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The generative method such as Hidden Markov model (HMM) combined with Gaussian Mixture Model (GMM) has been dominant method for modeling the acoustic models. The performance of speech recognition is also improved based on these generative methods. The nature of generative method has limit to discriminate the acoustic models. The Institute for Signal and Information Processing has focused to develop the discriminative model, which has the generative nature as well. The speech community has increased an interest on Support Vector Machines (SVM) and Relevant Vector Machines (RVM). The SVM has a great performance to discriminate difference classes. Even the SVM has a great performance; the new method has been introduced to boost the ability of the generalization of the acoustic modeling. We have applied a probabilistic Bayesian learning machine termed the RVM as the core statistical modeling unit [1]. These algorithms will be used in the application of the speaker recognition systems.  
SVM is a new classification technique developed by Vapnik and his colleagues [1]. It has a good generalization ability which is achieved by optimal hyperplane with maximum margin between two classes. In many applications, the theory of SVM has been shown to provide higher performance than traditional learning machines and has been introduced as powerful tools for solving classification problems [2]. Due to these advantages, SVM has been applied to many classification or recognition fields, such as text categorization, object recognition, speaker verification, and face detection in images [3]. The support vector paradigm is based upon structural risk minimization (SRM) in which the learning process is posed as one of optimizing some risk function. The optimal learning machine is the one whose free parameters are set such that the risk is minimized [1].  

However, SVMs still have two problems. First, while sparse, the size of the SVM models (number of non-zero weights) tends to scale linearly with the quantity of training data. Second, the SVMs are binary classifiers. We require a probabilistic classification which reflects the amount of uncertainty in our predictions [1]. In speech recognition this is an important disadvantage since there is significant overlap in the feature space which can not be modeled by a yes/no decision boundary. Thus, we require a probabilistic classification which reflects the amount of uncertainty in our predictions. The essence of an Relevance Vector Machine (RVM) is a fully probabilistic model with an automatic relevance determination prior over each model parameter [1].
Speaker recognition is devided into two fundamental tasks, identification and verification. Since identification is to determine who is speaking from a group of known speakers, it is refered to as closed-set identification. In contrast, the verification is called as open-set verification because it distinguishs claimed speaker from a group of unknown speakers [4]. The performance of the SVM and RVM is measued based on the speaker recognition system. The performance of the SVM is compared with the ISIP’s HMM with GMM speaker recognition. The RVM is compared with SVM on two different data sets. 
A. Theory
A.1 Support Vecor Machine
To improve the HMM’s lacking of generalization and overfitting of parameters, SVM is employed to speech community. SVM is powerful tool for distinguish the each class with non linear system basis. The fundamental idea of SVM is to project the input space vectors to high dimensional features space using nonlinear map, which is defined as kernel function [5]. The Structural Risk Minimization (SRM) principle is enabling to implement the SVM, since the SRM defined the boundary for training model errors and confidence interval via VC dimension. The hyperplane will separate the class depending on the binary or n-class cases while SVM reduces the empirical risk. The power of SVMs lies in their ability to transform data to a higher dimensional space and construct a linear binary classifier in the higher dimensional space  [6]. A linear hyperplane in the higher dimensional space transforms to a complex nonlinear decision region in the input feature space. 

For improving the efficiency and performance of SVM, the score-space kernel has been investigated on computation and performance of equal error rate aspects. Vincent Wan has been proposed the score-space kernel method, and this method is mocking the human nature to distinguish the each object. In terms of speaker recognition system, human distinguish the person’s identification using the intonation, accent, and frequently using words etc. Since the speech utterance for one speaker has highly correlated between segments of speech, taking the score of whole utterance as factor will improve the system. Both generative method in taking the score of whole utterance and discriminative method in classifying each class are well suited in SVM. The following sections explain the generative property in kernel function. The assumed distribution in kernel is discussed in orders. 

A.1.1 Generative Kernel Function

Employing the both advantage aspect of generative and discriminative methods, the kernel function is derived from the generative probability model [7]. Even though the discriminative methods are proved to be superior to generative models for classification problems, the generative methods are excellent to extract the information from input features. Kernel methods are suitable to use discriminative classification using generative probability model. Suppose, the training set is composed of Xi and the corresponding binary targets are Yi. The targets of new training examples are obtained from a weighted sum of the training targets.  The estimated targets are consisted of estimating of weights and kernel functions. The weights represent the overall importance of the each training example Xi, and the kernel function compute the closeness of the pair of datasets. The estimated target process is represented by: 
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The kernel function should be derived by probabilistic method. The probability aspect starts with measure the difference between input sample Xi and test sample X. The training targets can be assumed to have a logistic regression distribution, and the targets are estimated given input data X and parameter vector θ.
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By assigning a distribution for θ like a zero mean Gaussian with a full covariance matrix ∑, the posterior distribution for training targets can reduce the complexity of model. The maximum a posteriori (MAP) estimate for the parameters θ given a training set of examples is found by maximizing the following penalized log likelihood:
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where the constant c does not depend on θ. The similarity between data Xi and X can be captured by taking the gradient space of the model. The gradient of the generative model with respect to a parameter describes how that parameter contributes to the process of generating a particular data set. The posterior distribution over training targets are finally estimated by 
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Comparing the equation (1) and (4), the kernel function can de replaced by 
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. Through these processes the generative properties are involved in kernel functions, and SVM is able to exploits the generative and discriminative properties at the same time.
A.1.2 Score-Space Kernel (approach to improve the system)
Second, we investigate more specific kernel function which enables us to classify the variable length sequence of input vectors in a space of fixed dimension, which is called the score-space [5]. The score-space kernel uses any parametric generative model to classify whole sequences. The space to which sequences are mapped is called the score-space, so named because is defined by and derived from the likelihood score, p(X|M, θ) of a generative model M. Given a set of k generative models the generic formulation of the mapping of a sequence, X={x1, …,xNl }, to the score-space is
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This equation consists of score-argument
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, which maps the scalar score-argument to the score-space. Any function may be used as a score-argument. We deal with two specific cases that lead to the likelihood score-space kernel and the likelihood ratio score-space kernel. By setting the score-argument to be the log likelihood of a single generative model, M, parameterized by θ, and choosing the first derivative score-operator, we obtain the mapping for the likelihood score space.
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Each component of the score-space,
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, corresponds to the derivative of the log likelihood score with respect to one of the parameters of the model. This mapping is known as the Fisher mapping. The gradient of the log likelihood with respect to a parameter describes how that parameter contributes to the process of generating a particular speaker model. For the exponential family of distributions, these gradients form sufficient statistics for the models. This gradient space also naturally preserves all the structural assumptions that the model encodes about the generation process. When the gradients are small then likelihood has reached a local maximum and vice versa.   

Using the first derivative with argument score-operator and the same score-argument the mapping becomes
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The score-space space defined by this mapping is identical to the Fisher mapping with one extra dimension which consists of the log likelihood score itself. This mapping has the benefit that the performance of a classifier using these mappings will have a minimum test performance that equals the original generative model, M. The inclusion of the derivatives as “extra features” should give additional information for the classifier to use.

An alternative score-argument is the ratio of two generative models, M1 and M2,
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where θ = [θ1 θ2]. The corresponding mapping using the first derivative score-operator is,
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and using the first derivative with argument score-operator,
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A likelihood ratio forces the classifier to model the class boundaries more accurately. The discrimination information encoded in the likelihood ratio score should also be in its derivatives.
A.2 Relevant Vector Machine
Even in the great performance of SVM, the classification problem still needs better approach to generalize the model with sparse solutions. The use of a probabilistic Bayesian learning enables the more sparse and accurate training and testing the model classification [8]. There has been reported disadvantages of the support vector learning methodology:

· SVM uses unnecessarily liberal order of basis functions because the number of support vectors increase with the number of data sets [9]. 

· SVM does classify the class with hyperplane, which is binary decision, but it would be better to predict the outputs based on the probabilistic methods. The posterior distribution, p(t|x) where t = target label of class, of the training data help to classify the unknown inputs [8].

The RVM based on the probabilistic Bayesian approach gets over the above limitations. The essence of an RVM is a fully probabilistic model with an automatic relevance determination prior over each model parameter. The sparseness in the RVM model is explicitly sought in a probabilistic model framework. The following section explains the framework of the RVM. New approach to improve the RVM algorithm will be explained after framework of RVM section.

A.2.1 RVM framework
The framework of RVM is mostly defined by Tipping[8]. RVM also start its framework like SVM, (11) equation. The training output y is linearly weighted sum with basis function, Ф(x). The target function given each input data, {xn, tn}n=1, is expressed by equation (12), and Єn denotes the zero-mean Gaussian. In RVM, the estimating target function uses the Bayesian approach given the prior distribution over the weights for each hyperparameter. RVM requires the likelihood function over targets given weight parameter value, and the target needs to form a distribution to lessen the computation complexity. The target function is assumed to be logistic sigmoid function, and the distribution over target given weight forms the Bernoulli distribution like equation (13).
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The solutions for equation (13) can be approximated by Laplace’s method, which is used by Mackay. The weight parameters are controlled by the individual hyperparameter to moderate the strength of the prior distribution. For the fixed values of hyperparamter of α, the weights indicate the mean value of the posterior distribution of the equation (14). Since p(w|t, α)
[image: image19.wmf]µ

p(t|w)p(w| α), the maximum value of weight parameter can be approximate by this relation.


[image: image20.wmf]å

=

-

-

-

+

=

1

2

1

)]

1

log(

)

1

(

log

[

|

)

|

(

)

|

(

log{

n

T

n

n

n

n

Aw

w

y

t

y

t

w

p

w

t

p

a

 with 
[image: image21.wmf])}

;

(

{

w

x

y

y

n

s

=

 (14)
By taking Laplace’s method is a quadratic approximation to the posterior distribution. The result of Laplace method forms the Hessian matrix form like following:
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where B is a diagonal matrix with variance of the target function, B = diag(β1, β2, …, βN) with βn = 
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, and A = diag(α1, α2, …, αN). The Hessian matrix is then negated and inverted to find the covariance and mean of the Gaussian approximation using Cholesky decomposition method. 
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The covariance and weight parameter is approximated by the value of hyperparamter α at each iteration. This is the way to training the model with RVM to find the covariance and the mean value of the input data. The next section will be discussed to improve the efficiency of the current RVM algorithm.

A.2.2 Approach to Improve the System
RVM training procedure is to reduce the unnecessary weight parameters in every iterations. With the large input data sets, the Cholesky decomposition step needs high memory and computation time to inverse the Hessian matrix. Tipping and Faul have defined a constructive approach where the model begins with only a single parameter specified [10]. Parameters are then added to the system in a constructive fashion while still satisfying the original optimization function. For speech recognition system like huge data set, the RVM need to have larger memory to set the kernel matrix’s size.

Li and Sung proposed the Sequential Bootstrapped SVM method [11]. This method finds the convex hull in the given samples to reduce the size of the support vectors. They assumed the support vectors are placed in the convex hull of each sample distributions on linearly separable classes. Since the RVM takes much computation to find the local optima with slow convergence, finding a convex hull from given sample may boost the convergence rate to find the local optima points.

B. Experiment Result
B.1 SVM Baseline compare with HMM (Modify Sridhar’s work)

NIST 2001 speaker recognition evaluation data was used for all the experiments described in this section [12]. All utterances in the development data set were approximately 2 minutes in length. The development set contained 60 utterances for training and 78 utterances for testing. These utterances were taken from the Switchboard corpus. A standard 39-dimension MFCC feature vector was used.

The SVM classifier requires information about in-class and out-of class data for every speaker in the training set. Suppose a model ‘x’ has to be trained for utterance ‘x’, in which case the in-class data for training will contain all the 39 dimensional MFCC feature set for the utterance ‘x’, and the out-of-class data is obtained by randomly picking “n” feature vectors from all the remaining utterances in the training data set. The size of “n” was determined in such a way that the out-of-class data had twice the number of MFCC vectors when compared to the in-class data. This is an approximation and hence will not contain all the information required to represent the true out-of-class distribution, but this sort of approximation was necessary to make the SVM training computationally feasible. Hence, it has to be kept in mind that the performance of this system is based on classifiers that were exposed to only a small subset of data during training. During testing, the test MFCC vectors are used as input to compute the distance using the functional form of the model. A distance is computed for every single test vector, and finally an average distance for the entire feature vector set is computed. The average distance is used for final decision making. An ideal decision threshold is zero for SVM classifiers, but for speaker verification tasks we can determine a threshold where the detection cost function is minimum (DCF) [12].

The first set of experiments was conducted to determine the optimum value of γ for the RBF kernel. It was observed that for γ values between 2.5 to 0.02 there was very little variation in the distance scores for the test utterances. Performance was stable between 0.03 and 0.01 as shown in the DET [13] curves of Figure 1. The minimum DCF points were obtained for each of these curves and it was observed that for γ =0.019 we obtained the lowest minimum DCF. The minimum DCF for various values of γ are shown in Table 1. The Equal Error Rate was 16% with a γ of 0.019 and the penalty parameter set to 50. It can be observed from the DET plot that there is very marginal change in performance for changes in the γ values in the selected range. The most significant improvement in performance was observed only with a γ value of 0.019 and the effect of this improvement also reflected in an improvement in minimum DCF value as shown in Table 1. 

We compared the results obtained on the SVM based speaker verification system with the baseline HMM system. The baseline system used 16-mixture Gaussians as the underlying classifier. An impostor model was trained on all the utterances in the development train set while the speaker models were built using the corresponding speaker utterance and constructing 16-mixture Gaussians. During testing, a likelihood ratio was computed between the speaker model and the impostor model. The likelihood ratio was defined as:
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where LR is the likelihood ratio, “x” is the input test vector, “sp_mod” and “imp_mod” are the speaker and impostor models respectively. The equal error rate obtained on the HMM baseline system was close to 25% and the Min DCF was 0.1838. A comparative DET plot between SVM and baseline HMM system is shown in Figure 2 and their comparative performances are listed in Table 2.
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	Figure 1. DET curves for various values of the RBF kernel parameter γ
	Figure 2. A comparison of HMM and SVM performance




B.2 RVM Experiments (Previous Experiment Results of IRT report)
RVMs have had significant success in several classification tasks. These tasks have, however, involved relatively small quantities of static data. Speech recognition, on the other hand, involves processing a very large amount of temporally evolving signals. In order to gain insight into the effectiveness of RVMs for speech recognition, we explored two tasks. We first experimented on the Deterding static vowel classification task which is a common benchmark used for new classifiers. Second, we applied the techniques described above to a complete small vocabulary recognition task. Comparison with SVM models are given below. For each task, the RVMs outperformed the SVM models both in terms of model sparsity and error rate.

In our first pilot experiment, we applied SVMs and RVMs to a publicly available vowel classification task, Deterding Vowels. This was a good data set to evaluate the efficacy of static classifiers on speech classification data since it has been used as a standard benchmark for several nonlinear classifiers for several years. In this evaluation, the speech data was collected at a 10 kHz sampling rate and low pass filtered at 4.7 kHz. The signal was then transformed to 10 log-area parameters, giving a 10 dimensional input space. A window duration of 50 msec was used for generating the features. The training set consisted of 528 frames from eight speakers and the test set consisted of 462 frames from a different set of seven speakers. The speech data consisted of 11 vowels uttered by each speaker in a h*d context. Though it appears to be a simple task, the small training set and significant confusion in the vowel data make it a very challenging task.

Table 3 shows the results for a range of nonlinear classification schemes on the Deterding vowel data. From the table, the SVM and RVM are both superior to nearly all other techniques. The RVM achieves performance rivaling the best performance reported on this data (30% error rate) while exceeding the error performance of SVMs and the best neural network classifier. Importantly, the RVM classifiers achieve superior performance to the SVM classifiers while utilizing nearly an order of magnitude fewer parameters. While we do not expect the superior error performance to be typical (on pure classification tasks), we do expect the superior sparseness to be typical. This sparseness property is particularly important when attempting to build systems which are practical to train and test.

The performance of RVMs on the static classification of vowel data gave us good reason to expect the performance on continuous speech would be appreciably better than that of the SVM system in terms of sparsity and on par with the SVM system in terms of accuracy. Our initial tests of this hypothesis have been on a telephone alphadigit task. Recent work on both alphabet and alphadigit systems has taken a focus on resolving the high rates of recognizer confusion for certain word sets. In particular, the E-set (B, C, D, E, G, P, T, V, Z, THREE) and A-set (A, J, K, H, EIGHT). The problems occur mainly because the acoustic differences between the letters of the sets are minimal. For instance, the letters B and D differ primarily in the first 10-20 ms during the consonant portion of the letter.

The OGI Alphadigit Corpus is a telephone database collected from approximately 3000 subjects. Each subject was a volunteer responding to a posting on the USEnet. The subjects were given a list of either 19 or 29 alphanumeric strings to speak. The strings in the lists were each six words long, and each list was “set up to balance phonetic context between all letter and digit pairs.” There were 1102 separate prompting strings which gave a balanced coverage of vocabulary and contexts. The training, cross-validation and test sets consisted of 51544, 13926 and 3329 utterances respectively, each balanced for gender. The data sets have been chosen to make them speaker independent.

The hybrid SVM and RVM systems have been benchmarked on the OGI alphadigit corpus with a vocabulary of 36 words. A total of 29 phone models, one classifier per model, were used to cover the pronunciations. Each classifier was trained using the segmental features derived from 39-dimensional frame-level feature vectors comprised of 12 cepstral coefficients, energy, delta and acceleration coefficients. The full training set has as many as 30k training examples per classifier. However, the training routines employed for the RVM models are unable to utilize such a large set as mentioned earlier. The training set was, thus, reduced to 10,000 training examples per classifier (5,000 in-class and 5,000 out-of class).

The test set was an open-loop speaker independent set with 3329 sentences. The composite vectors are also normalized to the range -1 to 1 to assist in convergence of the SVM classifiers. Both the SVM and RVM hybrid systems use identical RBF kernels with the width parameter set to 0.5. The trade-off parameter for the SVM system was set to 50. The sigmoid posterior estimate for the SVM was constructed using a held-out set of nearly 14000 utterances. The results of the RVM and SVM systems are shown in Table 4. The important columns to notice in terms of performance are the error rate, average number of parameters and testing time. In all three, the RVM system outperforms the SVM system. It achieves a slightly better error rate of 14.8% compared to 15.5%. This error rate is obtained in over an order of magnitude fewer parameters. This naturally translates to well over an order of magnitude better runtime performance. However, the RVM does require significantly longer to train. Fortunately, that added training time is done off-line.

C. Conclusions
Even in the flourishing performance of the HMM with GMM in speech research area, the nonlinear classifier devote to improve the performance of the pattern classify problem in speech research area. SVM enables the less computation time to training and testing the model compared with HMM in speaker recognition problem. Furthermore, the RVM based on Bayesian method help to achieve the extremely sparse models. Even RVM requires more computation and memory for training, the RVM classifier improve the performance compared to SVM. For future work, RVM need to find a way to reduce the computation load to training input data sets. 
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Approach�
Error Rate�
# Parameters�
�
�
�
�
�
K-Nearest Neighbor�
44%�
�
�
Gaussian Node Network�
44%�
�
�
SVM: Polynomial Kernels�
49%�
�
�
SVM: RBF Kernels�
35%�
83 SVs�
�
Separable Mixture Models�
30%�
�
�
RVM: RBF Kernels�
30%�
13 RVs�
�
Table 3. Performance comparison of SVMs and RVMs to other nonlinear classifiers on static vowel classification data.








Approach�
Word


Error Rate�
Avg #


Parameters�
Training


Time�
Testing Time�
�
�
�
�
�
�
�
SVM: RBF Kernels�
15.5%�
994�
3 hours �
1.5 hours�
�
RVM: RBF Kernels�
14.8%�
72�
5 days�
5 minutes�
�
Table 4. Performance comparison of SVMs and RVMs on Alphadigit recognition data. The RVMs yield a large reduction in the parameter count while attaining superior performance.








HMM�
SVM�
�
�
�
�
EER


25%�
EER


16%�
�
Min DCF


0.1838�
Min DCF


0.1320�
�
Table 2. Comparision of SVM based speaker verification system with the baseline HMM system





Gamma(C=50)�
Min DCF�
�
�
�
�
0.010�
0.2125�
�
0.015�
0.2168�
�
0.019�
0.1320�
�
0.030�
0.2305�
�
Table 1. Minimum DCF as a function of γ
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