03/31/05 — 09/30/06: RESEARCH AND EDUCATIONAL ACTIVITIES
This report covers a one-year period for which the original grant was extended. Due to administrative issues related to the starting date of the extension, though this report technically covers the period from 03/31/2005 to 09/30/2006, most of the work was performed from 01/01/2006 to 09/30/2006. During this period, staffing included two MS-level graduate students (J. Suh and S. Lee) who performed the research, one undergraduate (E. Trammel) who supported research activities and dissemination through the web, and PI summer salary to supervise the project.

This ITR award was a multi-institution award Johns Hopkins, Brown University, University of Washington, and Mississippi State University. MS State was the PI. For the extension period, only MS State contributed. MS State’s role in the overall project was acoustic modeling for speech recognition. Specifically, we explored the use of new machine learning techniques, such as Support Vector Machines (SVM) and Relevance Vector Machines (RVM), in the context of a system that integrated natural language parsing and speech recognition.
Their were two main goals of the work during this period: (1) continue our explorations into improving the efficiency of SVM and RVM training; (2) apply these to a task less demanding in terms of training to further validate the impact of these techniques. For (1), our main focus was investigation of a relatively new approach to applying SVMs known as score-space kernels. We also examined new ways to estimate the Hessian matrix for RVMs, which is a major computational bottleneck. For (2), we examined the impact of this technology on a well-known speaker recognition task to which a number of machine learning algorithms have been applied. Both efforts are in progress at the time this report was generated.

A. Machine Learning for Speech Recognition
Generative methods such as a Hidden Markov models (HMM) combined with Gaussian Mixture models (GMM) have been the dominant method for acoustic modeling of speech. Though the performance of speech recognition has been improved based on these generative methods, these methods are limited in their ability to discriminate. Hence, we have focused on the development of a discriminative models based on Support Vector Machines (SVM) and Relevance Vector Machines (RVM). A new method has been introduced to boost generalization of the acoustic model. We have applied a probabilistic Bayesian learning machine termed the RVM as the core statistical modeling unit [1]. These algorithms are bein used in applications involving both speech and speaker recognition.

SVM is a relatively mature classification technique originally developed by Vapnik and his colleagues [1]. It has a good generalization ability which is achieved by deriving an optimal hyperplane with maximum margin between two classes. In many applications, the theory of SVM has been shown to provide higher performance than traditional learning machines and has been introduced as a powerful tool for solving classification problems [2]. Due to these advantages, the SVM has been applied to many classification or recognition fields, such as text categorization, object recognition, speaker verification, and face detection in images [3]. The support vector paradigm is based upon structural risk minimization (SRM) in which the learning process is posed as one of optimizing some risk function. The optimal learning machine is the one whose free parameters are set such that the risk is minimized [1].  

However, SVMs still have two problems. First, while sparse, the size of the SVM models (number of non-zero weights) tends to scale linearly with the quantity of training data. Second, the SVMs are binary classifiers. We require a probabilistic classification which reflects the amount of uncertainty in our predictions [1]. In speech recognition this is an important disadvantage since there is significant overlap in the feature space which can not be modeled by a yes/no decision boundary. Thus, we require a probabilistic classification which reflects the amount of uncertainty in our predictions. The essence of an Relevance Vector Machine (RVM) is a fully probabilistic model with an automatic relevance determination prior over each model parameter [1].
A.1 Support Vector Machine
SVM is powerful tool for distinguishing each class with a nonlinear system basis function. The fundamental idea of an SVM is to project the input space vectors to a high-dimensional feature space using a nonlinear map, which is defined as kernel function [5]. The Structural Risk Minimization (SRM) principle enables one to implement the SVM, since the SRM defines the boundary for training model errors and confidence interval via the VC dimension. The hyperplane will separate the class depending on the binary or n-class cases while SVM reduces the empirical risk. The power of SVMs lies in their ability to transform data to a higher dimensional space and construct a linear binary classifier in the higher dimensional space [6]. A linear hyperplane in the higher dimensional space transforms to a complex nonlinear decision region in the input feature space. 

For improving the efficiency and performance of SVM, the score-space kernel has been investigated for computation and performance. Wan [5] has proposed the score-space kernel method that simulates the human disriminiation process. In terms of speaker recognition system, humans distinguish identity using the intonation, accent, and frequently occuring words. Since the speech utterance for one speaker is highly correlated between segments of speech, taking the score of whole utterance as factor will improve the system. The following sections briefly explain the score-space approach. 

A.1.1 Generative Kernel Function

The kernel function is derived from a generative probability model [7]. Even though discriminative methods are proved to be superior to the generative models for classification problems, generative methods are excellent for extracting information from input features. Kernel methods are suitable for using discriminative classification with a generative probability model. Suppose, the training set is composed of Xi and the corresponding binary targets are Yi. The targets of new training examples are obtained from a weighted sum of the training targets.  The estimated targets are consisted of estimating of weights and kernel functions. The weights represent the overall importance of the each training example Xi, and the kernel function compute the closeness of the pair of datasets. The estimated target process is represented by: 
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The kernel function should be derived by a probabilistic method. The probabilistic method measures the difference between input sample Xi and test sample X. The training targets can be assumed to have a logistic regression distribution, and the targets are estimated given input data X and parameter vector θ.
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By assigning a distribution for θ like a zero mean Gaussian with a full covariance matrix ∑, the posterior distribution for training targets can reduce the complexity of model. The maximum a posteriori (MAP) estimate for the parameters θ given a training set of examples is found by maximizing the following penalized log likelihood:
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where the constant c does not depend on θ. The similarity between data Xi and X can be captured by taking the gradient space of the model. The gradient of the generative model with respect to a parameter describes how that parameter contributes to the process of generating a particular data set. The posterior distribution over training targets are finally estimated by 
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Comparing the equation (1) and (4), the kernel function can de replaced by 
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. Through these processes the generative properties are involved in kernel functions, and SVM is able to exploit the generative and discriminative properties at the same time.
A.1.2 Score-Space Kernels
We investigated a more specific kernel function which enables us to classify variable length sequences of input vectors in a space of fixed dimension, called the score-space [5]. The score-space kernel uses any parametric generative model to classify whole sequences. The space to which sequences are mapped is called the score-space, so named because it is defined by and derived from the likelihood score, p(X|M,θ) of a generative model M. Given a set of k generative models the generic formulation of the mapping of a sequence, X={x1, …,xNl }, to the score-space is
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This equation consists of score-argument
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, which maps the scalar score-argument to the score-space. Any function may be used as a score-argument. We deal with two specific cases that lead to the likelihood score-space kernel and the likelihood ratio score-space kernel. By setting the score-argument to be the log likelihood of a single generative model, M, parameterized by θ, and choosing the first derivative score-operator, we obtain the mapping for the likelihood score space.
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Each component of the score-space,
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, corresponds to the derivative of the log likelihood score with respect to one of the parameters of the model. This mapping is known as the Fisher mapping. The gradient of the log likelihood with respect to a parameter describes how that parameter contributes to the process of generating a particular speaker model. For the exponential family of distributions, these gradients form sufficient statistics for the models. This gradient space also naturally preserves all the structural assumptions that the model encodes about the generation process. When the gradients are small then likelihood has reached a local maximum and vice versa.   

Using the first derivative with argument score-operator and the same score-argument the mapping becomes
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The score-space space defined by this mapping is identical to the Fisher mapping with one extra dimension which consists of the log likelihood score itself. This mapping has the benefit that the performance of a classifier using these mappings will have a minimum test performance that equals the original generative model, M. The inclusion of the derivatives as “extra features” should give additional information for the classifier to use.

An alternative score-argument is the ratio of two generative models, M1 and M2,
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where θ = [θ1 θ2]. The corresponding mapping using the first derivative score-operator is,
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and using the first derivative with argument score-operator,


[image: image15.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

Ñ

=

Y

)

,

|

(

)

,

|

(

log

)

,

|

(

)

,

|

(

log

)

(

2

2

1

1

2

2

1

1

q

q

q

q

q

M

X

P

M

X

P

M

X

P

M

X

P

X

. 
(10)
A likelihood ratio forces the classifier to model the class boundaries more accurately. The discrimination information encoded in the likelihood ratio score should also be in its derivatives.
A.2 Relevance Vector Machine
The classification problem still needs a better approach than SVM to generalize the model for sparse solutions. The use of a probabilistic Bayesian learning enables more sparse and accurate training [8]. Some noted disadvantages of the support vector learning methodology are:

· SVM uses a large number of basis functions because the number of support vectors increases with the number of data sets [9]. 

· SVM does classify the class with a hyperplane, which is binary decision, but it would be better to predict the outputs based on the probabilistic methods. The posterior distribution, p(t|x) where t = target label of class, of the training data help to classify the unknown inputs [8].

The RVM based on the probabilistic Bayesian approach overcomes the above limitations. The essence of an RVM is a fully probabilistic model with an automatic relevance determination prior over each model parameter. The sparseness in the RVM model is explicitly sought in a probabilistic model framework. The following section explains the framework of the RVM. A new approach to improve the RVM algorithm will be explained after framework of RVM section.

A.2.1 RVM Framework
The framework of RVM is originally due to Tipping [8]. RVM and SVM share a similar framework as described in equation (11) below. The training output y is a linearly weighted sum with a basis function, Ф(x). The target function given each input data, {xn, tn}n=1, is expressed by equation (12), and Єn denotes the zero-mean Gaussian. In RVM, the estimating target function uses the Bayesian approach given the prior distribution over the weights for each hyperparameter. RVM requires the likelihood function over targets given weight parameter value, and the target needs to form a distribution to lessen the computational complexity. The target function is assumed to be logistic sigmoid function, and the distribution over target given weight forms the Bernoulli distribution like equation (13).
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The solutions for equation (13) can be approximated by Laplace’s method, which was first proposed by Mackay. The weight parameters are controlled by the individual hyperparameter to moderate the strength of the prior distribution. For fixed values of the hyperparamter of α, the weights indicate the mean value of the posterior distribution of the equation (14). Since p(w|t, α)
[image: image19.wmf]µ

p(t|w)p(w| α), the maximum value of weight parameter can be approximate by this relation.
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By using Laplace’s method, we obtain a quadratic approximation to the posterior distribution. The result of Laplace’s method forms a Hessian matrix:
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where B is a diagonal matrix with variance of the target function, B = diag(β1, β2, …, βN) with βn = 
[image: image23.wmf])}]

(

{

1

)}[

(

{

n

n

x

y

x

y

s

s

-

, 
[image: image24.wmf])

,

(

)

(

n

n

x

x

K

x

=

f

, and A = diag(α1, α2, …, αN). The Hessian matrix is then negated and inverted to find the covariance and mean of the Gaussian approximation using Cholesky decomposition method. 
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The covariance and weight parameter is approximated by the value of a hyperparamter α at each iteration. This is the way to train the model to find the covariance and the mean value of the input data. In the next section, we discuss how to improve the efficiency of the current RVM algorithm.

A.2.2 Towards Improving the Efficiency
Through the course of this project, we have investigated many ways to improve the efficiency of the RVM parameter estimation process. Most of these focused on active learning type approaches in which subsets of the data were identified and processed, and then the results of the estimates of these subsets were merged. Through this process, we were able to increase training set sizes two orders of magnitude to hundreds of thousands of vectors. However, this is still not adequate for speech recognition applications, where the ability to train on millions of vectors is required. Therefore, we began reexamining the computational efficiency of the training process. 

The RVM training procedure attempts to reduce the unnecessary weight parameters in every iteration. With the large input data sets, the Cholesky decomposition step needs large amounts of memory and computation time to compute the inverse of the Hessian matrix. Tipping and Faul have defined a constructive approach where the model begins with only a single parameter specified [10]. Parameters are then added to the system in a constructive fashion while still satisfying the original optimization function. 

Li and Sung proposed the Sequential Bootstrapped SVM method [11]. This method finds the convex hull in the given samples to reduce the size of the support vectors. They assumed the support vectors are placed in the convex hull of each sample distributions on linearly separable classes. Since the RVM takes much computation to find the local optima with slow convergence, finding a convex hull from given sample may boost the convergence rate to find the local optima points.
Our work on incorporating these methods is in progress. In parallel with this work, we decided to explore a speaker recognition application which was less demanding on the size of the training data, and could be used to diagnose problems with the core algorithms.
B. Experiments on Speaker Recognition
Speaker recognition is divided into two fundamental tasks: identification and verification. Identification involves determining who is speaking from a group of known speakers. It is often refered to as closed-set identification. In contrast, the verification is called as open-set verification because it distinguishes the claimed speaker from a group of unknown speakers [4]. We chose to evaluate SVMs and RVMs on speaker recognition because we had a baseline HMM system available. The performance of the SVM was compared to our HMM with GMM speaker recognition.
B.1 SVM Baseline

NIST 2001 speaker recognition evaluation data was used for all the experiments described in this section [12]. All utterances in the development data set were approximately 2 minutes in length. The development set contained 60 utterances for training and 78 utterances for testing. These utterances were taken from the Switchboard corpus. A standard 39-dimension MFCC feature vector was used.

The SVM classifier requires information about in-class and out-of class data for every speaker in the training set. Suppose a model ‘x’ has to be trained for utterance ‘x’, in which case the in-class data for training will contain all the 39 dimensional MFCC feature set for the utterance ‘x’, and the out-of-class data is obtained by randomly picking “n” feature vectors from all the remaining utterances in the training data set. The size of “n” was determined in such a way that the out-of-class data had twice the number of MFCC vectors when compared to the in-class data. This is an approximation and hence will not contain all the information required to represent the true out-of-class distribution, but this sort of approximation was necessary to make the SVM training computationally feasible. Hence, it has to be kept in mind that the performance of this system is based on classifiers that were exposed to only a small subset of data during training. 
During testing, the test MFCC vectors are used as input to compute the distance using the functional form of the model. A distance is computed for every single test vector, and finally an average distance for the entire feature vector set is computed. The average distance is used for final decision making. An ideal decision threshold is zero for SVM classifiers, but for speaker verification tasks we can determine a threshold where the detection cost function is minimum (DCF) [12].
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	Figure 1. DET curves for various values of the RBF kernel parameter γ
	Figure 2. A comparison of HMM and SVM performance




The first set of experiments was conducted to determine the optimum value of γ for the RBF kernel. It was observed that for γ values between 2.5 to 0.02 there was very little variation in the distance scores for the test utterances. Performance was stable between 0.03 and 0.01 as shown in the DET [13] curves of Figure 1. The minimum DCF points were obtained for each of these curves and it was observed that for γ =0.019 we obtained the lowest minimum DCF. The minimum DCF for various values of γ are shown in Table 1. The Equal Error Rate was 16% with a γ of 0.019 and the penalty parameter set to 50. It can be observed from the DET plot that there is very marginal change in performance for changes in the γ values in the selected range. The most significant improvement in performance was observed only with a γ value of 0.019 and the effect of this improvement also reflected in an improvement in minimum DCF value as shown in Table 1. 

We compared the results obtained on the SVM based speaker verification system with the baseline HMM system. The baseline system used 16-mixture Gaussians as the underlying classifier. An impostor model was trained on all the utterances in the development train set while the speaker models were built using the corresponding speaker utterance and constructing 16-mixture Gaussians. During testing, a likelihood ratio was computed between the speaker model and the impostor model. The likelihood ratio was defined as:
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where LR is the likelihood ratio, “x” is the input test vector, “sp_mod” and “imp_mod” are the speaker and impostor models respectively. The equal error rate obtained on the HMM baseline system was close to 25% and the Min DCF was 0.1838. A comparative DET plot between SVM and baseline HMM system is shown in Figure 2 and their comparative performances are listed in Table 2.

C. Educational Activities

Our lab maintains a public domain speech recognition software environment and research infrastructure that has been a key mechanism for dissemination of information. We continued to upgrade our SVM and RVM capabilities as part of our general purpose toolkit available at: http://www.ece.msstate.edu/research/isip/projects/speech/software/. The SVM baseline system described in this report is available as part of this toolkit.

We also maintain a Java applet that encapsulates many pattern recognition principles at: http://www.ece.msstate.edu/research/isip/projects/speech/software/demonstrations/applets/util/pattern_recognition/current/index.html. This applet, which has been under development for several years, contains the most recent instantiation of our SVM and RVM training processes.

In addition to these resources, a number of lecture and presentation materials are available online at: http://www.ece.msstate.edu/research/isip/publications/seminars/. These document our intermediate progress and contain some tutorials on some of the underlying theory.

We conducted a individual study course in natural language processing in Fall’2005 that incorporated many of the concepts we were exposed to throughout this ITR project. Materials from this course are available at: http://www.ece.msstate.edu/research/isip/publications/courses/ece_7000_nlp/.
D. Conclusions

In this portion of the project, we have focused on improving the efficiency of learning machines such as SVMs and RVMs. SVM-based acoustic modeling requires less computation time for training and testing compared to an HMM in the speaker recognition problem. Unfortunately, training is more computationally demanding. The RVM requires more computation and memory for training, but improves classification performance. Work on improving the efficiency of an RVM continues.
The unexpected transition of our lab from the Center for Advanced Vechicular Systems to the Department of Electrical and Computer Engineering, which resulted in a loss of access to the university’s supercomputing infrastructure, had a significant impact on our ability to run computationally-expensive RVM simulations. Our department has a very limited small cluster that is proving to be unstable. We also lost valuable time making this transition because we had to port our software and data infrastructure. This transition was completed over the summer, but the loss in computational infrastructure remains an issue. 
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