to the interaction

of the TVM dimensions and UBM mixture sizes. Ultimately this limited their C

Metric scores to above the MD algorithm, but unable to encroach on the GMM-UBM

algorithm.

Resolving when this trend subsided would potentially inform a better

understanding of the relationship between TVMs dimensions, UBMs mixture size,

and classification performance. This was why using a closed set of UBMs turned out

to be ill-informed for the LDA experiments. The native TVMs outperformed their

LDA modified counterparts because they used non-optimal UBMs. However, finding

the optimal UBM through performance scores alone masked the true nature of the

TVM. As LDA was capable of improving the performance of an otherwise deficient

native TVM score of 0.50 to 0.92 by reducing its dimensions from 75 to 70,

Figure 6.31.

6.3 Conclusion

In these Algorithm Benchmarks, the number of tested subjects was substantially

increased from other related bio-metric research, which has frequently relied on the

PhysioNet Database as the largest dataset [68, 104, 86, 162]. In addition to their size,

the datasets chosen for this work were diverse, covering abnormal, normal, motion,

and seizure activity. Across all of these parameters, I-Vectors performed equivalently

with the established EEG classification techniques, MD and GMM-UBM. I-Vector

performance, when using the native TVM and TVMs enhanced by LDA, showed a

remarkable stability across feature sets. Critically, the I-Vectors of dimension 25,
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20, and 15 frequently outperformed MD and performed equivalently to GMM-UBM

despite operating in the lowest possible dimensional space.

However, the I-Vector technique’s ability to classify was exceed by the

GMM-UBMs which had the advantage of building complete UBMs for each

enrollment and testing subject. Understandably, I-Vectors were not able to exceed

the GMM-UBM performance given the increased articulation available via the

mixtures of the UBMs. I-Vectors were able to leverage those exact same UBMs to

produce similar performance by leveraging the dependencies built into the TVM.

This was the actual goal of the experiments: to fully prove the efficacy of I-Vectors

on EEGs given claims of their performance in the realm of speech recognition

[121, 174, 170, 207].

The MD algorithm performed well when given CEP and PSD features, but this

failed to occur when paired with the COH features. Its inclusion provided a lower

bound on performance given the simplicity of each enrollment and testing subject was

constrained to a feature vector comprised of the mean values of its epochs. This vector

was on the order of 26/40 elements for the CEP and PSD/COH features and relied on

a pooled covariance matrix built from all the enrollment data. The drawback of this

technique was that it provided minimal insight into the nature of the data beyond

the models built for each subject.

Everything was tied to the enrollment and testing subjects, which made subject

verification possible, but insight into EEGs was limited to the dependencies found in

the covariance matrix. Therefore, the selection of data segments used to build the

‘subject’ data dictated what the algorithm would learn and use to differentiate the

subjects. This required a priori knowledge to learn content at a deeper level, such as

seizure versus non-seizure, whereas individual subjects were easier to generalize.
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Conversely, the UBMs used by the GMM-UBM and I-Vector were provided with

an abundance of models that may or may not have been based upon the discrimination

field (subject, age, disorder, etc). This means that the partitioning of the enrollment

and testing ‘subjects’ required no a priori knowledge. Providing datasets based on

subject or seizure versus motion did not change what was learned by the UBMs, but

rather only altered those mixtures most closely related to those conditions. Mixtures

in the UBM would likely pertain specifically to motion, seizure, or subject qualities.

As the GMM-UBM built models for each subject, it was able to specifically

target the mixtures contained in each enrollment and testing dataset. There was no

mechanism to constrain the creation of these mixtures which led to incredible

performance. The drawback was that the number of UBM mixtures could exceed

the natural modes of the datasets, turning it into an over-fitted system. This was

most apparent at larger mixture sizes as GMM-UBM performance began to roll off

seen in Figures 6.28–6.30. With too many equations for the available unknowns,

instability was introduced which caused a drop in performance. 1

This behavior was mitigated by the I-Vector algorithm because the TVM

dimensions were limited to one less than the number of subjects. However, this was

likely unnecessary given the I-Vector dimensions were constrained by the TVM

attempting to model a far larger mixture space. In essence, the dimensions of the

I-Vector were not laid out to map to a specific subject, but rather to control changes

in the means of the UBM. Attempts to map a single element of the I-Vector to

control a single subject would fail because it was necessary to account for all the

other elements doing the same through the TVM.

The dependency of the TVM forced the I-Vector elements to work in concert by

cooperating to define each subject. An assumption was made that this forced the I-

1This is likely the reason for the increased EER from Chapter 5’s published epoch sweep results.
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Vectors to link mixtures that were related for the given subject. Individual control of

the mixtures was otherwise impossible as each additional mixture introduced another

feature’s worth of elements, roughly 20, to control. The I-Vector of dimension 25 using

a 512 mixture UBM that bested the GMM-UBM score in Figure 6.1 was controlling

over 10,000 elements in the TVM. As indicated in the LDA experiments’ discussion,

the TVM dimensions were likely too small given the task asked of them as the UBM

grew in size.

Ultimately, I-Vectors worked for the purpose of subject verification using EEG

data. The configuration used in these experiments was straightforward, relying on

the basic introductory approach proposed by the pioneers of the technique. Since their

introduction, various advancements have been made to enhance performance in terms

of UBM and TVM generation [169, 209, 210] and I-Vector production [180, 211, 212]

and evaluation [213]. These were considered beyond the scope of current work and

were therefore not addressed here. However, it was likely these techniques could have

improved performance by possibly pushing I-Vector performance past that of their

GMM-UBM counterparts.
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Chapter 7

UBM-TVM RELATIONSHIP

I-Vector performance was predicated on the ability of the TVM to cull information

from the UBM. This process distilled any relationships between the mixtures of the

UBM into the TVM while simultaneously reducing the dimensionality to that of the

TVM dimension. Therefore it was impossible to discern what each row of the TVM

represented. For each I-Vector, TVM rows worked in concert to modify the UBM in

the feature space for classification.

The other algorithms, MD and GMM-UBM, were more transparent about how

they modified the enrollment and testing datasets to perform subject verification.

This made it possible to determine how those algorithms made their decisions, but the

information was not insightful (a pooled subject covariance matrix and a multitude

of subject specific UBMs). The difficulty with I-Vectors was that the information

contained within the TVM was insightful, there was not direct method to extract or

interpret it. In fact, this is one of the drawbacks of the technique in that resultant

I-Vector elements are unidentifiable components which cannot be uniquely identified

[209]. This drawback was less problematic in the context of speech processing because

a substantial knowledge base existed related to the details of sound production and

human phonemes [123, 137]. With the success of this technique on speech data, and

its now proven ability to process EEG data, it therefore became necessary to explore

techniques capable of highlighting the logic of the TVM and I-Vector algorithm.
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Critically, we have shown that I-Vectors worked well for all feature sets, but

performed best with the PSD features, exceeding a C Metric score of 0.75 for many

of the aggregated datasets. These performances suggested that the TVMs were

capable of distilling the dominant mixtures within a given UBM in a dependent

fashion through the lower dimensional I-Vector space. Thus, the focus of this

chapter was on determining where those mixture dependencies were occurring in the

TVM and how those relationships could be used to enhance classification

performance. The working hypothesis was that mixtures from similar sources

(normal, abnormal, motion, and seizure) would have various levels of affinity for

other mixtures within their native dataset, and likewise for mixtures constructed

from other datasets.

An immediate outcome was that it would be possible to identify components of

the individual datasets that acted in opposition to each other. These decision

surfaces manifested because of the mixture modeling used to produce the UBM and

not because of the scope of classification. This was why the resting trials were

removed from the PhysioNet Database dataset, to ensure each dataset possessed

unique characteristics from the others. Otherwise the Mot trials would have been

more aligned with the the Abn and Nrm data that were included (despite being very

similar) as controls. Iterating through the 10 aggregated datasets produced distinct

edges from which it was possible to learn what mixtures were unique to a given

dataset’s UBM and then, by association, which mixtures were caused by abnormal,

normal, motion or seizure phenomena. Taken to its end, the learning paradigm was

limited only by the data available for testing and its ability to produce reasonable

classification results.
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7.1 Example

The crux of the newly developed approach was to map two distinct UBMs to each

other. This was made easier by using a small number of datasets containing common

data subsets. This ensured there was a common pool of data within the training

dataset and thus a common thread between the UBMs for the mapping algorithm

to identify. As an example, the process of matching the target PSD AbnMot dataset,

Figure 7.2 into the base PSD AbnNrm dataset, Figure 7.1, started with the construction

of their 8-mixture UBMs. The visualization of larger mixture UBMs would be fruitless

given the overlap between mixtures as they increase in number within a confined

feature space. Yet, an 8-mixture UBM example helps illustrate the intent of the

proposed technique by showing that the UBMs (a) produced unique mixtures and

(b) appeared distinct from one another.

Naturally, the mixtures within each UBM that appeared most unique would be

of interest. However, the UBM attempted to build its models to cover the entire

dimensional space of the dataset, so “unique” does not necessarily imply “important”.

Recall that none of the datasets were pre-processed to correct or remove artifacts. In

the base, Figure 7.1, and target, Figure 7.2, distributions, the means and variances

of the mixtures are similar making it difficult to know if they represent artifacts or

underlying trends of their dataset.

In addition, the mixtures’ weights vary, deviating quite far from the anticipated

average weight of 12.5% with the light blue mixtures accounting for upwards of 20% of

the dataset. As more mixtures are added, they begin to resolve into smaller subspaces

originally outlined by the 8, 16, and 32-mixture UBMs. Thus even the mixture weights

offer less insight for larger mixture UBMs as they drop below 2% by the 6th UBM

iteration.
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Figure 7.1. The PSD AbnNrm UBM Mixture Distribution. Distribution of the
8-mixture PSD UBM AbnNrm base. Coloration indicates mixture weight.
Area of a mixture is +/- one standard deviation.

Figure 7.2. The PSD AbnMot UBM Mixture Distribution. Distribution of the
8-mixture PSD UBM AbnMot target. Coloration indicates mixture
weight. Area of a mixture is +/- one standard deviation.
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Given the difficulty of conceptualizing the differences between the UBM

distributions in this manner, they were instead reduced down to their inter-mixture

distances. Directly comparing the two UBMs against each other via their Fréchet

Distance (DF ) provided a way to understand the similarity between the UBMs, see

Figure 7.3. The Fréchet Distance is based upon two GMMs’ means (−→µ ) and

variances (σ) and is given by:

DF
1,2 = norm(−→µ1 −−→µ2)2 + trace(σ1 + σ2 − 2(σ1 ∗ σ2)

1
2 ) (7.1-1)

The distances were reported as log values given the range of distance produce during

testing.

When evaluating these distances for the UBMs of the “base” and “target” in

Figure 7.3, the main interests are the mixtures that are closest and furthest apart

from each other . Under this premise, it is seen that base mixture 2 and target mixture

3 were the closest mixtures between the two UBMs. Conversely, base mixture 1 and

target mixture 8 and base mixture 8 and target mixture 1 were the furthest apart.

In addition base mixtures 3, 4, 5, and 6 were close to target mixtures 5, 4, 1, and

2, respectively. This indicated that both UBMs had modeled a similar feature space

despite operating on distinct datasets.

Attention was also given to the weight of each UBM’s mixture, shown as the bar

plots on the top and right axis of the confusion matrix. These indicated that base

mixture 8 and target mixture 8 were derived from the smallest subset of the original

dataset. However, target mixture 3 represented only 10% of the AbnMot dataset while

being the strongest link to the the base UBM via base mixture 2 which represented

12% of the AbnNrm dataset. This helped establish that the UBMs shared a feature

space despite being built on different datasets.
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Figure 7.3. The PSD AbnMot UBM Confusion Matrix. The relationship between the
PSD based AbnNrm and AbnMot datasets presented as a confusion matrix
of the differences between each UBM’s mixtures. The bar plots on the
edges maintain the weights from their native datasets providing insight
into the prevalence of a given mixture.
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A similar figure was produced for the TVMs of these two datasets, Figure 7.4,

comparing the coefficients produced for each mixture. As a TVM acts on the means

of the UBM mixtures, it was necessary to find a way to compare the alignment of

these coefficients against each other that didn’t consider variances, as with the Fréchet

Distance. This was achieved by generating an “impulse response” from the TVM by

means of a ‘unit’ I-Vector.

T =


t1,1 · · · t1,CF
...

. . .
...

tL,1 · · · tL,CF


−→
T IR =T ∗


11

...

1L



T IR =


−→
T IR

1,1 · · ·
−→
T IR

1,C

...
. . . · · ·

−→
T IR
F,1 · · ·

−→
T IR
F,C


DIR

1,2 =− cos(ΘT :,1,T :,2)

(7.1-2)

This approached evaluated the relationship between the coefficients over a range of -1

to 1 in terms of a scaled CD. The resultant values corresponded to coefficients being

perfectly aligned at -1 or entirely divergent at 1 within the F -dimensional feature

space. These values were used to convey the relationship between the TVMs that

corresponded to the same two UBMs shown in Figure 7.4. The coefficients were

normalized by the variance of their associated UBM mixture making the CD based

upon proportional changes of the mean and not its magnitude, and the results were

presented as a confusion matrix.
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Weights, like those derived by the UBM indicated the model’s coverage of the

dataset, were instead a representation of which TVM mixture generated the largest

shifts, based upon the scaled standard deviation of the associated UBM determined

variance. In this system, each feature was evaluated across the set of mixtures,

thereby limiting the number of weight votes (largest change for the given feature) to

the number of features. This meant that for larger UBMs many mixtures would not

be assigned any weight. The purpose of this system was to provide insight into which

TVM mixture coefficients exerted the most impact on their associated UBM mixture.

This allowed the resultant TVM confusion plot to mirror the layout and content of

its UBM counterpart.

The hypothesized premise was that if two mixtures existed in the same

dimensional space (the UBMs) and represented the same component of EEG

morphology, then the resultant changes to these mixtures would be consistent given

the common feature space. While the UBMs could provide insight into position and

shape of these mixtures within the feature space, it offered no insight into their

actual use. The TVMs were able provide direct links between how each mixture’s

means were updated. In turn, these updates offered insight based upon the

magnitude and direction of their adjustments to drive the subject classification

process. The UBMs’ mixtures could be aligned or divergent within the TVM space,

providing another level of discrimination beyond their location and shape in the

feature space, thereby giving insight into their classification purpose.
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Figure 7.4. The PSD AbnMot TVM Confusion Matrix. The relationship between the
PSD based AbnNrm and AbnMot datasets presented as a confusion matrix
of the differences between each TVM’s mixtures. The bar plots on the
edges maintain the weights from their native datasets providing insight
into the prevalence of a given mixture.
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Figure 7.5. The PSD AbnMot Flagged Distance Map. The relationship between the
PSD based AbnNrm and AbnMot datasets presented using the UBM
distances on the x-axis and the TVM distances on the y-axis. The
lowest AbnNrm distances are indicated by a caret away from their axis
and the largest distances by a caret toward their axis.

The UBM and TVM distance mappings were then compared to determine where

the best and worst distances aligned in their shared space. The x-axis was used for

the UBM distance because it served as the independent control whereas the the TVM

scaled CD was the dependent parameter. The distances between the mixtures for the

UBMs and TVMs were plotted and flagged as either best, worst, or common (eg.

“other”) distances. The best and worst distances were presented as carets pointing

toward each other while the commons were dots. Separate colors were used for the

UBM and TVM mixtures resulting in Figure 7.5. By splitting the axis in half (≷ 0

for TVM distance and ≷ 2 for UBM distance) each quadrant could be idealized

in terms of the UBM and TVM characteristics of furthest-divergent (quadrant I),

closest-divergent (quadrant II), closest-aligned (quadrant III), and furthest-aligned

(quadrant IV).

The AbnNrm-AbnMot dataset comparison resulted in a number of UBM-TVM

distance pairings: 1 closest-aligned, 3 furthest-aligned, and 1 furthest-divergent.
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Table 7.1. Example Mixture Distances

Base Mix Target Mix Match UBM TVM

8 8 C-A 1.495 0.273

- - - - -

4 1 F-A 4.769 0.188
5 8 F-A 5.268 0.198
7 8 F-A 4.685 0.235

1 8 F-D 5.698 0.436

These represented the points of interest between the UBM modeling process and the

learned TVM model. These overlapping occurrences are recorded in Table 7.1

showing how the UBM and TVM interpret the same mixture pairings. The values of

the associated distances are also given to provide context for the match labels.

Using this mapping, it is possible to extract and compare the mixtures from the

base and target datasets using a similar style figure as Figure 7.2 where the colors

are set to blue for the base and pink for the target mixtures.

The closest-aligned mixture pairing in (Figure 7.6) shows what the UBMs and

TVMs classified as being similar. While these mixtures occupied a similar feature

space, their shape in that feature space is distinct and they were unique to their

datasets, Figures 7.1 and 7.2. By being aligned in the TVM space, the mixtures were

the most similar from the view of the AbnNrm base, Figure 7.4, which meant that the

other mixtures were more divergent. Despite not being strongly aligned, given the

near 0 TVM distance, the importance of their relationship was that they resulted

in lowest amount of differentiation compared to the other possible base mixture to
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target mixture pairings. Thus changes in a given I-Vector would be less apparent

through this mixture relationship than others.

Figure 7.6. The 8 Mixture PSD AbnNrm Closest-Aligned. The PSD AbnNrm (blue
base) and AbnMot (pink target) Closest-Aligned mixtures drawn from
the 8-mixture UBM. Area of a mixture is +/- one standard deviation.
The base mixture is 8 and the target mixture is 8.

The 3 furthest-aligned mixtures were split, with base mixture 4 matching to target

mixture 1 (Figure 7.7) and base mixtures 5 and 7 matching to target mixture 8

(Figure 7.8). The alignment in the TVM space of these mixture pairings was slightly

greater than 0, indicating that these mixtures were the least altered by a given I-Vector

compared to the other possible pairings. It is clear that the mixtures have unique

means and variances, but the TVM modifies their means in a similar fashion as their

coefficients are aligned. Thus instead of focusing on further separating these already

distinct mixtures, the TVM generally maintains their UBM distance by grouping

them together. This is of particular interest when multiple mixtures, Figure 7.8,

exhibit the same behavior in relation to a single target mixture. In this case, target
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mixture 8 is again used in the pairing considering it is the least weighted mixture

from its UBM, Figure 7.3.

Figure 7.7. The 8 Mixture PSD AbnNrm Furthest-Aligned (1). The PSD AbnNrm

(blue base) and AbnMot (pink target) furthest-aligned mixtures drawn
from the 8-mixture UBM. Area of a mixture is +/- one standard
deviation. The base mixture is 4 and the target mixture is 1.

The final pairing (furthest-divergent, see Figure 7.9) contained base mixture 1

and target mixture 8. While the previous figures contained aligned TVM distances,

this divergent classification indicates that the TVM wants to further separate these

mixtures in the feature space. Again target mixture 8 was paired with a previously

unpaired base mixture. However, base mixture 1 was far from the majority of the

target mixtures, Figure 7.3, while also being aligned with the majority of them in the

TVMs space, Figure 7.4. Thus despite already being separable for the majority of

target mixtures, the relationship with target mixture 8 had to be augmented. Given

the previous pairings, it was clear that target mixture 8 was important to not only
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Figure 7.8. The 8 Mixture PSD AbnNrm Furthest-Aligned (2). The PSD AbnNrm

(blue base) and AbnMot (pink target) furthest-aligned mixtures drawn
from the 8-mixture UBM. Area of a mixture is +/- one standard
deviation. The base mixtures are 5 and 7 and the target mixture is 8.

its dataset, but also its classification performance. This made all of its relationships

critical to classification which is why it appeared frequently in the analysis.

Lacking from this example were classifications of the closest-divergent. This

classification which would have suggested the presence of a decision surface between

the flagged mixtures as the UBM and TVM evaluations would have been in conflict.

The concept of occupying a similar feature space and being shifted in opposing

directions by the TVMs is suggestive of mixtures with unique properties. Therefore

classifications of divergent TVM distances were thought to be indicative of decisions

surfaces between the two datasets, while those classified as aligned would suggest

the feature space was more important than the means and variances of the mixtures.

When addressing the TVM aligned mixtures, the assumption was made that

those mixtures represented linked signal phenomena. The feature space of EEGs
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Figure 7.9. The PSD AbnNrm UBM Mixture Distribution. The PSD AbnNrm (blue
base) and AbnMot (pink target) furthest-divergent mixtures drawn
from the 8-mixture UBM. Area of a mixture is +/- one standard
deviation. The base mixture is 1 and the target mixture is 8.

represented a large but closed dimensional space. Therefore, specific EEG events

were likely to contain unique characteristics which these algorithms were attempting

to model. An artifact, low frequency event or as in this example motor control

manifested as a mixture with somewhat unique means, but distinct variances in

Figure 7.7. Here the target mixture of Figure 7.7 resides in a similar position to the

base mixtures of Figure 7.8. These mixtures from the AbnMot dataset were

contrasted with base mixtures that they overlapped with in the feature space. This

was seen again in Figure 7.9, but now the TVM was separating the target mixture 8

and base mixture 1, despite base mixture 1’s similarity to the base mixtures in

Figure 7.8.

This indicated that mixtures could exist in the same feature space, but their

relationships could be distinct. Such behavior was beyond the ability of the UBM
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metric to quantify and was thus only discovered through the TVM feature space.

While all of these insights may not have been critical for subject verification, they

did point toward the unique qualities of each dataset. For example, while sharing the

Abn dataset, the inclusion/exclusion of the Nrm and Mot dataset was apparent in the

visual UBM distributions given the similar means but distinct variances of Figure 7.6.

This difference was masked when the two UBMs were evaluated in terms of distance

and weights, but the visual aspect was only useful given the limited mixtures used.

This process was carried out for each feature set, but the PSD features were the

least abstract of those tested. Using them was intuitive for human interpretation,

which helped in troubleshooting and understanding the technique. However, the

approach was not limited by feature set, as these overlapping conditions existed for

all feature sets as seen in Figures 7.10 and 7.11.
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Figure 7.10. The CEP AbnMot Flagged Distance Map. The relationship between the
CEP based AbnNrm and AbnMot datasets presented using the UBM
distances on the x-axis and the TVM distances on the y-axis. The
lowest AbnRnm distances are indicated by a caret away from their axis
and the largest distances by a caret toward their axis.
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Figure 7.11. The COH AbnMot Flagged Distance Map. The relationship between
the COH based AbnNrm and AbnMot datasets presented using the UBM
distances on the x-axis and the TVM distances on the y-axis. The
lowest AbnRnm distances are indicated by a caret away from their axis
and the largest distances by a caret toward their axis.

7.2 Mixture Scaling

Two experiments, comparing AbnMot to NrmMot in Table 7.2 and AbnSzr to NrmSzr

in Table 7.3, were used as validate the technique across multiple UBM sizes. The Mot

based results had 159 subjects and the Szr based results had 461 subjects.

The AbnMot and NrmMot results produced four or more pairings of

furthest-divergent labels at each mixture size, as seen in Table 7.2. While the TVM

distance values fluctuated at each mixture size, they remained relatively consistent

around a value of 5. However, other pairings did not exhibit this behavior, as the

furthest-aligned was only produced for the 32-mixture UBMs. No closest-divergent

or furthest-aligned were produced for the 8-mixture UBMs.

Meanwhile, the AbnSzr and NrmSzr results produced 6 or more pairings of

closest-aligned at each mixture size (Table 7.3). These did not have one single

target mixture matching to multiple base mixtures, but instead exhibited a
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one-to-one pairing between the datasets for every mixture size. For these pairings,

the UBM distance was inconsistent, ranging from -2 to 1, while the TVM distances

were consistently at or below -0.5. This suggested that the mixtures were more

aligned than occupying similar feature spaces despite already being in very close

proximity to each other.

The Mot based results appeared to continually pair the same target mixture against

the same base mixtures regardless of initial UBM, Figures 7.12–7.14. These furthest-

divergent pairings were indicative of a decision surface involving the feature space

occupied by the target mixture and base mixtures.

The majority of results in Table 7.3 were closest-aligned pairings, which made

sense given the bias toward the large amount of Szr data compared to the amount

of Abn and Nrm data. This made the lone furthest-divergent mixture when using 32-

mixture UBMs of particular interest. Examining it showed two very distinct mixtures,

Figure 7.16. This occurred in a similar fashion using the 16-mixture UBMs, which

produced the closest-divergent pairing shown in Figure 7.17. The base mixture in

Figure 7.16 appears to occupy a similar position in the feature space as the two

mixtures of Figure 7.17.

This likely explains the shift in classification, as the 8-mixture UBMs classified a

pair of mixtures as closest-aligned, Figure 7.18, which are clearly those in Figure 7.17.

The mixtures were all in the same feature space, making discrimination difficult based

on UBM distance alone. However the TVM adjusted correctly at the 16 mixture level

while the UBM discovered the mixture’s existence when increased to 32 mixtures.

At this larger mixture size, the distribution of paired mixture distances begins

to converge, Figure 7.15. The improved mixture differentiation means there are less

overlaps between the best and worst pairings of UBM and TVM mixtures. This

makes the outliers more pronounced, but masks potential decision surfaces by pairing
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Table 7.2. NrmMot to AbnMot Evaluation with 8 Mixtures

Mixture Base Mix Target Mix Match UBM TVM

8

1 1 C-A 1.047 -0.127
- - - - -
- - - - -
2 1 F-D 4.608 0.063
4 1 F-D 5.120 0.153
6 1 F-D 4.888 0.403
7 1 F-D 4.287 0.357

16

1 1 C-A 1.157 -0.478
13 11 C-A -3.689 -0.580
15 15 C-D 1.120 0.031
- - - - -
4 1 F-D 5.195 0.362
6 1 F-D 5.173 0.430
7 1 F-D 4.670 0.344
8 1 F-D 5.506 0.384
10 1 F-D 4.932 0.040
12 1 F-D 5.456 -0.003

32

17 17 C-A -0.113 -0.583
11 7 C-D -2.110 0.396
1 32 F-A 6.475 -0.498
13 32 F-A 5.471 -0.488
24 1 F-A 5.781 -0.400
26 1 F-A 5.276 -0.343
14 1 F-D 5.478 0.199
15 1 F-D 5.006 0.303
20 1 F-D 5.466 0.409
22 1 F-D 5.442 0.264
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Table 7.3. NrmSzr to AbnSzr Evaluation with 8 Mixtures

Mixture Base Mix Target Mix Match UBM TVM

8

1 1 C-A 0.016 -0.993
2 2 C-A -1.047 -0.975
3 3 C-A -0.762 -0.944
4 4 C-A -3.431 -0.836
5 5 C-A -0.400 -0.695
8 8 C-A 1.091 -0.513
- - - - -
7 8 F-A 5.479 -0.611
1 8 F-D 6.287 -0.317
2 8 F-D 5.324 -0.421
3 8 F-D 5.695 -0.434
5 8 F-D 5.924 -0.206
8 1 F-D 6.211 -0.022

16

3 3 C-A -0.389 -0.496
8 8 C-A -1.563 -0.744
10 10 C-A -1.689 -0.755
11 11 C-A -0.507 -0.679
15 15 C-A -3.578 -0.805
16 16 C-A -4.159 -0.609
1 9 C-D -0.920 0.088
- - - - -
- - - - -

32

2 2 C-A 0.365 -0.820
5 5 C-A -0.211 -0.644
10 10 C-A -1.284 -0.860
11 11 C-A -0.743 -0.835
20 20 C-A 0.998 -0.430
22 22 C-A -2.109 -0.792
30 30 C-A 0.010 -0.933
- - - - -
- - - - -
1 32 F-D 7.303 0.170
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Figure 7.12. The 8 Mixture PSD AbnMot NrmMot Furthest-Divergent. The mixtures
associated with the 8 Mixture PSD AbnMot (target) and NrmMot (base)
Furthest-Divergent pairing. Area of a mixture is +/- one standard
deviation. The blue indicates the base mixture (2, 4, 6, and 7) and the
pink indicates the target mixture (1).

the best and worst of one model with a common pairing of another. This worked

focused on only mixtures were the best and worst overlapped, but the UBM and

TVM continued to produce mixtures of interest. For example, the best and worst

carets located within the cluster of common results present as a new set of outliers

relative to the positions of their UBM/TVM cohort.

The results of these brief mixture scaling experiments presented similar insights

to that of the example Section 7.1. In addition to accurately mapping between UBMs

and TVMs, when given diverse data and increasingly larger UBMs, performance was

consistent. The ability to maintain a decision surface across mixture sizes was critical,

as that was the underlying mechanism use by the I-Vectors. However, the ability of

the TVM to discern mixtures in close proximity was not indicative that the same
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Figure 7.13. The 16 Mixture PSD AbnMot NrmMot Furthest-Divergent. The mixtures
associated with the 16 Mixture PSD AbnMot (target) and NrmMot

(base) Furthest-Divergent pairing. Area of a mixture is +/- one
standard deviation. The blue indicates the base mixture (4, 6, 7, 8, 10,
and 12) and the pink indicates the target mixture (1).

behavior was more important. This suggested the TVM was capable of growth and

interpretation on data alone in a way that was not feasible for the UBM.

7.3 Results

The previous example and mixture scaling experiments walked through the analysis

steps of the proposed UBM-TVM mapping technique. Just as in those sections, the

result’s figures focus on differences between the mixtures in each dataset via their

classification (closest-aligned, closest-divergent, furthest-aligned, furthest-divergent)

and their evolution within the incremental UBM mixture sizes. As such any pairings

involving those mixtures classified as common, (see figure 7.5) were not used which
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Figure 7.14. The 32 Mixture PSD AbnMot NrmMot Furthest-Divergent. The mixtures
associated with the 32 Mixture PSD AbnMot (target) and NrmMot

(base) Furthest-Divergent pairing. Area of a mixture is +/- one
standard deviation. The blue indicates the base mixture (14, 15, 20,
and 22) and the pink indicates the target mixture (1).

simplified the analysis and was necessary given the potential complexity of parsing

the large UBMs.

To further simplify the analysis, only TVMs of dimension 25 were used when

paired with the 8, 16, and 32-mixture UBMs, which were at the lower end of the

optimal UBM mixture sizes identified in Chapter 5. Despite knowing that the

aggregated datasets required larger UBM mixtures for acceptable I-Vector

performance, the GMM-UBM performance peaked earlier, indicating that the

UBMs had likely mapped the feature space to find the dominant components of the

datasets.
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Figure 7.15. The PSD AbnMot 32-Mixture Distance Map. The relationship between
the PSD based AbnMot (target) and NrmMot (base) datasets presented
using the UBM distances on the x-axis and the TVM distances on the
y-axis. The worst distances are indicated by a caret pointing in a
positive direction and the best distances are indicated by a caret point
in a negative direction.

7.3.1 Base: AbnNrm

In these instances, the AbnNrm dataset was used as the base mixture with each

target mixture containing one or both of the Abn or Nrm datasets. This anchored the

results against a single dataset in an effort to control the numbers of degrees of

freedom. The target datasets were therefore limited to AbnMot, AbnSzr, NrmMot,

NrmSzr, AbnNrmSzr, and AbnNrmMot.

7.3.1.1 Target: Motion

The first experiment compared the base dataset against the AbnMot, NrmMot, and

AbnNrmMot datasets. The AbnMot and NrmMot datasets contained 159 subjects and

overlapped with roughly 33% of the base AbnNrm dataset. The AbnNrmMot dataset

contained 209 subjects and overlapped with roughly 48% of the base AbnNrm
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Figure 7.16. The 32 Mixture PSD AbnSzr NrmSzr Furthest-Divergent. The mixtures
associated with the 32 Mixture PSD AbnSzr (target) and NrmSzr

(base) Furthest-Divergent pairing. Area of a mixture is +/- one
standard deviation.

dataset. The Mot dataset contained rest tasks between the scripted motion tasks,

likely shifting this percentage closer in terms of content. However, the subjects and

recording environments were unique between the datasets.

The sets of the 8, 16, and 32-mixture UBMs in Tables 7.4–7.6 showed the effect

of increasing the mixture size on the datasets. Only when using the 16-mixture UBM

were all four types found.

Within the 8-mixture base AbnNrm UBM, Table 7.4, mixtures 2 and 3 were not

given any classification. Mixture 1 was used for all three targets. Mixtures 4 and 8

were used for NrmMot and AbnMot. Aligned (C-A and/or F-A) and divergent (C-D

and/or F-D) classifications were found in all target datasets.

Within the 16-mixture base AbnNrm UBM, Table 7.5, only 10 mixtures (1, 3, 5,

6, 8, 9, 10, 11, 13, and 15) were given a classification. Those without a classification
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Figure 7.17. The 16 Mixture PSD AbnSzr NrmSzr Closest-Divergent. The mixtures
associated with the 16 Mixture PSD AbnSzr (target) and NrmSzr

(base) Closest-Divergent pairing. Area of a mixture is +/- one
standard deviation.

were 2, 4, 7, 12, 14, and 16. Mixture 1 was used for all three datasets. Mixtures 5, 8,

9, 10, and 11 were used for AbnMot and AbnNrmMot. Divergent TVM scores were not

found for the NrmMot dataset.

Within the 32-mixture base AbnNrm UBMs, Table 7.6 only 11 mixtures (4, 7, 8, 10,

16, 18, 20, 25, 26, 28, and 32) were given a classification. Mixtures 4 and 8 were used

for NrmMot and AbnMot. Mixture 10 was used for AbnMot and AbnNrmMot. Divergent

TVM scores were found in all target datasets.

7.3.1.2 Target: Seizure

In this set of experiments all of the target datasets contained the Szr dataset. This

limited the target datasets to AbnSzr, NrmSzr, and AbnNrmSzr. The AbnSzr and

NrmSzr contained 461 subjects meaning the AbnNrm had an overlap of 22%. The
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Figure 7.18. The 8 Mixture PSD AbnSzr NrmSzr Closest-Aligned. The mixtures
associated with the 8 Mixture PSD AbnSzr (target) and NrmSzr (base)
Closest-Aligned pairing. Area of a mixture is +/- one standard
deviation.

AbnNrmMot contained 511 subjects which meant the AbnNrm had an overlap of 20%.

The Szr contained subjects that experienced a seizure, but that did not mean that

all recorded data was of seizures. This likely meant the data was a mix of seizure

activity and/or abnormal and normal brain activity as well. This was similar to the

Mot containing resting states between the motion tasks.

The sets of the 8, 16, and 32-mixture UBMs in Tables 7.7–7.9 showed the effect

of increasing the mixture size on the datasets. Only when using the 16-mixture UBM

were all four types found.

Within the 8-mixture base AbnNrm UBMs, Table 7.7, all mixtures were given a

classification. Mixtures 1, 6, and 7 were used for all three datasets. Mixture 5

was used for NrmSzr and AbnSzr. Mixtures 2, 3, and 8 were used for AbnSzr and

AbnNrmSzr. Divergent TVM scores were found in all target datasets.
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Table 7.4. AbnNrm Base Evaluation with 8 Mixtures

AbnNrm Base Mix Target Mix Match UBM TVM

NrmMot

- - - - -
1 1 C-D 0.778 -0.002
6 6 C-D 0.761 0.604
4 1 F-A 5.045 -0.240
6 1 F-A 4.550 -0.024
8 1 F-A 5.731 0.053
- - - - -

AbnMot

8 8 C-A 1.495 0.273
- - - - -
4 1 F-A 4.769 0.188
5 8 F-A 5.268 0.198
7 8 F-A 4.685 0.235
1 8 F-D 5.698 0.436

AbnNrmMot

- - - - -
1 1 C-D 0.842 -0.375
1 8 F-A 5.694 -0.579
- - - - -
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Table 7.5. AbnNrm Base Evaluation with 16 Mixtures

AbnNrm Base Mix Target Mix Match UBM TVM

NrmMot

1 1 C-A 1.182 -0.754
8 16 C-A 0.764 -0.139
- - - - -
- - - - -
- - - - -

AbnMot

1 1 C-A 2.359 -0.475
3 5 C-A 0.091 -0.308
- - - - -
- - - - -
5 16 F-D 5.549 0.386
9 16 F-D 5.761 0.559
10 16 F-D 4.519 0.584
11 16 F-D 5.133 0.586

AbnNrmMot

15 15 C-A 0.644 -0.050
1 1 C-D 1.003 0.763
5 9 C-D -0.516 0.355
5 16 F-A 5.601 -0.339
9 16 F-A 5.807 -0.297
10 16 F-A 4.608 -0.480
11 16 F-A 5.199 -0.465
13 16 F-A 5.461 -0.146
6 1 F-D 4.879 0.318
8 1 F-D 5.868 0.431
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Table 7.6. AbnNrm Base Evaluation with 32 Mixtures

AbnNrm Base Mix Target Mix Match UBM TVM

NrmMot

- - - - -
8 16 C-D 2.676 0.236
4 1 F-A 5.402 -0.412
32 1 F-A 6.732 -0.358
16 1 F-D 6.192 0.101
18 32 F-D 5.403 0.298

AbnMot

17 17 C-A 2.489 -0.430
28 28 C-A 0.857 -0.702
- - - - -
- - - - -
4 1 F-D 5.711 0.399
8 1 F-D 6.378 0.249
10 1 F-D 5.204 0.202
26 1 F-D 5.368 0.138

AbnNrmMot

- - - - -
7 13 C-D 0.327 0.282
10 7 C-D -0.608 0.099
25 1 C-D 0.947 0.299
20 17 F-A 5.694 -0.235
- - - - -
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Table 7.7. AbnNrm Base Evaluation with 8 Mixtures

AbnNrm Base Mix Target Mix Match UBM TVM

NrmSzr

1 1 C-A -0.080 -0.769
5 5 C-D -0.659 0.648
5 8 F-A 6.018 0.404
6 8 F-A 5.083 0.353
7 8 F-A 5.601 0.382
- - - - -

AbnSzr

1 1 C-A 0.819 -0.750
8 8 C-A 2.559 -0.089
3 3 C-D -0.255 0.539
5 5 C-D 0.353 0.622
2 8 F-A 5.248 0.024
3 8 F-A 5.609 0.047
5 8 F-A 5.859 -0.012
6 8 F-A 4.831 -0.009
7 8 F-A 5.414 -0.105
- - - - -

AbnNrmSzr

8 8 C-A 2.489 0.221
3 3 C-D -1.138 0.689
4 4 C-D -0.731 0.635
6 6 C-D -1.564 0.566
1 8 F-A 6.167 -0.347
2 8 F-A 5.227 0.162
3 8 F-A 5.592 0.281
7 8 F-A 5.395 0.272
- - - - -
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Within the 16-mixture base AbnNrm UBMs, Table 7.8, seven mixtures (5, 6, 7,

10, 13, 14, and 15) were not given a classification. Mixture 1 was used for AbnSzr

and AbnNrmSzr. Mixture 8 was used for NrmSzr and AbnSzr. Mixtures 12 and 16

were used for NrmSzr and AbnNrmSzr. Divergent TVM scores were not found for the

AbnNrm and AbnNrmSzr.

Within the 32-mixture base AbnNrm UBMs, Table 7.9, 18 mixtures (1, 4, 6, 8, 10,

13, 14, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, and 30) were not given a classification.

Mixture 31 was used for NrmSzr and AbnNrmSzr. Divergent TVM scores were found

for all target datasets.

7.3.2 Base: AbnNrmMot

The 209 subject AbnNrmMot was used as a base against the 100 subject AbnNrm,

159 subject AbnMot, and 159 subject NrmMot. In this series of experiments, the larger

dataset was used as the base with the targets containing combinations of the included

mixtures.

Within the 8-mixture base AbnNrmMot UBMs, Table 7.10, only Mixture 6 was not

given a classification. Mixtures 2 and 7 were used for all three datasets. Mixtures 4

and 8 were used for AbnNrm and AbnMot. Mixtures 1 and 7 were used for AbnNrm and

NrmMot. Mixtures 3 and 5 were used for AbnMot and NrmMot. Divergent TVM scores

were found for all target datasets.

Within the 16-mixture base AbnNrmMot UBMs, Table 7.11, 4 mixtures (8, 10, 13,

and 14) were not given a classification. Mixtures 5 and 16 were used for all three

datasets. Mixtures 3, and 7 were used for AbnNrm and AbnMot. Mixture 4 was used

for AbnNrm and NrmMot. Mixtures 1, 2, and 12 were used for AbnMot and NrmMot.

Divergent TVM scores were found for all target datasets.
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Table 7.8. AbnNrm Base Evaluation with 16 Mixtures

AbnNrm Base Mix Target Mix Match UBM TVM

NrmSzr

9 1 C-A -1.643 -0.511
11 3 C-A -0.034 -0.329
2 7 C-D -0.196 0.553
4 9 F-A 5.521 -0.019
3 16 F-D 6.364 0.386
8 9 F-D 6.066 0.101
12 9 F-D 5.768 0.304
16 9 F-D 6.623 0.213

AbnSzr

1 1 C-A 1.006 -0.805
- - - - -
8 1 F-A 6.055 -0.386
- - - - -

AbnNrmSzr

1 1 C-A 1.742 -0.792
- - - - -

12 9 F-A 5.702 -0.393
16 9 F-A 6.559 -0.558
- - - - -
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Table 7.9. AbnNrm Base Evaluation with 32 Mixtures

AbnNrm Base Mix Target Mix Match UBM TVM

NrmSzr

32 16 C-A 0.839 -0.447
3 3 C-D -0.031 0.464
9 1 C-D -1.181 0.532
16 24 C-D 0.368 0.079
31 31 C-D 0.126 0.414
7 32 F-A 6.573 -0.060
9 32 F-A 6.932 -0.074
11 32 F-A 6.578 -0.122
- - - - -

AbnSzr

- - - - -
2 3 C-D 0.476 0.661
18 19 C-D 0.153 0.438
28 28 C-D 0.189 0.691
- - - - -

12 1 F-D 6.187 0.438

AbnNrmSzr

15 15 C-A -0.588 -0.233
21 21 C-A 0.233 -0.596
29 29 C-D -0.569 0.502
- - - - -
5 32 F-D 6.729 0.378
31 32 F-D 6.040 0.580
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Table 7.10. AbnNrmMot Base Evaluation with 8 Mixtures

AbnNrmMot Base Mix Target Mix Match UBM TVM

AbnNrm

- - - - -
2 6 C-D 0.951 0.016
8 8 C-D 1.441 -0.514
2 1 F-A 4.781 -0.434
4 1 F-A 5.309 -0.575
1 8 F-D 5.721 -0.215
7 1 F-D 4.548 -0.520

AbnMot

4 4 C-A -2.495 -0.070
8 8 C-D -3.052 0.333
- - - - -
2 1 F-D 4.143 0.239
3 8 F-D 4.632 0.241
5 8 F-D 5.063 0.409
7 8 F-D 4.157 0.405

NrmMot

5 5 C-A -4.239 -0.083
7 7 C-D -2.608 0.325
- - - - -
1 8 F-D 5.422 0.107
2 1 F-D 4.501 0.374
3 8 F-D 4.479 0.452
5 8 F-D 4.939 0.439
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Table 7.11. AbnNrmMot Base Evaluation with 16 Mixtures

AbnNrmMot Base Mix Target Mix Match UBM TVM

AbnNrm

11 7 C-A 0.198 -0.305
16 8 C-D 0.447 0.148
4 1 F-A 5.428 -0.283
6 1 F-A 5.384 -0.297
3 16 F-D 5.800 0.276
5 16 F-D 6.006 0.351
7 16 F-D 5.580 0.223

AbnMot

- - - - -
1 1 C-D 1.096 0.494
9 9 C-D 0.890 0.425
16 16 C-D -1.147 0.141
3 16 F-A 4.852 -0.659
5 16 F-A 5.192 -0.560
7 16 F-A 4.542 -0.397
2 1 F-D 4.484 0.168
12 1 F-D 5.226 0.096

NrmMot

12 12 C-A -2.700 -0.367
1 1 C-D -1.522 0.751
5 5 C-D -4.640 0.444
4 1 F-A 5.188 -0.298
2 1 F-D 4.780 0.024
15 1 F-D 4.725 0.007
16 1 F-D 5.926 0.217
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Within the 32-mixture base AbnNrmMot UBMs, Table 7.12, nine mixtures (3, 8,

9, 12, 15, 17, 19, 24, and 25) were given a classification. Mixture 24 was used for

AbnNrm and AbnMot. Mixture 15 was used for AbnNrm and NrmMot. Divergent TVM

scores were found for all target datasets.

7.3.3 Base: AbnNrmSzr

The 511 subject AbnNrmSzr was used as a base against the 100 subject AbnNrm,

461 subject AbnSzr, and 461 subject NrmSzr. In this series of experiments the larger

dataset was used as the base with the targets containing combinations of the included

mixtures.

Within the 8-mixture base AbnNrmSzr UBMs, Table 7.13, all the mixtures were

given a classification. Mixtures 1, and 5 were used for all three datasets. Mixture

8 was used for AbnNrm and AbnSzr. Mixture 7 was used for AbnSzr and NrmSzr.

Divergent TVM scores were found for all target datasets.

Within the 16-mixture base AbnNrmSzr UBMs, Table 7.14, seven mixtures (2, 4,

5, 8, 12, 14, and 15) were given a classification. Mixture 2 was used for AbnNrm and

NrmSzr. Divergent TVM scores were found for all target datasets.

Within the 32-mixture base AbnNrmSzr UBMs, Table 7.15, 15 mixtures (2, 4, 12,

16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, and 29) were given a classification. Mixture

2 was used for all three datasets. Mixture 17 was used for AbnNrm and NrmSzr.

Divergent TVM scores were found for all target datasets.
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Table 7.12. AbnNrmMot Base Evaluation with 32 Mixtures

AbnNrmMot Base Mix Target Mix Match UBM TVM

AbnNrm

17 17 C-A 1.323 -0.291
15 15 C-D 0.489 0.246
12 17 F-A 5.605 -0.260
24 17 F-A 5.847 -0.292
- - - - -

AbnMot

3 3 C-A -0.570 -0.544
24 24 C-D -0.570 0.261
- - - - -
- - - - -

NrmMot

9 9 C-A -2.386 -0.258
19 19 C-A -4.974 -0.289
25 25 C-A -4.081 -0.736
15 15 C-D -3.156 0.595
8 1 F-A 5.638 -0.776
- - - - -
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Table 7.13. AbnNrmSzr Base Evaluation with 8 Mixtures

AbnNrmSzr Base Mix Target Mix Match UBM TVM

AbnNrm

1 1 C-A 0.344 -0.079
2 2 C-D -0.191 0.651
3 3 C-D -1.138 0.689
5 5 C-D -0.782 0.610
2 8 F-A 4.572 0.278
4 1 F-A 5.310 0.191
6 1 F-A 4.867 -0.058
8 1 F-A 6.167 -0.347
- - - - -

AbnSzr

5 5 C-A -1.158 -0.712
8 8 C-D -3.607 -0.279
- - - - -
1 8 F-D 6.179 -0.125
5 8 F-D 5.813 -0.019
7 8 F-D 5.305 -0.231

NrmSzr

5 5 C-A -1.715 -0.565
7 7 C-D -5.949 -0.355
- - - - -
1 8 F-D 6.314 -0.364
4 1 F-D 5.371 -0.302
5 8 F-D 5.974 -0.195
6 8 F-D 5.048 -0.238
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Table 7.14. AbnNrmSzr Base Evaluation with 16 Mixtures

AbnNrmSzr Base Mix Target Mix Match UBM TVM

AbnNrm

8 8 C-A 0.635 -0.444
15 15 C-A -0.923 -0.234
2 10 C-D 1.262 0.110
5 5 C-D -1.618 0.257
- - - - -
- - - - -

AbnSzr

- - - - -
14 14 C-D -1.184 0.011
- - - - -
- - - - -

NrmSzr

12 12 C-A -2.929 -0.657
2 2 C-D -3.345 0.026
- - - - -
4 9 F-D 5.499 0.136
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Table 7.15. AbnNrmSzr Base Evaluation with 32 Mixtures

AbnNrmSzr Base Mix Target Mix Match UBM TVM

AbnNrm

- - - - -
17 25 C-D -0.372 0.061
2 32 F-A 5.939 -0.276
16 17 F-A 6.494 -0.395
20 17 F-A 5.593 -0.510
- - - - -

AbnSzr

25 25 C-A 2.399 -0.266
2 2 C-D 0.015 0.403
18 18 C-D -1.495 0.654
23 23 C-D -0.144 0.553
24 24 C-D -2.380 0.531
- - - - -
- - - - -

NrmSzr

17 17 C-A -1.881 -0.321
29 27 C-A 0.639 -0.630
2 2 C-D -1.973 0.340
12 22 C-D 0.355 0.155
19 19 C-D -0.204 0.613
22 22 C-D -1.176 0.481
26 32 F-A 6.209 -0.372
27 32 F-A 6.454 -0.564
4 32 F-D 6.056 0.234
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7.3.4 Base: AbnSzrMot

The 570 subject AbnSzrMot was used as a base against the 159 subject AbnMot,

461 subject AbnSzr, and 520 subject SzrMot. In this series of experiments, the larger

dataset was used as the base with the targets containing combinations of the included

mixtures.

Within the 8-mixture base AbnSzrMot UBMs, Table 7.16, all mixtures were given

a classification. Mixtures 3, 5, 7, and 8 were used for all three datasets. Mixture 6

was used for AbnMot and SzrMot. Mixtures 1 and 2 were used for AbnSzr and SzrMot.

Divergent TVM scores were found for AbnMot and SzrMot target datasets.

Within the 16-mixture base AbnSzrMot UBMs, Table 7.17, nine mixtures (1, 2,

8, 9, 10, 13, 14, 15, and 16) were given a classification. Mixture 1 was used for all

three datasets. Mixtures 13 and 15 were used for AbnMot and AbnSzr. Mixture 9 was

used for AbnMot and SzrMot. Mixture 14 was used for AbnSzr and SzrMot. Divergent

TVM scores were found for AbnMot and SzrMot target datasets.

Within the 32-mixture base AbnSzrMot UBMs, Table 7.18, ten mixtures (15, 8,

10, 17, 21, 22, 25, 28, 30, and 32) were given a classification. Mixture 28 was used

for all three datasets. Mixture 21 was used for AbnMot and AbnSzr. Divergent TVM

scores were found for AbnSzr and SzrMot target datasets.
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Table 7.16. AbnSzrMot Base Evaluation with 8 Mixtures

AbnSzrMot Base Mix Target Mix Match UBM TVM

AbnMot

8 8 C-A 2.629 0.156
6 6 C-D -1.696 0.536
3 8 F-A 4.632 -0.108
5 8 F-A 5.049 0.222
7 8 F-A 4.299 0.193
- - - - -

AbnSzr

1 1 C-A -0.085 0.012
8 8 C-A 2.028 -0.179
- - - - -
2 8 F-A 4.935 0.083
3 8 F-A 5.423 0.118
5 8 F-A 5.690 0.033
7 8 F-A 5.161 -0.081
- - - - -

SzrMot

5 5 C-A -6.438 -0.484
6 6 C-A -5.886 -0.569
8 8 C-D -1.759 0.102
2 1 F-A 4.534 -0.615
4 1 F-A 5.220 -0.520
8 1 F-A 5.814 -0.449
1 8 F-D 5.783 0.243
3 8 F-D 5.026 0.136
5 8 F-D 5.345 -0.128
7 8 F-D 4.736 -0.119
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Table 7.17. AbnSzrMot Base Evaluation with 16 Mixtures

AbnSzrMot Base Mix Target Mix Match UBM TVM

AbnMot

16 16 C-A 4.305 -0.379
1 9 C-D 0.964 0.644
13 9 C-D 0.779 0.115
2 1 F-A 4.483 -0.365
15 16 F-A 4.526 -0.369
9 16 F-D 5.929 0.374

AbnSzr

13 13 C-A -0.946 -0.204
14 14 C-A 0.371 -0.324
15 15 C-A 0.382 -0.487
1 9 C-D 0.541 0.014
10 10 C-D -0.190 0.587
- - - - -
- - - - -

SzrMot

14 14 C-A -1.809 -0.302
1 1 C-D -3.574 0.688
9 9 C-D -2.687 0.944
- - - - -
8 9 F-D 5.751 0.644
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Table 7.18. AbnSzrMot Base Evaluation with 32 Mixtures

AbnSzrMot Base Mix Target Mix Match UBM TVM

AbnMot

8 8 C-A 0.947 -0.295
28 28 C-A -0.724 -0.828
- - - - -

21 32 F-A 5.310 -0.290
- - - - -

AbnSzr

10 18 C-A 0.082 -0.724
21 21 C-D -0.109 0.482
28 28 C-D 1.199 0.772
- - - - -
- - - - -

SzrMot

5 5 C-A -0.956 -0.761
22 22 C-A -0.293 -0.395
28 28 C-A -3.524 -0.753
25 25 C-D -1.392 0.273
- - - - -

17 32 F-D 6.535 0.091
22 9 F-D 5.587 0.519
30 9 F-D 5.599 0.102
32 9 F-D 6.961 0.225
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7.3.5 Base: NrmSzrMot

The 570 subject AbnSzrMot was used as a base against the 159 subject NrmMot,

461 subject NrmSzr, and 520 subject SzrMot. In this series of experiments the larger

dataset was used as the base with the targets containing combinations of the included

mixtures.

Within the 8-mixture base NrmSzrMot UBMs, Table 7.19, all mixtures were given

a classification. Mixtures 1, 4, 7, and 8 were used for all three datasets. Mixture 5

was used for NrmSzr and SzrMot. Divergent TVM scores were found for AbnSzr and

SzrMot target datasets.

Within the 16-mixture base NrmSzrMot UBMs, Table 7.20, 13 mixtures (1, 2, 3, 5,

6, 7, 8, 9, 10, 12, 13, 15, and 16) were given a classification. Mixtures 16 was used for

all three datasets. Mixtures 2, 5, and 15 were used for NrmMot and NrmSzr. Mixture

9 was used for NrmMot and SzrMot. Divergent TVM scores were found for all target

datasets.

Within the 32-mixture base NrmSzrMot UBMs, Table 7.21, 16 mixtures (2, 4, 5,

6, 9, 10, 12, 15, 18, 19, 20, 22, 26, 30, 31, and 32) were given a classification. No

mixtures overlapped within the target datasets. Divergent TVM scores were found

for the NrmMot and NrmSzr target datasets.

7.3.6 Discussion

The experiments were reviewed based upon their base mixture. The larger base

mixtures, AbnNrmMot and AbnNrmSzr and AbnSzrMot and NrmSzrMot, were grouped

into two sections while the AbnNrm was reviewed by itself.
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Table 7.19. NrmSzrMot Base Evaluation with 8 Mixtures

NrmSzrMot Base Mix Target Mix Match UBM TVM

NrmMot

1 1 C-A 0.437 -0.317
7 7 C-D -1.113 0.461
2 1 F-A 4.376 -0.231
4 1 F-A 5.146 -0.225
6 1 F-A 4.809 -0.006
8 1 F-A 5.794 -0.027
- - - - -

NrmSzr

8 8 C-A 2.952 -0.097
- - - - -
1 8 F-A 6.259 -0.003
5 8 F-A 5.904 0.131
7 8 F-A 5.394 0.047
4 1 F-D 5.409 0.741

SzrMot

5 5 C-A -1.510 -0.585
6 6 C-A -4.657 -0.609
8 8 C-D -1.924 -0.150
4 1 F-A 5.205 -0.606
1 8 F-D 5.831 -0.101
2 8 F-D 4.489 -0.021
3 8 F-D 5.076 -0.016
5 8 F-D 5.400 -0.233
7 8 F-D 4.762 -0.281
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Table 7.20. NrmSzrMot Base Evaluation with 16 Mixtures

NrmSzrMot Base Mix Target Mix Match UBM TVM

NrmMot

- - - - -
3 3 C-D 0.068 0.598
9 1 C-D 1.129 0.200
2 1 F-A 4.672 -0.604
5 16 F-A 5.299 -0.041
15 1 F-A 4.626 -0.242
16 1 F-A 6.561 -0.409
6 1 F-D 5.088 0.533
8 1 F-D 5.645 0.473
10 1 F-D 4.810 0.088
12 1 F-D 5.413 0.333

NrmSzr

5 5 C-A -0.779 -0.377
15 15 C-A 0.280 -0.548
16 16 C-A 1.653 -0.564
7 7 C-D 0.023 0.346
2 16 F-A 5.884 -0.595
- - - - -

SzrMot

- - - - -
1 1 C-D -1.146 0.613
9 9 C-D -0.112 0.933
16 9 F-A 6.567 -0.703
13 16 F-D 6.104 0.614
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Table 7.21. NrmSzrMot Base Evaluation with 32 Mixtures

NrmSzrMot Base Mix Target Mix Match UBM TVM

NrmMot

- - - - -
18 18 C-D -1.235 0.550
22 14 C-D 0.055 0.470
20 1 F-A 5.529 -0.355
22 1 F-A 5.400 -0.288
30 1 F-A 5.516 -0.459
31 1 F-A 5.092 -0.413
32 1 F-A 6.880 -0.352
- - - - -

NrmSzr

- - - - -
9 9 C-D -0.069 0.327
10 10 C-D -0.050 0.261
19 19 C-D -2.238 0.428
26 26 C-D -0.149 0.432
2 32 F-A 6.332 -0.146
4 32 F-A 6.064 -0.142
5 32 F-A 6.676 -0.169
6 32 F-A 6.029 -0.148
15 32 F-A 6.279 -0.249
- - - - -

SzrMot

- - - - -
- - - - -

12 9 F-A 5.716 -0.363
- - - - -
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7.3.6.1 AbnNrm

The mixture mappings of the AbnNrm UBMs were collected into Table 7.22. This

allowed trends of the base mixtures to be compared across the six target datasets. As

noticed in the example and calibration, not all classification pairings were generated

for each experiment configuration. The F-D classification failed to generate pairings

in 10 instances, the F-A in 6, and the C-D and C-A in 5. This indicated that the

chosen ‘best/worst’ case classifications did not overlap frequently for all experiments.

Increasing the pairings of interest to include those shifting between the common labels

and the ‘best/worst’ case labels could have been used to better track changes between

the mixture sizes. Despite this, a number of mixtures were clearly dominant based

upon mixture size or datatset.

For the 8-mixture UBM, base mixture 1 appeared in 7 pairings. In 6 of those

pairings, the 16-mixture UBM produced pairings as well. Examining that

relationship, it was discovered that that base mixture 1 of the 8-mixture UBM had

become base mixtures 1 and 9 of the 16-mixture UBM, see Figures 7.19–7.22. This

was not unique to the Szr associated data, as the Mot datast showed a similar

behavior in Figures 7.24–7.27.

The treatment of these mixtures across UBM mixture sizes indicated that their

use was driven by the dataset. When paired with the seizure data, the base mixtures

were closest to and aligned with mixtures representative of abnormal and/or seizure

phenomena. However, they were set in opposition to mixtures that were produced

by the motion data in their UBM and TVM distances. Thus this nondescript base

mixture was used by multiple TVMs as a discrimination surface against the unique

mixtures from the target datasets. In the case of the 3- mixture UBM AbnNrm base
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Table 7.22. AbnNrm Base Mixture Matches

Matches AbnNrm

NrmMot AbnMot AbnNrmMot NrmSzr AbnSzr AbnNrmSzr

C-A
8 - 8 - 1 1,8 8
16 1,8 1,3 15 9,11 1 1
32 - 17,28 - 32 - 15,21

C-D
8 1,6 - 1 5 3,5 3,4,6
16 - - 1,5 2 - -

32 8 -
7,10,
25

3,
9,11,
16,31

2,18,
28

29

F-A
8

4,
6,8

4,
5,7

1 5,6,7
2,

3,5,
6,7

1,2,
3,7

16 - -
5,9,

10,11,
13

4 8 12,16

32 4,32 - 20
7,

9,11
- -

F-D
8 - 1 - - - -

16 -
5,9,

10,11
6,8

3,8,
12,16

- -

32 16,18
4,8,

10,26
- - 12 5,31
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Figure 7.19. The 8 Mixture PSD AbnNrm NrmSzr Closest-Aligned. Pairing of AbnNrm
(base) 8-mixture UBM’s mixture 1 with its C-A pair from the NrmSzr

(target).

and NrmSzr target, the TVMs resolved that this feature space was occupied by both

datasets but represented distinct phenomena, see Figure 7.23.

The only other fully populated row in Table 7.22 belonged to the F-A values of the

8-mixture UBMs. Here again, repeated clusters of base mixtures were seen, although

the trend did not continue for the 16-mixture UBMs. While nearly every mixture

was used in this row, a small subset of mixtures (5, 6, and 7) appeared dominant,

Figures 7.28–7.31. The base mixtures are clustered together and paired against a

unique mixture from the target dataset.

In three of these instances, Figures 7.29–7.31, the target mixture sits in a similar

position in the feature space. This again indicated a bias based upon the dataset, with

the Szr data producing a distinct target mixture potentially modified by the presence

of the abnormal data in Figure 7.31. And again the Mot dataset’s characteristic

mixture was used in Figure 7.29.
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Figure 7.20. The 16 Mixture PSD AbnNrm NrmSzr Closest-Aligned. Pairing of
AbnNrm 16-mixture UBM’s mixture 1 with its C-A pair from the
NrmSzr.

Figure 7.21. The 8 Mixture PSD AbnNrm NrmSzr Closest-Aligned. Pairing of AbnNrm
8-mixture UBM’s mixture 1 with its C-A pair from the AbnSzr.
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Figure 7.22. The 16 Mixture PSD AbnNrm NrmSzr Closest-Aligned. Pairing of
AbnNrm 16-mixture UBM’s mixture 1 with its C-A pair from the
AbnSzr.

Figure 7.23. The 32 Mixture PSD AbnNrm NrmSzr Closest-Divergent. Pairing of
AbnNrm 32-mixture UBM mixture with its C-D pair from the NrmSzr.
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Figure 7.24. The 8 Mixture PSD AbnNrm AbnNrmMot Furthest-Aligned. Pairing of
AbnNrm 8-mixture UBM’s mixture 1 with its F-A pair from the
AbnNrmMot.

Figure 7.25. The 16 Mixture PSD AbnNrm AbnNrmMot Furthest-Aligned. Pairing of
AbnNrm 16-mixture UBM’s mixture 1 with its F-A pair from the
AbnNrmMot.
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Figure 7.26. The 8 Mixture PSD AbnNrm AbnMot Furthest-Divergent. Pairing of
AbnNrm 8-mixture UBM’s mixture 1 with its F-D pair from the AbnMot.

Figure 7.27. The 16 Mixture PSD AbnNrm AbnMot Furthest-Divergent. Pairing of
AbnNrm 16-mixture UBM’s mixture 1 with its F-D pair from the
AbnMot.
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Figure 7.28. The 8 Mixture PSD AbnNrm NrmMot Furthest-Aligned. Pairing of
AbnNrm 8-mixture UBM with its F-A pair from the NrmMot.

In both cases, characteristic mixtures of the base dataset were paired against

unique mixtures from the target datasets. These Furthest-Aligned classifications did

not stand out when viewed through their UBM distances, 7.32 as the mixtures all

appear well-matched across the datasets. Despite the overwhelming contribution of

the seizure data, the TVMs determined that the mixtures should be treated as wholly

divergent from each other, Figure 7.33.

7.3.6.2 AbnNrmMot and AbnNrmSzr

Strictly using larger datasets as the base provided more consistency in the modeling

process, Table 7.23. This time, the more well-defined mixtures were matched back

into their fundamental forms. The AbnNrm data was a control against each of the

larger datasets allowing comparisons between them and also against their specific

motion and seizure datasets. The F-D classification failed to generate 9 pairings, the
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Figure 7.29. The 8 Mixture PSD AbnNrm AbnMot Furthest-Aligned. Pairing of
AbnNrm 8-mixture UBM with its F-A pair from the AbnMot.

Figure 7.30. The 8 Mixture PSD AbnNrm NrmSzr Furthest-Aligned. Pairing of
AbnNrm 8-mixture UBM with its F-A pair from the NrmSzr.
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Figure 7.31. The 8 Mixture PSD AbnNrm AbnSzr Furthest-Aligned. Pairing of
AbnNrm 8-mixture UBM with its F-A pair from the AbnSzr.

F-A failed to generate 7, and the C-A failed to generate 4. The C-D classification

generated pairings for all of its experimental configurations. These 20 missing pairings

were an improvement from the AbnNrm base missing 26 pairings from the previous

experiment, Table 7.22.

The most used mixture from the 8-mixture UBMs when using the AbnNrm target

data was mixture 2. This mixture was used by both datasets for their C-D

(Figures 7.34 and 7.35) and F-A (Figures 7.36 and 7.37) pairings. Despite the

similar mixture number, their mixtures were, of course, distinct as each base was

constructed from a different dataset. However, the base mixtures were linked across

the classifications Figures 7.34 and 7.36 and Figures 7.35 and 7.37.

From the C-D classifications, although the mixtures occupy similar feature spaces,

the TVM finds them to be distinct. Naturally, one might make the same assumptions

upon viewing them, but recall that these are the best distance matches according to
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Figure 7.32. The 8 Mixture PSD AbnNrm NrmSzr UBM Confusion Matrix. UBM
distance measurements between the AbnNrm base and NrmSzr target.
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Figure 7.33. The 8 Mixture PSD AbnNrm NrmSzr TVM Confusion Matrix. TVM
distance measurements between the AbnNrm base and NrmSzr target.
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Table 7.23. AbnNrmMot and AbnNrmSzr Base Mixture Matches

Matches AbnNrmMot AbnNrmSzr

AbnNrm NrmMot AbnMot AbnNrm NrmSzr AbnSzr

C-A
8 - 5 4 1 5 5
16 11 12 - 8,15 12 -

32 17
9,

19,25
3 - 17,29 25

C-D
8 2,8 7 8

2,3,
5

7 8

16 16 1,5
1,

9,16
2,5 2 14

32 15 15 24 17
2,12,
19,22

2,18
23,24

F-A
8 2,4 - -

2,4,
6,8

1,4,
5,6

-

16 4,6 4
3,
5,7

2,5 - -

32 12,24 8 -
2,

16,20
26,27 -

F-D
8 1,7

1,2,
3,5

2,3,
5,7

-
1,4,
5,6

1,5
7

16 -
5,9,

10,11
6,8 - 4 -

32 - - - - 4 -
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Figure 7.34. The 8 Mixture PSD AbnNrmMot AbnNrm Closest-Divergent. Pairing of
AbnNrmMot (base) 8-mixture UBM with its C-D pair from the AbnNrm

(target).

the UBMs. More interesting is the presence of previously uncovered dataset-specific

mixtures in the F-A pairings. Both larger datasets appeared to pick the same target

mixture from the AbnNrm UBM and pair it against mixtures native to motion and

seizure data.

Figures 7.34–7.37 suggested that decision surfaces were easy to find between the

two datasets given the repeated use of the same base mixtures. This was similar to

the AbnNrm results in Section 7.3.6.1 which also used 8-mixture UBMs. This was more

likely due to their locations in the feature space rather than the mixtures themselves,

as repeated mixtures occurred less frequently as the UBM mixture size was increased,

seen in Tables 7.22 and 7.23.

Even with success using smaller UBMs, the larger 32-mixture UBMs still offered

valuable insight when the TVM found divergent distances in Figures 7.38 and 7.39.

The presence of motion data in Figure 7.38 caused a variation in mixtures around the
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Figure 7.35. The 8 Mixture PSD AbnNrmSzr AbnNrm Closest-Divergent. Pairing of
AbnNrmSzr 8-mixture UBM with its C-D pair from the AbnNrm.

Figure 7.36. The 8 Mixture PSD AbnNrmMot AbnNrm Furthest-Aligned. Pairing of
AbnNrmMot 8-mixture UBM with its F-A pair from the AbnNrm.
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Figure 7.37. The 8 Mixture PSD AbnNrmSzr AbnNrm Furthest-Aligned. Pairing of
AbnNrmSzr 8-mixture UBM with its F-A pair from the AbnNrm.

alpha band (8-12Hz or 8-12 feature index). This generated a decision surface between

the base and target datasets. However, the C-D classification for the AbnNrmSzr

base and AbnNrm target in Figure 7.39 had no such behavior. Its pairing was wholly

different in terms of means and variances for the base and target mixture as compared

to the motion mixture.

Reviewing the most active rows, as done previously, the F-D classifications of

AbnNrmMot and AbnNrmSzr presented with similar mixture groupings. In the case

of the AbnNrmMot, some of these mixtures mapped into the AbnNrm dataset as well.

The F-D classification had previously provided insight into mixtures unique to both

datasets, making it an ideal classification for finding decision surfaces.

The AbnNrmMot base produced Figure 7.40 for target NrmMot and Figure 7.41 for

target AbnMot. In both instances, similar base and target mixtures were found. The
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Figure 7.38. The 32 Mixture PSD AbnNrmMot AbnNrm Closest-Divergent. Pairing of
AbnNrmMot 32-mixture UBM with its C-D pair from the AbnNrm

dataset.

Figure 7.39. The 32 Mixture PSD AbnNrmSzr AbnNrm Closest-Divergent. Pairing of
AbnNrmSzr 32-mixture UBM with its C-D pair from the AbnNrm

dataset.
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AbnNrmSzr base produced Figure 7.42 for target NrmSzr and Figure 7.43 for target

AbnSzr. These too contained similar base and target mixtures.

These mixtures appeared to contain a mixture that was previously associated with

the seizure dataset (in Figures 7.19 and 7.21), specifically with the nodule between

feature elements 30 and 40. Similar mixtures were prevalent in both the base mixtures,

Figures 7.42 and 7.43, and target mixture, Figure 7.44. Multiple datasets produced

similar mixtures, but in each instance, their use was determined by the TVM to the

point that even when both base and target contained them, they were still used to

separate the datasets.

Results such as these indicated that the relationship between UBM and TVM

had the ability to identify mixtures that were similar not only in their location in the

feature space, but also their ability to drive classification. The progression of mixtures

through the UBM mixture sizes was yet another way to understand the relationship

between the UBMs and TVMs. As the mixtures became better articulated with each

subsequent UBM, the TVM reevaluated how to link the mixtures for classification

resulting in an unexpected parent-child relationship between the mixture sizes. While

some instances of this were presented in this work, a more thorough analysis would

require building upon the mixture pairings tables and a wider range of target datasets

to track the lineage of all such mixtures across their base datasets. This would bring

the work closer to the overarching goal of a clinician free annotation system for EEG

data.

7.3.6.3 AbnSzrMot and NrmSzrMot

The final experiments used the largest and most diverse datasets from Chapter 6, the

AbnSzrMot and NrmSzrMot. Given the small size and similarity of the Abn and Nrm

datasets, it hoped that the results would be well correlated across the base datasets.
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Figure 7.40. The 8 Mixture PSD AbnNrmMot NrmMot Furthest-Divergent. Pairing of
AbnNrmMot 8-mixture UBM with its F-D pair from the NrmMot.

Figure 7.41. The 8 Mixture PSD AbnNrmMot AbnMot Furthest-Divergent. Pairing of
AbnNrmMot 8-mixture UBM with its F-D pair from the AbnMot.

389



Figure 7.42. The 8 Mixture PSD AbnNrmMot NrmSzr Furthest-Divergent. Pairing of
AbnNrmSzr 8-mixture UBM with its F-D pair from the NrmSzr.

Figure 7.43. The 8 Mixture PSD AbnNrmSzr AbnSzr Furthest-Divergent. Pairing of
AbnNrmSzr 8-mixture UBM with its F-D pair from the AbnSzr.
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Figure 7.44. The 8 Mixture PSD AbnNrmSzr AbnSzr Furthest-Divergent. Pairing of
AbnNrmSzr 8-mixture UBM with another F-D pair from the NrmSzr.

The control dataset this time was SzrMot which was the largest dual dataset tested.

The Abn base further tested against the AbnMot and AbnSzr, while the Nrm base

used NrmMot and NrmSzr.

These test configurations produced 23 missing pairings, Table 7.24. This was

worse than the previous large base datsets, and a slight improvement over the AbnNrm

results. The F-D classification failed to generate 10 pairings, the F-A failed to generate

4, the C-D failed to generate 4, and and the C-A failed to generate 5 pairings. The

failures of the C-A pairings occurred only within the NrmSzrMot dataset and the

AbnSzrMot accounted for those in the F-A pairings. As in the prior section with

Table 7.23, there was a distinct cluster of mixtures in one of the rows of Table 7.24.

This time it was the C-D 16-mixture UBM pairings consisting of mixtures 1 and 9

When these repeated pairings were examined in Figure 7.45 (AbnSzrMot to

SzrMot) they were similar to those of the mixtures in Figure 7.46 (NrmSzrMot to
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Table 7.24. AbnSzrMot and NrmSzrMot Base Mixture Matches

Matches AbnSzrMot NrmSzrMot

AbnMot AbnSzr SzrMot NrmMot NrmSzr SzrMot

C-A
8 8 1,8 15 1 8 5,6

16 16
13,

14,15
14 -

5,15,
16

-

32 8,28 10
5,22,
28

- - -

C-D
8 6 - 8 7 - 8
16 1,13 1,10 1,9 3,9 7 1,9

32 - 21,28 25 18,22
9,10,
19,26

-

F-A
8

3,
5,7

2,3,
5,7

2,4,8
2,4,
6,8

1,
,5,7

4

16 2,15 - -
2,5,

15,16
2 16

32 21 - -
20,22,
30,31,

32

2,4,
5,6,
16

12

F-D
8 - -

1,3,
5,7

- 4
1,2
3,5,
7

16 9 - 8
6,8,

10,12
- 13

32 - -
17,22,
30,32

- - -
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Figure 7.45. The 16 Mixture PSD AbnSzrMot SzrMot Closest-Divergent. Pairing of
AbnSzrMot 16-mixture UBM with its C-D pair from the SzrMot

dataset.

SzrMot). These pairings reinforced the influence of what was thought to be an

established seizure mixture regardless of what datasets were paired with the seizure

dataset.

Given the previous results played out similarly, the 8-mixture F-D pairings were

examined as well despite being sparse outside of the SzrMot dataset, Figures 7.47

and 7.48. These mixtures again reflective of previous mixtures and groupings, given

their appearance in the previous results of Figures 7.30 and 7.31. The continued

model and discovery of the same influential UBM mixtures across datasets and UBM

sizes suggested that the proposed analysis had worked.

Using large complex base and target datasets appeared to be the trigger to

activating the 32-mixture UBMs. Within the NrmSzrMot experiments, the F-A

32-mixture UBM pairings produced 5 mixtures for the NrmMot, Figure 7.49, and

NrmSzr, Figure 7.50, datasets. In these two instances, the two pairings fit perfectly
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Figure 7.46. The 16 Mixture PSD NrmSzrMot SzrMot Closest-Divergent. Pairing of
NrmSzrMot 16-mixture UBM with its C-D pair from the SzrMot

dataset.

Figure 7.47. The 8 Mixture PSD AbnSzrMot SzrMot Furthest-Divergent. Pairing of
AbnSzrMot 8-mixture UBM with its F-D pair from the SzrMot dataset.
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Figure 7.48. The 8 Mixture PSD NrmSzrMot SzrMot Furthest-Divergent. Pairing of
NrmSzrMot 8-mixture UBM with its F-D pair from the SzrMot dataset.

around each other in the feature space. The exception was that the target mixture

of Figure 7.49 appeared to match within the base mixtures of Figure 7.50 suggesting

it would also pair with its target mixture.

A similar pattern occurred again at the 16-mixture UBM F-A pairings as well,

Figures 7.51 and 7.52. Here, the target one of pairing overlaps area occupied by the

base of the other pairing and vice versa, confirming the link between these mixtures

and suggesting these two feature spaces are integral to their datasets. This is in

a way a self evaluation, if the base and target datasets were identical, which was

omitted from analysis to prevent such recursive relationships. The novel ability to

track similar mixtures across different base and target datasets to identify such a

recursive relationship confirmed robustness of the proposed technique.

However, if operating on a single dataset, the results may have been ignored as

artifacts due to the small weight assigned to the mixtures by their UBMs. In both
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Figure 7.49. The 32 Mixture PSD NrmSzrMot NrmMot Furthest-Aligned. Pairing of
NrmSzrMot 32-mixture UBM with its F-A pair from the NrmMot

dataset.

Figure 7.50. The 16 Mixture PSD NrmSzrMot NrmSzr Furthest-Aligned. Pairing of
NrmSzrMot 32-mixture UBM with its F-A pair from the NrmSzr

dataset.
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Figure 7.51. The 16 Mixture PSD NrmSzrMot NrmMot Furthest-Aligned. Pairing of
NrmSzrMot 16-mixture UBM with its F-A pair from the NrmMot

dataset.

Figure 7.52. The 16 Mixture PSD NrmSzrMot NrmSzr Furthest-Aligned. Pairing of
NrmSzrMot 16-mixture UBM with its F-A pair from the NrmSzr

dataset.
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sets of pairings, the UBM distance of the targeted mixtures were the lowest of the

16 and both TVMs gave that same mixture zero weight as well. This would have

suggested the mixtures in question were artifacts, but given the TVMs had aligned

them with other mixtures in the base it was possible they represented authentic data

at which point it would be necessary to compare the single dataset with a unique

target to determine the true nature of the mixtures. This is precisely the problem

with unsupervised techniques is that they are entirely dependent on the data given

to them.

Validating such claims is difficult without a clinician, but this us yet another way

the technique serves to provide context without them. A true artifact would likely be

an outlier in any dataset. However if the underlying UBM mixture produces minimal

distances to other mixtures that are (a) heavily weighted and (b) flagged as one of

the four UBM-TVM relationships, it would be reasonable to assume the mixture is

not an artifact. This was beyond the scope of the work, but should be addressed if

the work is continued.

The potential outlier mixture was found again by the F-A pairings of the 8-mixture

UBMs across both feature sets in Figures 7.53–7.56. In these instances, the target and

base were considered aligned by the TVMs indicating that the area occupied by the

target feature space in Figures 7.53 and 7.55 was critical for modeling specific datasets.

Therefore artifact mixtures in this region could have been harder to diagnosis given

its importance across datasets.
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Figure 7.53. The 8 Mixture PSD AbnSzrMot AbnMot Furthest-Aligned. Pairing of
AbnSzrMot 8-mixture UBM with its F-A pair from the AbnMot dataset.

Figure 7.54. The 8 Mixture PSD AbnSzrMot AbnSzr Furthest-Aligned. Pairing of
AbnSzrMot 8-mixture UBM with its F-A pair from the AbnSzr dataset.
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Figure 7.55. The 16 Mixture PSD NrmSzrMot NrmMot Furthest-Aligned. Pairing of
NrmSzrMot 8-mixture UBM with its F-A pair from the NrmMot dataset.

Figure 7.56. The 16 Mixture PSD NrmSzrMot NrmSzr Furthest-Aligned. Pairing of
NrmSzrMot 8-mixture UBM with its F-A pair from the NrmSzr dataset.
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7.3.7 Constraints

The proposed analysis technique was new to the field of EEG analysis, which led to a

number of limitations. Chiefly among these was the lack of diverse data that limited

previous work to parse the fundamental components of EEG waveforms. Despite

operating on over 500 subjects drawn from four distinct data sources, this was not

enough breadth or depth either. The failure to produce classification pairings for

each experimental test point was a major drawback. As mentioned previously, this

should be mitigated by including the common to aligned/divergent and common to

closest/furthest label pairings.

Increasing the amount of data and comparison points would have improved the

understanding of where artifacts, dataset specific mixtures, and generalized EEG

mixtures appeared within the feature space. However, achieving this would have

required exhaustive testing using the individual seizure, motion, normal and abnormal

datasets from Chapter 5. Adding all of these into this chapter was not feasible as it

was beyond the scope of the work. This was due to the need to present results using

datasets that shared natural modes which were to allow the UBM to be linked in the

given feature space.

It should have been possible to link across the feature sets as well, but again

that would have required extensive simulations that were beyond the scope of work.

Tracking the results of this work required presenting concise visualizations which

proved difficult to maintain for larger UBMs. Operating on metrics and equations

alone would have provided minimal tools to debug and validate the technique during

it’s development. Now that the process has been validated this is no longer a concern,

but increasing the analysis to link through the feature sets or included more datasets

will still compounded the difficulties in interpreting the results.
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Linking the TVMs via their cosine similarity proved to be effective, but was no

ideal. Understanding the alignment of the ‘impulse response’ from each TVM mixture

should have been addressed as determining the direction of lines in the dimensions

of the feature space. This type of problem was beyond the scope of this work, but

generating not only alignment but a significant understanding of the directions in the

feature space would have enhanced the mapping between the TVMs.

7.4 Conclusion

The results of the example, calibration, and various dataset specific experiments

showed that the proposed I-Vector technique was capable of determining which

mixtures that the TVM had used to inform its decision surfaces. While the results

were not perfect, they did show the ability to resolve to the same closed set of

solutions across varied datasets and UBMs of three sizes. These were promising

results, despite clear setbacks in terms of missing pairings and datasets with known

strong overlapping features.

The impact of UBM mixture size was difficult to judge as the 8-mixture labels

did an acceptable job of mapping the feature space, despite not capturing all of the

nuance of the mixtures. This was addressed by structuring the experiments to draw

from the larger datasets as their base, there was direct improvement in classification

pairings in terms of quantity and quality. However, it was intriguing to see how much

information a 8-mixture UBM could contain given the amount of data used in training

it. This was not entirely unexpected given the strength of the GMM-UBMs classifier

in Chapter 5 for the 4, 8, and 16-mixture UBMs. Yet, even that technique struggled

to perform subject verification when operating on the Szr dataset.
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This UBM-TVM relationship analysis technique could be improved with

additional testing, as noted in the Constraints section(s), but also by expanding to

data that does not come from EEGs. acpIV were an adaptation of JFA, made an in

effort to serve the speech recognition community’s needs. The headway made here

by an unsupervised machine learning approach suggested the potential for this

technique in assisting the EEG processing communities growing need of labeled

data.
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Chapter 8

CONCLUSION

At the time of this writing there was minimal if any work on the use of I-Vectors

on EEG for the purpose of bio-metric subject verification. Work had previously been

carried out using UBMs for subject verification [103, 163] and ADHD classification [42]

and MD based subject verification [64, 65]. The deployment of these three algorithms

over the PhysioNet Database and TUH-EEG datasets represented not only the formal

introduction of I-Vectors for use on EEG data, but also a substantial set of benchmark

experiments for the algorithms and datasets involved.

The experiments titled “Protocol Replication” and “Parameter Sweeps” were

carried out in Chapters 4–6 following a protocol based on the work of La Rocca [64].

These addressed not only how to select the appropriate epochs and tune the

I-Vector parameters, but also sweeps across CEP, PSD, and COH feature sets. This

laid the groundwork for further development of I-Vectors beyond the subject

verification experiments, based upon the UBM-TVM relationship analysis as

presented in Chapter 7.

8.1 Parameter Sweeps

The Parameter Sweeps addressed the operational parameters of all the algorithms by

testing feature set, epoch duration, number of epochs, and different combinations of

datasets. Specific to the I-Vectors were tests focused on the construction of the UBM

mixture size, TVM dimension, and LDA dimension.
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Based upon epoch duration and UBM mixture sweeps using the

PhysioNet Database dataset and all three algorithms, it was determined that the

range of tested UBM mixtures should be 2 to 2048 and the range of epoch duration

should be 10s and 2s. Further testing across each independent Abnormal, Normal,

Motion, and Seizure dataset using each of the three features indicated that the

optimal epoch duration was 2s with 12 epochs removed from the

training/enrollment dataset to be used for the testing dataset. This configuration

was developed by testing I-Vectors alone but applied to all algorithms for the

remainder of the experiments. However, the ideal UBM range was found to be 32 to

128 mixtures which was shared by the GMM-UBM and I-Vector algorithms. The

I-Vector specific components of TVM and LDA dimension were revealed to be

optimal at a 25 dimension TVM and no LDA. These results necessitated the

continued testing of each feature set, and the LDA dimensions into the Algorithm

Benchmarks.

A shortcoming of these results was that the number of epochs in the

training/enrollment dataset was not controlled. While the number of testing epochs

was specified, the remaining epochs were used for training/enrollment which was

dependent on the epoch duration of 2s. Thus the balance of training to testing was

set at 48 training epochs for every 12 testing epochs, corresponding to a 80/20 split.

This required required the cross validation to produce 6 randomized sets instead of

the 6 exhaustive sets used in the Protocol Replication to ensure an unbiased

accounting of the algorithms’ performances.

Furthermore, the overall amount of data was a clear factor in the performance of

the larger UBM mixtures and TVM dimensions. The smaller (50 subject) Normal

and Abnormal datasets were unable to utilize the larger components as well as the

411 subject Seizure dataset. This indicated that reaching a data threshold, in terms
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of the total number of training epochs, was necessary before enabling the larger TVM

dimensions, despite the number of epochs being well in excess of the maximum number

of UBM mixtures generated. The datasets offered three subject counts (50, 109, and

411) but these values were not enough to accurately map the epoch threshold level

required for all the TVM dimensions.

These constraints were minor, as the overall performance of I-Vectors across the

feature and dataset combinations suggested they would be competitive with

GMM-UBMs on the aggregated datasets. In fact, their performance during the

Protocol Replication was able to exceed that of the GMM-UBM and MD

algorithms. This proved the efficacy of the protocols developed and provided a

substantial reduction in degrees of freedom leading to more controlled experiments

for the Algorithm Benchmarks of Chapter 6 and the UBM-TVM relationship of

Chapter 7.

8.2 Algorithm Benchmarks

The Algorithm Benchmarks addressed the ability of the I-Vectors to compete with

with the MD and GMM-UBM algorithms for each feature type over the aggregated

datasets. These datasets provided a wider range of subject counts (100, 159, 461,

511, 520, and 570) which enabled the impact of LDA on I-Vector generation to be

completed as part of the Parameter Sweep experiments.

Overall, I-Vector performance for subject verification was found to be on par with

similarly reported techniques following the Parameter Sweeps. The initial results of

the Protocol Replication showed I-Vectors matched the results of La Rocca’s work

[64], but the Algorithm Benchmarks showed the technique produced results on par

with other GMM and/or GMM-UBM classification tasks [42, 86, 98, 103, 163]. These
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results indicated that I-Vectors were competitive with other unsupervised learning

tools for EEG subject verification, despite being unable to surpass the performance

of the GMM-UBM algorithm. However, the trade off was that of the three algorithms

the I-Vectors used the smallest feature vector for classification making it an acceptable

classifier while also acting as a strong dimensional reduction technique (even before

applying LDA).

Each algorithms’ performance was effected by feature and dataset, which was most

stark when using the TUH-EEG seizure dataset. While the GMM-UBM continued to

be the top performer, it frequently failed to exceed the desired minimum 0.75 C Metric

score. This was anticipated, since the classification of seizure EEG remains an active

research topic for clinicians and data scientists alike [43]. In general, each variant of

EEG data finds itself operating on a new novel dataset tailored for the given condition

such as seizures [108], sleep [81] or motion tasks [86]. These experiments frequently

use one of any number of classifiers, many of which were outlined in Chapter 2 such

as SVMs, DPs, and the rapidly advancing field of NNs, while also searching for an

optimal feature set (entropies [152], raw data [14] or fractal features [214]). Despite

the novelty of such experiments, the work presented here was far more ambitious

because it combined multiple datasets together and analyzed them using multiple

feature sets. This tested the ability of the classification algorithms and the feature

sets in ways not previously documented on publicly sourced datasets.

In doing so, it was discovered that the previous optimal UBM mixture range as

determined in Chapter 5 was poorly understood, as I-Vector performance peaked

with larger UBMs on the aggregated datasets. Even the GMM-UBM algorithm

performance required larger UBMs for their performance to peak. This indicated

that the Parameter Sweeps were lacking. To address this, the aggregated datasets of

Chapter 6 should have been used in the Parameter Sweeps until an inflection point
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in performance due to UBM size was observed. Multiple plots in Chapter 5

indicated that larger UBMs could have improved I-Vector performance, particularly

on the datasets containing seizure data.

Within the tested experiment protocol, LDA showed the ability to provide C

Metric score gains of 10% to 30% depending on the feature set and dataset as seen

in Chapter 6. In some instances this was enough to push the I-Vector performance

beyond that of the MD algorithm. LDA’s impact was more prevalent on the CEP and

COH features as they were unable to match the performance of the PSD features. This

may have been an indication that CEP and COH features are for niche applications

as COH features are frequently used on ERP classification tasks given the emphasis

on synchronicity [162]. However, for all three features, LDA’s ability to improve the

performance of the 25 dimension TVMs was minimal if any at all. This suggested

the TVMs are all modeling different facets of the data, as their performance when

reduced to the same dimension via LDA was never similar.

The shortfall of the Algorithm Benchmarks was that at the 1024 and 2048 mixture

UBMs the GMM-UBM performance appeared to be trailing off just as the larger

dimension TVMs were improving their performance. It is likely that both the number

of UBM mixtures and TVM dimensions were undersized for the largest of datasets.

Adding the larger datasets to the Parameter Sweeps might have addressed this, but

the experimental protocol relied on 2 minutes of data from each subject which clearly

was too little in hindsight. Scaling up the amount of data from each subject while

maintain 2s duration epochs would likely require far larger UBMs and might have

shown I-Vector to be superior to GMM-UBM on larger datsets given their performance

trends.
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8.3 UBM-TVM Relationship

The UBM-TVM relationship experiments were the most pioneering aspect of this

work. As useful as ML algorithms have become, much of their progress has

remained obscured in their multiple layers of weighted coefficient matrices and

nonlinear activation functions. While they rapidly advance our ability to use EEG

data, they often fail to provide insight into the data itself and how they made their

classification decisions. Articulating why a decision is made requires understanding

how a decision is made, which was the goal of understanding how the TVM adapts

itself to allow for such low-dimension feature vectors to produce near state of the art

subject verification performance.

By directly comparing the relationships produced by the UBMs and their TVM

counterparts, the basic mechanics of the I-Vector generation process were brought into

focus. The results of Chapter 7 indicated that by contrasting the mixture positions

in the EEG feature space with the nominal mixture-specific TVM mean shifts, a

relationship between position and application was modeled for each experiment’s

dataset. By pairing these datasets against each other as a known ‘base’ and unknown

‘target’, mixtures that acted as decision surfaces between the datasets were discovered.

Given the scale of these experiments, these mixtures were not related directly to the

subjects, but rather to the qualities of the datasets (abnormal, normal, motion, and

seizure) themselves.

This initial step was possible because of the strong performance of I-Vectors and

GMM-UBMs on the PSD feature sets. The entire technique relied on the UBMs

to have accurately modeled the data, which was affirmed by the strong classification

performance of GMM-UBMs using the smaller mixture sizes. Likewise, the TVMs had

to be capable of providing classification on par with their GMM-UBM counterparts,
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which was evidenced in the 32, 64, 128, and 256 mixture UBMs. Thus, analyzing

the modeling done prior to the strong subject verification, using the 8, 16, and 32

mixture UBMs would provide insight into the four type of datasets.

The results showed that the largest aggregated datasets (built from three of the

abnormal, normal, motion, and seizure datasets) used the same mixtures to generate

consistent relationships against the target datasets across each size of the UBMs.

When comparing the mixture pairings across datasets for an 8 or 16-mixture UBM,

the base dataset used the same mixtures to produce the closest-divergent and

furthest-divergent decision surfaces. It was also able to confirm that low weighted

closest-aligned mixtures were not artifacts but rather distinct phenomena related to

a particular dataset, seizure or motion. Thus the UBMs were able to link the

mixtures within a given feature space and the TVMs provided insight into how

those mixtures were used in relation to each other for classification purposes.

These initial classifications were broad and would need to be refined, as the number

of mixtures and dataset contents are expanded. Not all pairings labeled as “aligned”

were truly aligned with a TVM distance score below 0.5, just as not all “divergent”

labels were truly divergent with a distance score greater than 0.5. Thus the middle

range (-0.5 to 0.5), wherein two dimensional vectors would be orthogonal to each

other, represents a space potentially just as important as the fully aligned or divergent

areas. To accurately map this space it likely would have been necessary to account for

all label transitions, and not just those between the best and worst overlaps between

the UBM and TVM. However, organizing a system to classify beyond just the outliers

was beyond the scope of this work.

There are a number of ways to expand on this technique now that it has shown

its ability to explain how decisions are made by the I-Vectors. If traced back to and

evaluated against known annotations it should be possible to identify certain mixtures
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with a known annotation and to leverage this to then build groups of related mixtures

under a given annotation label.

8.4 Going Forward

The three research aims were fulfilled and laid claim to a strong reference for future

experiments concerning the tested feature sets, the tested algorithms, and the tested

datasets. Linking all of these components together by using publicly available

datasets provides a strong benchmark for further the development of algorithms and

feature sets within the EEG processing community. Historically, subject verification

experiments have been reliant on the PhysioNet Database which limited the

possible types of experiments given its limited recording duration and low subject

count. Now experiments that previously used that dataset have an alternative

dataset against which to reevaluate their work and compare to the results presented

in this work.

However, a hurdle remains in helping those researchers find data of interest for

their studies. Too often, protocols have required that experiments gather their own

data, which helped them with their specific research but failed to add to the collective

pool of common experimental results. The NEDC’s efforts to collect and publicly

release EEG data was an attempt to address this failure. Yet this is only part of the

problem, as like the PhysioNet Database dataset which lacked any information about

its subjects, the data is often only as useful as the medical information associated

with it. Data that cannot be organized on the highest of levels (subject, age, gender,

condition) makes the process of understanding the components of those factors harder.

Thus, the impetus for this work stemmed from questions about how one would

search and organize such a larger amount of EEG recordings. There was going to be
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a need for a tool that could map all of this data to itself while also being capable of

placing new novel recordings into an appropriate place within the existing mapping.

The cohort retrieval problem was thus born and I-Vectors were seen as a possible

solution.

If that conversation were to happen again today, it could be said that I-Vectors are

a potential solution given the results presented herein. They were competitive with

an algorithm that used feature vectors nearly double their order of magnitude and

afforded the opportunity to analyze the relationships being created that allowed such

performance and dimension reduction. While this did not make them the superior

classifier, it did make them the superior tool for research and analysis of EEG data

without the need for clinically sourced annotations. The creation of such a tool, that

previously did not exist within the EEG community, should lend itself to helping

addressing questions about feature selection and dataset composition while providing

a potential alternative source for generating informed annotations.

The use of I-Vectors outside of speech recognition has found success in text

recognition [215], acoustic detection [216], and image recognition [217] and now

EEG subject verification. This is likely to continue into other areas of multi-modal

or multi-source signal process problems if not supplanted by the use of x-vectors.

However, the fact that I-Vectors can operate successfully without labeled to produce

the various UBM-TVM relationships and is less computational intensive may imbue

it with some longevity until x-vectors mature further.

Depending on the level of abstract in the DNN statistics pooling it may be possible

to recreate a similar analysis to the I-Vector analysis used to compare the TVM and

UBM spaces. Yet this would likely be occurring on the subject level as the statistical

transform of the TVM would be equivalent to the processes that generate the first

embedding. Thus it may not be possible to constrain the parameters of the DNN in
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a such way replicate the TVM impulse response via the two embeddings. At the very

least this would be an interesting area of research that melds the presented work with

what is likely the future of speaker recognition.

413



BIBLIOGRAPHY

[1] O. N. Markand, “Pearls, Perils, and Pitfalls in the Use of the
Electroencephalogram,” Semin. Neurol., vol. 23, no. 1, pp. 007–046, 2003.

[2] T. W. Picton, “The P300 Wave of the Human Event-Related Potential,” J.
Clin. Neurophysiol., vol. 9, no. 4, pp. 456–479, oct 1992.

[3] P. Khanna et al., “Modeling distinct sources of neural variability driving
neuroprosthetic control,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
EMBS, vol. 2016-Octob, pp. 3068–3071, 2016.

[4] Lun-De Liao et al., “Biosensor Technologies for Augmented Brain-Computer
Interfaces in the Next Decades,” Proc. IEEE, vol. 100, no. SPL CONTENT,
pp. 1553–1566, may 2012.

[5] B. J. Lance et al., “Brain–Computer Interface Technologies in the Coming
Decades,” Proc. IEEE, vol. 100, no. Special Centennial Issue, pp. 1585–1599,
may 2012.

[6] S. Ramgopal et al., “Seizure detection, seizure prediction, and closed-loop
warning systems in epilepsy,” Epilepsy Behav., vol. 37, pp. 291–307, 2014.

[7] S. Lopez et al., “Automated identification of abnormal adult EEGs,” in 2015
IEEE Signal Process. Med. Biol. Symp., vol. 37, no. 6. IEEE, dec 2015, pp.
1–5.

[8] H. Nolan, R. Whelan, and R. B. Reilly, “FASTER: Fully Automated Statistical
Thresholding for EEG artifact Rejection,” J. Neurosci. Methods, vol. 192, no. 1,
pp. 152–162, sep 2010.

[9] E. Schulz et al., “Decoding an individual’s sensitivity to pain from the
multivariate analysis of EEG data,” Cereb. Cortex, vol. 22, no. 5, pp. 1118–
1123, 2012.

[10] N. Kannathal, M. L. Choo, U. R. Acharya, and P. K. Sadasivan, “Entropies for
detection of epilepsy in EEG,” Comput. Methods Programs Biomed., vol. 80,
no. 3, pp. 187–194, 2005.

[11] V. Lawhern, D. Slayback, D. Wu, and M. Kass, “Efficient Labeling of EEG
Signal Artifacts Using Active Learning,” Proc. - 2015 IEEE Int. Conf. Syst.
Man, Cybern. SMC 2015, pp. 3217–3222, 2016.

[12] F. Lotte and C. Guan, “Regularizing common spatial patterns to improve
BCI designs: unified theory and new algorithms.” IEEE Trans. Biomed. Eng.,
vol. 58, no. 2, pp. 355–62, feb 2011.

414



[13] H. Chu, C. K. Chung, W. Jeong, and K.-H. Cho, “Predicting epileptic seizures
from scalp EEG based on attractor state analysis,” Comput. Methods Programs
Biomed., vol. 143, pp. 75–87, may 2017.

[14] D. F. Wulsin et al., “Modeling electroencephalography waveforms with semi-
supervised deep belief nets: fast classification and anomaly measurement.” J.
Neural Eng., vol. 8, no. 3, p. 036015, jun 2011.

[15] C. Vidaurre, C. Sannelli, K.-R. Müller, and B. Blankertz, “Machine-Learning-
Based Coadaptive Calibration for Brain-Computer Interfaces,” Neural Comput.,
vol. 23, no. 3, pp. 791–816, 2011.

[16] S. Stober, A. Sternin, A. M. Owen, and J. A. Grahn, “Deep Feature Learning
for EEG Recordings,” Arxiv, pp. 1–24, 2015.

[17] A. J. Izenman, Modern Multivariate Statistical Techniques, ser. Springer Texts
in Statistics. New York, NY: Springer New York, 2008.

[18] I. Obeid and J. Picone, “The Temple University Hospital EEG Data Corpus.”
Front. Neurosci., vol. 10, no. MAY, p. 196, may 2016.

[19] P. W. Kaplan and S. R. Benbadis, “How to write an EEG report: Dos and
don’ts,” Neurology, vol. 80, no. Issue 1, Supplement 1, pp. S43–S46, jan 2013.

[20] K. M. Tsiouris et al., “An unsupervised methodology for the detection of
epileptic seizures in long-term EEG signals,” in 2015 IEEE 15th Int. Conf.
Bioinforma. Bioeng. IEEE, nov 2015, pp. 1–4.

[21] A. C. Grant et al., “EEG interpretation reliability and interpreter confidence:
A large single-center study,” Epilepsy Behav., vol. 32, pp. 102–107, mar 2014.

[22] N. Gaspard et al., “Interrater agreement for Critical Care EEG Terminology,”
Epilepsia, vol. 55, no. 9, pp. 1366–1373, sep 2014.

[23] J. Halford et al., “Inter-rater agreement on identification of electrographic
seizures and periodic discharges in ICU EEG recordings,” Clin. Neurophysiol.,
vol. 126, no. 9, pp. 1661–1669, sep 2015.

[24] S. C. Warby et al., “Sleep-spindle detection: crowdsourcing and evaluating
performance of experts, non-experts and automated methods.” Nat. Methods,
vol. 11, no. 4, pp. 385–92, 2014.

[25] S. Ghosh-Dastidar, H. Adeli, and N. Dadmehr, “Mixed-Band Wavelet-Chaos-
Neural Network Methodology for Epilepsy and Epileptic Seizure Detection,”
IEEE Trans. Biomed. Eng., vol. 54, no. 9, pp. 1545–1551, sep 2007.

415



[26] J. J. Halford et al., “Characteristics of EEG interpreters associated with higher
interrater agreement.” J. Clin. Neurophysiol., vol. 34, no. 2, pp. 168–173, 2017.

[27] C. M. Epstein, “Guideline 7: Guidelines for Writing EEG Reports,” J. Clin.
Neurophysiol., vol. 23, no. 2, pp. 118–121, apr 2006.

[28] T. Banaschewski and D. Brandeis, “Annotation: What electrical brain activity
tells us about brain function that other techniques cannot tell us - A child
psychiatric perspective,” J. Child Psychol. Psychiatry Allied Discip., vol. 48,
no. 5, pp. 415–435, 2007.

[29] E. Westhall et al., “Interrater variability of EEG interpretation in comatose
cardiac arrest patients,” Clin. Neurophysiol., vol. 126, no. 12, pp. 2397–2404,
dec 2015.

[30] K. Gwet, “Kappa Statistic is not satisfactory for assessing the extent of
agreement between raters,” Stat. Methods Inter-Rater Reliab. Assessmen, no. 1,
pp. 1–5, 2002.

[31] P. A. Gerber et al., “Interobserver Agreement in the Interpretation of EEG
Patterns in Critically Ill Adults,” J. Clin. Neurophysiol., vol. 25, no. 5, pp.
241–249, oct 2008.

[32] Z. Z. Wang et al., “Cross-subject workload classification with a hierarchical
Bayes model,” Neuroimage, vol. 59, no. 1, pp. 64–69, jan 2012.

[33] D. La Rocca, P. Campisi, and G. Scarano, “EEG Biometrics for Individual
Recognition in Resting State with Closed Eyes,” Int. Conf. Biometrics Spec.
Interes. Gr., no. Figure 1, pp. 1–12, 2012.

[34] S. Makeig et al., “Evolving signal processing for brain-computer interfaces,” in
Proc. IEEE, vol. 100, no. SPL CONTENT, aug 2012, pp. 1567–1584.

[35] T. Schluter and S. Conrad, “An Approach for Automatic Sleep Stage Scoring
and Apnea-Hypopnea Detection,” in 2010 IEEE Int. Conf. Data Min., vol. 6,
no. 2. IEEE, dec 2010, pp. 1007–1012.

[36] A. R. Clarke, R. J. Barry, R. McCarthy, and M. Selikowitz, “Age and sex
effects in the EEG: Differences in two subtypes of attention-deficit/hyperactivity
disorder,” Clin. Neurophysiol., vol. 112, no. 5, pp. 815–26, may 2001.

[37] H. Begleiter and B. Porjesz, “Genetics of human brain oscillations,” Int. J.
Psychophysiol., vol. 60, no. 2, pp. 162–171, 2006.
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APPENDIX A

EQUATIONS

Relevant topics discussed in each sections that may not be familiar to all readers

are briefly outlined here.

A.1 Background

A.1.1 Defining Similarity via Cohen’s Kappa

It is difficult to produce annotated sets of EEG recordings without clinical support. To

ensure the accuracy of these sets it is necessary to have multiple clinicians annotate

the same data to build a consensus-based annotation. This process invites each

clinician’s bias into the annotation process which must be tracked and controlled in

terms of intra-rater and inter-rater similarity scores. These scores provide a sense of

strength of a clinician’s ability and robustness of a dataset as a function of agreement

evaluated as Cohen’s Kappa (κ).

Given two raters and their tallies for class A or B in Table ??, their inter-rater

agreement κ is calculated as follows:

κ =
po − pe
1− pe

= 1− 1− po
1− pe

(A.1)

2



Table A.1. Table of Cohen’s
Kappa

S1
A B

S2
A q w
B z x

po =
q + x

q + w + z + x

pe =
q + w

q + w + z + x
∗ q + z

q + w + z + x
+

z + x

q + w + z + x
∗ w + x

q + w + z + x
(A.2)

In the above equation, po finds the percentage of agreement between the two raters1.

Then pe finds the percentage the raters chose the same label, how often S1 chose A

and S2 chose A. The calculated expectation of similarity, pe, is used to control for the

outcome of similarity, po. The grades of agreement are quantified as follows: { < 0

poor; 0− 0.20 slight; 0.21− 0.40 fair; 0.41− 0.60 moderate; 0.61− 0.80 substantial;

0.81− 1.00 almost perfect} [218].

1In the event the two raters are the same clinician, the agreement represents intra-rater agreement
instead of inter-rater agreement.
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