
INSTITUTE FOR SIGNAL AND INFORMATION PROCESSING

I S I PI S I P

s p ee c hs p ee c h

status report for

A Sun Sparcstation-Based Speech Data Collection Platform

LDC Subagreement 5-24431-C
ISIP Project No. 02-95

for the period of October 1, 1995 to January 31, 1996

submitted to:

Linguistic Data Consortium

441 Williams Hall
University of Pennsylvania

Philadelphia, PA 19104-6305

submitted by:

Joseph Picone, Ph.D., Associate Professor

Institute for Signal and Information Processing
Department of Electrical and Computer Engineering

Mississippi State University
Box 9571

413 Simrall, Hardy Rd.
Mississippi State, Mississippi 39762

Tel: 601-325-3149
Fax: 601-325-3149

email: picone@isip.msstate.edu

ISIP Project No. 02-95 Page 0 of 6 January 31, 1996

Institute for Signal and Information Processing Mississippi State University

EXECUTIVE SUMMARY

The third phase of this project resulted in a major milestone — Linkon finally delivered functional
hardware. We received our first copy of the software in early November’95 (v5.0 Beta). The
hardware followed several weeks later, arriving at the end of November. We lost one month
debugging their installation script, and managed to have a basic demo of the analog telephone
portion of the system working by the end of the year.

We completed verification of the installation of the system shortly after resolving the installation
problems. Linkon uses a fairly inflexible installation procedure based on a new Solaris
convention — pkgadd. Not only is this installation incompatible with most user’s standard Unix
research environments (utilizing distributed filesystems) but the pkgadd command turns out to be
highly sensitive to certain standard Unix mechanisms, such as links. We resolved the installation
problems by reconfiguring our machine slightly, and increasing our spool space. Linkon support
was totally unhelpful during this process — at one point suggesting we wait until a CDROM
release was available in February’96.

The next major obstacle we overcame was debugging Linkon’s demo programs, which were
obviously not tested or expected to work on standard analog telephone lines (these demos were
expecting some ISDN signaling and a compression software license which we weren’t given). It
was at this point we observed a byte-swapping problem with 16-bit linear data involving
long-word swapping. Again, Linkon support was useless (aside from eventually telling us how to
“dejive” the data on an Intel machine). Though we are not happy with the current solution to this
problem, we can at least make the board compatible with existing Unix I/O standards for 16-bit
data. A firmware fix is promised in the next release of the software. The third major problem we
faced was an imbalance in the play and record levels. We are still not sure exactly what the analog
hardware uses for A/D, but we have a strong belief it is an 8-bit codec with some asymmetric
µ-law to linear conversion software. The fourth problem we faced is utterance detection — a hook
is not provided to pad the utterance with silence prior to the start of the utterance. This is a serious
problem that will affect both analog and digital collection.

Despite these small problems, we have managed to complete a demonstration of
POLYPHONE-style data collection (type I). This was made available on January 28 (call
601-325-2292). A demo of SWITCHBOARD-style data collection (type II) is near completion
(we just fixed one of two remaining bugs today while I was writing this report). We expect this
demo to be complete within the week. Given that we now appear to have stable hardware, we
seem to be proceeding smoothly with construction of the data collection system. Poor turnaround
with Linkon support continues to be a major frustration. However, we do seem to have the ear of
the marketing people, who have helped resolve the support problems.

We expect at the completion of the next phase of the project, we will have flexible software in
place to perform type I and type II data collection on analog hardware. This is an important
milestone, because it will complete our certification of the product from a software interface
standpoint. From here, we can proceed rapidly to deployment of the digital hardware and creation
of a GUI for the data collection software. We expect the GUI development to extend beyond the
current May 15 deadline. However, we have made provisions for the current staff to be available
throughout summer in order that we can accomplish this task.

i

Institute for Signal and Information Processing Mississippi State University

0 with
not a

nately,
talled,
on tar
tions

ibe the
l the

ately
stem
Sparc

on the
hold the
m not
e fact
blems.

e lines
ith a
e unit
gging

the

, have
hine
uses

ke the
ystems
disks
. After
, the
M
lems

e ftp
1. HARDWARE INSTALLATION

We received a pre-release of the Linkon software in early November (a Beta release of v5.
documentation dated October 14, 1995). The software came on a 1/4” cartridge tape —
good sign. We had hoped this would give us a lead in the software design process. Unfortu
the documentation recommended not loading the software without having the hardware ins
since both use a common installation driver (standard Unix installation procedures based
and install were not provided). The software installation attempts to do some kernel modifica
and some hardware-dependent configuration. Further, the documentation did not descr
software in sufficient detail, and the installation did not provide any options to simply instal
software, so we were left hanging.

The hardware arrived in late November, just prior to the Thanksgiving holidays. We immedi
proceeded to install it — with no major problems. There was one major surprise — the sy
occupies TWO SBus slots. The FS-4000 is a dual SBus card systems that lays flat in the
hardware and takes two SBus slots horizontally adjacent. This leaves one available slot
same row (Sparc 5’s have three slots across and one slot underneath these three slots) to
T1 card (which is also supposed to be only one slot). Due to the thickness of these cards, I a
sure the fourth slot can be utilized. However, since we have three available slots due to th
that we are using a Sparc 5 server model with no video cards, this should not pose any pro

Each of these two cards contains one RJ-45 connector that multiplexes four analog phon
into the card (the RJ-45 connector is an 8-wire connector). The system comes w
harmonica-style RJ-45 block that is used to collapse 8 telephone lines into 2 RJ-45 jacks. Th
we received had the analog phone lines incorrectly labeled, which cost us some time debu
demo software that, in the end, simply was addressing the wrong telephone port.

2. SOFTWARE INSTALLATION AND DESIGN

To quote from the Linkon manual, “to install your selected Linkon software product enter
following commands:”

pkgtrans /dev/rmt/0 spool LKONxvox
pkgadd LKONxvox

Needless to say, this didn’t work. This assumes you have all disk space local to the machine
100M available in your spool directory, and have 100M of space available in /opt. The mac
hosting the hardware initially did not have these resources — like all our machines, it
network-mounted file systems and operates as a data-less node.

Our standard procedures to work around such things are to use links and such to ma
appropriate file systems appear as expected. The above commands did not work on our s
for various reasons (it seems pkgadd is very sensitive to links being used in place of local
because it operates as root, and root on one machine is not root on another machine)
reconfiguring our machine to have local disk configured exactly the way Linkon wanted it
installation procedure would still not work. At this point, Linkon told us to wait for a CDRO
distribution of the software in February’96, acknowledging that several customers had prob
with the software installation. This was obviously unacceptable. They refused to provid
ISIP Project No. 02-95 Page 1 of 6 January 31, 1996

Institute for Signal and Information Processing Mississippi State University

is our
gadd
to get

eir
new

ven’t
in

r we
lems

e file
ever,
uence,
stem
bust

ed by

ams
step
ting
hen
are has
th it

their
iler

orting
o we

data
the

ade
es of
access to the software from their machines, and would not help us debug the problems. It
belief they don’t understand these installation scripts. In any event, by studying the pk
software carefully, and using some arguments that control installation paths, we were able
the software to load correctly.

The software is now installed in two places:

/usr/tvox
/usr/xvox

The first directory is required for backward compatibility with their old software from th
previous generation product — the FS-3000. The second directory is where most of the
software is located. We aren’t satisfied with the current organization of the code, and ha
finished relocating the code. It is our preference that Linkon’s code be installed
/usr/local/linkon, which is a standard convention on most Unix systems, including ours. Afte
have completed the development of our first set of demos, we will revisit the installation prob
and experiment with a reorganization of the code.

There is also a boot file in /etc/rc2.d/S27xvox that is created at the time of installation. Th
somehow instructs the host to boot the Linkon board before the CPU actually boots. How
these is an additional configuration program that must be run at the end of the host boot seq
named linkvox, which must be run by root. There is an option to automatically restart the sy
upon boot, but we haven’t experimented with it yet. Such a capability is critical to having a ro
data collection system. The default configuration requires the board to be manually initializ
root.

After installing the software, we found that most of their configuration and verification progr
required minor modifications to work correctly. Unfortunately, their demo programs (the last
in verification of a successful installation according to the manual) didn’t work. After consul
with Linkon, we ended up writing our own program to verify the installation. Fortunately, w
all the dust settled, we were able to declare a successful installation. Since then, the hardw
functioned well, though the Linkon board has mysteriously locked up twice in the one mon
has been on-line (we haven’t finished robustness tests yet).

We have some long-term concerns about the quality of this software. It is clear Unix is not
main platform. The code is written in K&R C, not ANSI-C, which causes numerous comp
warnings when compiled with gcc in g++ mode. The vendor appears uninterested in supp
ANSI-C and gcc. Thus far, we haven’t found any problems that could be attributed to gcc, s
are proceeding with our plans to use the GNU software tools.

3. DATA COLLECTION DEMONSTRATIONS

The next step in our verification of the system was to implement two basic forms of
collection: POLYPHONE-style and SWITCHBOARD-style data collection. A summary of
call flows are shown in Figs. 1 and 2. Type I data collection is fully functional and has been m
available via the telephone number 601-325-2292. Type II data collection is in the final stag
debugging and should be available shortly.
ISIP Project No. 02-95 Page 2 of 6 January 31, 1996

Institute for Signal and Information Processing Mississippi State University

a. call 325-2292
b. system answers and plays welcome message
c. system says “please speak now” and follows with a beep
d. system records my voice and stops approximately 3 secs after

I stop talking (this requires setting the utterance detector)
e. go to step c unless:

I hangup - in which case you exit
I hit a touchtone “*” - in which case I go to f

f. play the “thank you message”
g. exit and wait for next call
Figure 1. Type I data collection (POLYPHONE-style) consists of a prompt and record type scenario in which
the system plays an audio prompts and records the following audio data.
a. call 325-2292

b. system answers and plays welcome message

c. (1) system asks for a pin number
(2) system says “please enter the telephone number of your party”

d. user enters the telephone number using touchtones
system verifies the phone number by speaking the digits
“You have entered three two five six one three zero.”
“Press the pound key to continue.”
if no pound key is pressed after 5 secs go to h.

e. System says “please wait while I connect you.”
System dials the phone number.
if:

no answer: report back to user #1
“there was no answer
“please try again”
go to c(2)

busy: report back to user #1
“the line was busy”
“please try again”
go to c(2)

line was answered: go to f

f. Announce to user #2: “I am connecting you to your party — please identify yourself”
Connect them

g. Begin recording both sides of the conversation.
Turn off all utterance detection.

h. When either party hangs up, terminate the call on both ends by playing the end message
(if necessary), hang up, and wait for next call.
Figure 2. Type II data collection (SWITCHBOARD-style) consists of a teleconferencing scenario where two
callers are connected and both sides of the conversation are recorded.
ISIP Project No. 02-95 Page 3 of 6 January 31, 1996

Institute for Signal and Information Processing Mississippi State University

ssary
sses
ven a
ject.
n.

that
onably
will

tting
they

tely,
nkon’s
Thus far, we have been pleased with the software interface to the board. All of the nece
functions appear to be provided — though documentation is clearly lacking. Multiple proce
(different data collection applications) can address the board simultaneously. There is e
low-level call for the teleconferencing function, which was a major technical issue in this pro
We have yet to test this function, but it appears to do what we need for type II data collectio

An example of some of our prototype code is shown in Fig. 3. This is code for a function
records data. We have been successful thus far in abstracting the code to a reas
well-structured user-friendly C++ API. The code shown in Fig. 3 is just prototype code that
be refined as we begin coding the production systems.

4. OUTSTANDING ISSUES WITH THE ANALOG SYSTEM

Thus far, we have encountered four major problems with the board. These are:

(1) byte-swapping (not a problem for µ-law data)

16-bit audio data needs to be long-word byte swapped:

Sun: b0 b1 b2 b3
 Linkon: b2 b3 b0 b1

(Linkon seems to be heavily influenced by Intel platforms.)

(2) playback/record levels differ:

We believe the A/D converter is an 8-bit codec that is translated to a 13-bit linear signal when
using the board in 16-bit mode. However, audio prompts can be played at 16-bit levels with no
audible distortion, and must be played at that level to be easily heard. Prompts and recorded data
have a noticeable difference in loudness. This seems to be a simple scaling problem. We were led
to believe the audio quality would be 16-bit linear — not 8-bit µ-law. The recorded data does
appear to be fairly clean (no noticeable 60 Hz hum or granular background noise).

(3) utterance detection does provide a pad time option for the onset of the utterance

The utterance detector does not support a parameter setting for the amount of silence that
precedes a word. Trailing silence is controlled by a user-defined parameter, but this value also is
used to determine the end of utterance. The net result is that recorded utterances begin within
milliseconds of the beginning of the utterance, and have three seconds of silence at the end of the
utterance. We can use our own utterance detector in real-time to segment data, but this will
needlessly load the host CPU for a system processing 8 channels of data (one of the goals of the
project). It is a function best done in the DSP hardware. Their utterance detector seems to work
well — it just needs a few more parameters to control the definition of the start and stop times of
the utterance it finds.

(4) ddi_dial() does not work (a function to dial a phone number)

Very simply a bug which we can work around for the moment with our own code. However, yet
another indication of how little of this software has been tested.

We have believe all of the problems can be resolved with a minimum of work. However, ge
Linkon’s attention has been a problem. Under duress, the support person finally admitted
rushed to get this board out the door, and haven’t had time to refine it. Fortuna
George Dinsdale, the lead salesperson, has been very helpful in getting the attention of Li
ISIP Project No. 02-95 Page 4 of 6 January 31, 1996

Institute for Signal and Information Processing Mississippi State University

/* file: /isip/d00/linkon/lib/record.cc */

/*
 * Richard Duncan
 * The Institute for Signal and Information Processing
 * December 1995
 *
 *
 * This function reads in audio data from the f3kb board
 *
 */

#include <stdio.h>

#ifndef _RECORD_H
#define _RECORD_H
#include <record.h>
#endif

#ifndef _SYS_DDI_H
#define _SYS_DDI_H
#include <sys/ddi.h>
#endif
...

int record(char *speech_data_filename,
 int channel, char *dtmf,
 int *disconnect){

 VCB vcb;
 FILE *pout;
 int ret;
 int totlen;
 int wc;

 // initialize arguments passed to program
 //
 *dtmf=(char) NULL;
 *disconnect=0;

 // Print the log message
 fprintf(stdout, “record: recording %s on channel %d\n”,
 speech_data_filename,
 channel);
 fflush(stdout);

 // open the output data file
 pout = fopen(speech_data_filename, “wb”);

 // Initialize a vcb to the channel
 ddi_ivcb(&vcb,channel);

 // start recording
 ret = ddi_nb_record(&vcb);

 if(ret != VRC_SUCCESS){
 return(ret);
 }

 // count bytes recorded
 totlen = 0;

 while (1) {
 // get next vcb
 ret = ddi_getvcb(&vcb, 0xf000);
 if(ret != VRC_SUCCESS){
 continue;
 }

 // record data received
 if(vcb.opcode == TOP_MDM_RECV){

 // swap every 4 bytes of data
 swap)4_bytes((short int *)
 &(vcb.vp.rmd.data),vcb.vp.rmd.words);
 wc = fwrite(vcb.vp.rmd.data, sizeof(U32), vcb.vp.rmd.words,
 pout);
 // test that the correct amount was read
 if (wc != vcb.vp.rmd.words){

fprintf(stdout,”Record write failed\n”);
fclose(pout);
return(FAILURE);

 }
 totlen+=wc;
 continue;
 }

 if(vcb.opcode != TOP_TV_EVENT){
 continue;
 }

 if(vcb.result == CEC_DTMF){
if (pout != (FILE *) NULL) fclose(pout);
ret=vcb.errno;

get_dtmf_code(ret,dtmf);
fprintf(stdout,”DTMF detected >%c<\n”, *dtmf);
ddi_clrabort(channel);

ddi_offhook(&vcb, 0xffff);
sleep(1);
return(SUCCESS);

 }

 if (vcb.result == CEC_DISCONNECT){
 fprintf(stdout, “USER DISCONNECTED\n”);
 fclose(pout);
 ddi_clrabort(channel);
 ddi_offhook(&vcb, 0xffff);
 sleep(1);
 *disconnect=1;
 return(SUCCESS);
 }

if ((vcb.result == CEC_RECC) || (vcb.result ==
CEC_RFAXC)){
 fprintf(stdout, “Record ended %d bytes\n”,vcb.errno);
 fclose(pout);
 ddi_clrabort(channel);
 ddi_offhook(&vcb, 0xffff);
 sleep(1);
 return(SUCCESS);
 }
 }
}

Figure 3. An example piece of code demonstrating how to record data from the Linkon board from a user-lev-
el C++ program. This code is used in both type I and type II data collection demos.
ISIP Project No. 02-95 Page 5 of 6 January 31, 1996

Institute for Signal and Information Processing Mississippi State University

with
ing to
that
ne of
one

oject,
the

nce in
enior
MS for
admin

e T1
ms to

for
will

use in
del I
rface

the
sary),
tware
there

seful

ctory
Engineering Department.

5. STAFFING AND NEAR-TERM PLANS

In addition to the delay in hardware delivery, we had a significant interruption in our staffing
the untimely death of the key engineer on this project in October’95. This has been a hard th
overcome, especially since ISIP is not overflowing with programmers of his capability. Given
we were in the middle of the project, and it would have been hard to replace him with someo
his caliber on such short notice, we decided to continue executing the project with only
software engineer (who is my best programmer) and the PI. While it has slowed down the pr
and will mean we will miss our May 15 deadline for completion of the project, I think this is
best thing overall to do to guarantee the highest quality output from this project.

We have also added a new member to our group — a sys admin with extensive experie
telecommunications and computer networking, including T1 data connections. (This is a s
person who has returned to school after running his own computer businesses in Jackson,
10 years.) The department is paying his salary, and has assigned him to our group for sys
training. He will be a valuable asset to us on this project — particularly in supervision of th
installation and certification of its integrity. He has reviewed the project documents and see
understand the technical details. Feel free to call upon his expertise as you need it.

We should not miss our May 15 deadline by much. We expect to deliver software
types I and II data collection using the analog or digital system by May 15. This software
allow the Linkon system to be configured from parameter files (the standard approach we
ISIP software) to perform a variety of general data collection tasks (we are following a mo
previously developed at Texas Instruments). You might think of this as a scripting-level inte
to the system.

In the summer months following this delivery, we plan to accomplish two things: prove
system with an actual corpus collection (performing whatever additional debugging is neces
and develop a more user-friendly tcl-based GUI for system configuration. The remaining sof
engineer has committed to remaining here during the summer to work on the project, so
should be no further disruption in staffing. (Incidentally, this person has written 95% of the u
software for the JEIDA and T1 projects.)

If this is not acceptable, please let us know, and we will negotiate a more satisfa
arrangement.
ISIP Project No. 02-95 Page 6 of 6 January 31, 1996

	1 .��HARDWARE INSTALLATION
	2 .��SOFTWARE INSTALLATION AND DESIGN
	3 .��DATA COLLECTION DEMONSTRATIONS
	4 .��OUTSTANDING ISSUES WITH THE ANALOG SYSTEM
	5 .��STAFFING AND NEAR-TERM PLANS
	Figure�1. �Type I data collection (POLYPHONE�style) consists of a prompt and record type scenario...
	Figure�2. Type II data collection (SWITCHBOARD�style) consists of a teleconferencing scenario whe...
	Figure�3. An example piece of code demonstrating how to record data from the Linkon board from a ...

