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[bookmark: _Hlk507438418]Accomplishments
Aim 1: Automatically recognize and time-align events in EEG Signals: Identification of the type and temporal location of EEG signal events such as spikes or generalized epileptiform discharges in the EEG signal are critical to the interpretation of an EEG.
1.1. [bookmark: _Hlk509349799]Data and Resources 
1.1.1. The Temple University Hospital EEG Data Corpus
The TUH EEG Corpus was represents the world’s largest publicly available corpus of clinical EEG data, representing a grand total of 29.1 years. Biomedicine is entering a new age of data-driven discovery driven by ubiquitous computing power, inexpressive data storage, the machine learning revolution, and high-speed internet connections. The quality, quantity, and variability of this database will allow researchers to achieve a significant unrealized potential. The complete corpus comprises of 23,257 sessions from 13,551 unique subjects. Each of these sessions contain at least one EDF file (more in the case of long-term monitoring sessions that were broken into multiple files) and one physician report. Corpus metrics are summarized in Figure 1. Subjects were 51% female and ranged in age from less than one year to over 90 (average 51.6, stdev 55.9; see Figure 1 bottom left). The average number of sessions per patient was 1.56, although as many as 37 EEGs were recorded for a single patient over an eight-month period (Figure 1 top left). The number of sessions per year varies from approximately 1,000-2,500 (with the exception of years 2000-2002, and 2005, in which limited numbers of complete reports were found in the various electronic medical record archives; see Figure 1 top right).
There was a substantial degree of variability with respect to the number of channels included in the corpus (see Figure 1 bottom right). EDF files typically contained both EEG-specific channels as well as supplementary channels such as detected bursts, EKG, EMG, and photic stimuli. The most common number of EEG-only channels per EDF file was 31, although there were cases with as few as 20. In summary, 90% of the database consists of Averaged Reference (AR) and Linked Ear (LE) EEGs; 95% of the data conforms to the standard 10/20 EEG configuration.
An initial analysis of the physician reports reveals a wide range of medications and medical conditions. Unsurprisingly, the most common listed medications were anti-convulsants such as Keppra and Dilantin, as well as blood thinners such as Lovenox and heparin. Approximately 87% of the reports included the text string ‘epilep’, and about 12% included ‘stroke’. Only 48 total reports included the string ‘concus’.
The TUH-EEG corpus v1.0.0 has been released and is freely available online at https://www.isip.piconepress.com/projects/tuh_eeg/downloads/. Users must register and provide a valid email address so that we can track usage. Users can also acquire the data by sending us a disk drive. Our rapidly growing userbase currently includes over 700 registered users. 
1.1.2. The Temple University Hospital Seizure Detection Corpus
We created several important subsets of the data that are designed to support research in specific subspecialties of EEG analysis. The first subset, created for the purpose of studying machine learning applications in automatic seizure detection, is the TUH EEG Seizure Corpus (TUSZ). This subset has been manually annotated by a group of student researchers for seizure events. These events are classified by their type (intensive care unit (ICU), inpatient or outpatient), subtype (specific ICUs) and duration (routine EEG or Long-Term Monitoring session).  The most recent release of TUSZ is v1.2.0, which was released in December 2017. It contains 315 subjects with a total of 822 sessions, of which 280 sessions contain seizures. Each file is completely transcribed in two ways: channel-based and term-based. A channel-based annotations refer to the labeling of the start and end time of an event on a specific channel. A term-based annotations refer to a summarization of the channel-based annotations – all channels share the same annotation, which is an aggregation of the per-channel annotations.
Based on the neurologist’s report and careful examination of the signal, our annotation team was able to identify the type of seizures (e.g., absence, tonic-clonic). A list of these labels is shown below:
[bookmark: _Hlk507453985]SEIZ:	Seizure
GNSZ:	Generalized Non-Specific Seizure	TNSZ:	Tonic Seizure
FNSZ:	Focal Non-Specific Seizure	CNSZ:	Clonic Seizure
SPSZ:	Simple Partial Seizure	TCSZ:	Tonic Clonic Seizure
CPSZ:	Complex Partial Seizure	ATSZ:	Atonic Seizure
ABSZ:	Absence Seizure	MYSZ:	Myoclonic Seizure
If there was insufficient evidence to classify the type of seizure, then an event was defined as either “generalized non-specific” or “focal non-specific” depending on the focality. Histograms of the frequency of occurrence for these seizure types are shown in Figure 2.
We then segmented the data into a training and evaluation set to support technology development. The evaluation set was designed to provide a representative sampling of all conditions found in the training set under the constraint that it included 50 patients. Approximately 34% of the evaluation dataset files contain seizures, which is much higher than typical clinical EEG data. The evaluation set was designed to be compact and yet provide representative results so that it would support rapid turnaround of experiments using a moderate amount of computational resources. 
The entire seizure database has been divided into training and evaluation sets to support machine learning research. All files in this corpus are pruned versions of the original EEG recordings. The duration of a single pruned file is no more than one hour. The training and evaluation sets contain 265 and 50 subjects respectively. The patients in the evaluation set were selected based on gender (56% of the patients in the evaluation set are female; 50.5% female in the training set) and selected to maximize a number of demographic features, as shown in Figure 3.
In addition to providing the raw signal data and annotations of seizure events, TUSZ contains metadata such as patient demographics, seizure type, and the type of EEG study. The EDF files contain the following metadata:[bookmark: _Hlk508235588][bookmark: _Ref507496868][image: ]
Figure 1. Metrics describing the TUH-EEG corpus. [top left] histogram showing number of sessions per patient; [top right] histogram showing number of sessions recorded per calendar year; [bottom left] histogram of patient ages; [bottom right] histogram showing number of EEG-only channels (purple) and total channels (green).

patient id (anonymized)
gender (male or female)
age (measured in years due to privacy issues)
recording data (DD-MMM-YYYY)
per-channel information:
labels, sample frequency, channel physical dimension, channel physical min, channel physical max, channel digital min, channel physical max, channel prefiltering conditions
We also have released a spreadsheet with the data that describes each patient and their sessions in terms of the following fields:[image: ]
[bookmark: _Ref507497527]Figure 2. Histograms of seizure types in the TUH EEG Seizure Corpus for the evaluation and training sets.

patient id (anonymized)
session id
EEG type / subtype:
EMU / EMU (Epilepsy Monitoring Unit)
ICU (Intensive Care Unit) /
BURN (Burn Unit)
CICU (Cardiac Intensive Care)
ICU (Intensive Care Unit)
NICU (Neuro-ICU Facility_
NSICU (Neural Surgical ICU)
PICU (Pediatric Intensive Care Unit)
RICU (Respiratory Intensive Care Unit)
SICU (Surgical Intensive Care Unit)
Inpatient /
ER (Emergency Room)
OR (Operating Room)
General
Outpatient / Outpatient
Unknown / Unknown (location cannot be determined)
LTM or Routine
Normal or Abnormal
Number of Seizures per Session and File
Start Time, Stop Time
Seizure Type
The EEG Type and EEG Subtype fields are used to identify the general location of the EEG session with the hospital. A qualitative assessment of the duration of the recording is indicated a field that indicated whether the EEG was a routine recording (typically an outpatient session lasting 30 minutes) or an extended long-term monitoring (LTM). We plan to expand this corpus in the future and to iteratively improve the quality of our annotations as to continue facilitating advances in machine learning research. 

1.1.3. The Temple University Hospital Slowing Corpus
The second subset that we developed to support research for EEG events classification is the Temple University Hospital Slowing Corpus (TUSL). This corpus was developed to aid the differentiation of seizure and slowing events. Its EEG files are term-based, meaning that events are annotated on every channel, to make it more useful for machine learning research. TUSL was created to aid in the development of an automatic system that can differentiate between post-ictal and transient slowing.
Focal and generalized EEG slowing was found to be associated with a significant portion of false alarm events in EEG records annotated as part of the Temple University Hospital Seizure Detection Corpus (TUSZ). Delta waves at the end of and following seizures are a common feature of seizure termination. There are numerous variants in seizure morphology, evolution, and termination. The seizure time course, from the initial evolution of the seizure to its termination, generally consists of well-defined pre-ictal, ictal, and post-ictal stages. Seizures begin with evolution in amplitude and/or frequency. Following the maximal ictal period, slowing can be observed. In annotating seizures, an effort is made to capture the entire time course of the event, including post-ictal slowing, as the progression in frequency and amplitude is what really differentiates the event from baseline. Slowing at the end of and directly following a seizure therefore ends up as part of the seizure annotation. This leads to the erroneous detection of independent slowing events as seizures.
In total, 112 files were annotated for use in this dataset: 61 files contain seizure samples, with 18 of these also containing background samples; 45 files contain slowing samples, with 26 of these also containing background files. The remaining 6 files contain only background samples. The annotations include 100 samples of seizures events, independent slowing events and complex background events, all of which are 10 seconds long in duration. 
1.1.4. The Temple University Hospital Abnormal EEG Corpus
The third subset, meant to be used for the automatic detection of abnormal EEGs, is the TUH EEG Abnormal EEG Corpus. It contains both normal and abnormal EEGs, with no patients overlapping the evaluation and training datasets. Each seizure event is classified by both a student researcher and a certified neurologist, with the positive agreement being 97% and higher, and the negative agreement being 1% or lower. The training data contains 2,132 patients and 2,740 files while the evaluation data contains 253 patients with 277 filesDescription
Files
Patients
hours
Abnormal
130
46.4%
105
41.5%
48.9
Normal
150
53.6%
148
58.5%
55.4
Total
280
100.0%
253
100.0%
104.4
Table 1. File statistics for the full evaluation set.
Description
Files
Patients
hours
Abnormal
1398
50.2%
899
42.1%
546.4
Normal
1387
49.8%
1239
58.0%
518.3
Total
2785
100.0%
2138
100.0%
1064.7
Table 2. File statistics for the full training set.

This database was developed by screening all medical reports using natural language processing (NLP) of all sessions recorded with an Averaged Reference (AR) electrode configuration. The AR electrode accounts for about 45% of the data in the overall corpus. After all the records were classified as either normal or abnormal from the information provided in the medical report, a team of students manually reviewed each signal and its respective report to ensure the initial class assigned through the NLP step was correct.
Demographic information for the full database is provided in Figure 4, Table 1, and Table 2 present some descriptive statistics for the evaluation and training partitions respectively.
1.1.5. The Temple University Hospital Epilepsy EEG Corpus
The fourth subset is the TUH EEG Epilepsy Corpus. It was created to provide data for the purposes of automatic analysis of EEG. The patients were sorted by using a filter that categorized patients into two classes: epilepsy and not epilepsy. This was based on information in the session reports relating to their clinical history, medications at the time of recording, and EEG features associated with epilepsy. This subset contains European data format (EDF) files and corresponding neurologist reports for 1799 files in 570 sessions from 200 patients. From these, 1473 files in 436 sessions from 100 patients have epilepsy, whereas 326 files in 134 sessions from 100 patients do not have epilepsy. [image: ]
[bookmark: _Ref507498406]Figure 3. Histograms of age and duration.


1.1.6. Duke University Seizure Detection Corpus
The Duke University Seizure Detection Corpus (DUSZ) collected from 45 patients who were admitted to any of the Duke Intensive Care Units (ICU) between 2010 and 2012. The total duration of the corpus is 647,948 seconds, of which 48,567 seconds is seizure. The median age was 62 years (range, 21–95 years) and 60% of the patients were male. The majority of patients were located in the Neuroscience ICU. The rest were located in the Cardiology ICU, Medical ICU, Cardiothoracic Surgery ICU, and the Surgical ICU.
All EEGs were collected with electrodes placed according to the International 10/20 electrode placement system. The raw EEG segments were reviewed independently by the neurologists to identify seizures.  Each 1-hour segment of raw EEG was placed in the following categories: no seizures, 1 to 2 seizures, 3 to 5 seizures, 6 to 10 seizures, or >10 seizures. For some records, there was a discrepancy in categorization of seizure number. After receiving these files from Duke University, we converted them from Nihon Khoden format into EDF, reviewed the annotations digitally, and made small corrections as well as added a channel-based annotation level. 
1.1.7. Emory University Seizure Detection Corpus
The Emory University Seizure Detection Corpus (EUSZ) contains six-hour EEG epochs from 15 patients with and without seizures who were admitted to the intensive Emory healthcare ICU between 2008 and 2010. Digital EEG recordings were obtained using commercially available CT/MRI compatible electrodes that were placed according to the International 10/20 system. Also, all 15 EEG are sampled at frequency of 500 Hz. Across 15 epochs, there were on average 10.5  gold standard seizures per epoch (total 126; range 0–49); 32% of seizures were generalized, 36% hemispheric, 28% focal, and the remaining 4% were marked as indeterminate. We received only the 12 patients with seizure annotations. These records were reviewed manually, and the annotations were corrected and converted into our annotation format. [image: ]
[bookmark: _Ref507500096][bookmark: _Toc486333207]Figure 4. Distribution of the patients’ ages and genders for the full dataset. a) Gender distribution of the training dataset; b) Age distribution for the training dataset; c) Gender distribution for the evaluation dataset and d) Age distribution for the evaluation dataset.

1.1.8.  Need to add things here about tagged EEG reports and knowledge databases
1.2. Evaluation Metrics
[bookmark: _Hlk507148148]The evaluation of machine learning algorithms in biomedical fields for applications involving sequential data lacks standardization. Common quantitative scalar evaluation metrics such as sensitivity and specificity can often be misleading depending on the requirements of the application. Evaluation metrics must ultimately reflect the needs of users yet be sufficiently sensitive to guide algorithm development. Feedback from critical care clinicians who use automated event detection software in clinical applications has been overwhelmingly emphatic that a low false alarm rate, typically measured in units of the number of errors per 24 hours, is the single most important criterion for user acceptance. Though using a single metric is not often as insightful as examining performance over a range of operating conditions, there is a need for a single scalar figure of merit. We investigate the deficiencies of existing metrics for a seizure detection task and propose several new metrics that offer a more balanced view of performance.
Researchers in biomedical fields typically report performance in terms of sensitivity and specificity. In a two-class classification problem such as seizure detection, we can define four types of errors:
True Positives (TP): 	the number of ‘positives’ detected correctly
True Negatives (TN):	the number of ‘negatives’ detected correctly
False Positives (FP):	the number of ‘negatives’ detected as ‘positives’
False Negatives (FN):	the number of ‘positives’ detected as ‘negatives’ 
Sensitivity (TP/(TP+FN)) and specificity (TN/(TN+FP)) are derived from these quantities. There are a large number of auxiliary measures that can be calculated from these four basic quantities. For example, in information retrieval problems, systems are often evaluated using accuracy ((TP+TN)/(TP+FN+TN+FP)), precision (TP/(TP+FP)), recall (another term for sensitivity) and F1 score ((2·Precision·Recall)/(Precision + Recall)). However, none of these measures address the time scale on which the scoring must occur, which is critical in the interpretation of these measures for many real-time bioengineering applications.
In some applications, it is preferable to score every unit of time. With multichannel signals, such as EEGs, scoring for each channel for each unit of time might be appropriate since significant events such as seizures occur on a subset of the channels present in the signal. However, it is more common in the literature to simply score a summary decision per unit of time that is based on the per-channel inputs (e.g., a majority vote). We refer to this type of scoring as epoch-based. An alternative, that is more common in speech and image recognition applications, is term-based, in which we consider the start and stop time of the event, and each event identified in the reference annotation is counted once. There are fundamental differences between the two conventions. For example, one event containing many epochs will count more heavily in an epoch-based scoring scenario. Epoch-based scoring generally weights the duration of an event more heavily since each unit of time is assessed independently.
Time-aligned scoring is essential to sequential decoding problems. But to implement such scoring in a meaningful way, there needs to be universal agreement on how to assess overlap between the reference and the hypothesis. For example, Figure 5 demonstrates a typical issue in scoring. The machine learning system correctly detected 5 seconds of a 10-sec event. Essentially 50% of the event is correctly detected, but how that is reflected in the scoring depends on the specific metric. Epoch-based scoring with an epoch duration of 1 sec would count 5 FN errors and 5 TP detections. Term-based scoring would potentially count this as a correct recognition depending on the way overlaps are scored. 
Term-based metrics score on an event basis and do not count individual frames. A typical approach for calculating errors in term-based scoring is the Any-Overlap Method (OVLP). TPs are counted when the hypothesis overlaps with reference annotation. FPs correspond to situations in which the hypothesis does not overlap with the reference. The metric ignores the duration of the term in the reference annotation. In Figure 6, we demonstrate two extreme cases for which the OVLP metric fails. In each case, 90% of the event is incorrectly scored. In example no. 1, the system does not detect approximately 9 seconds of a seizure event, while in example no. 2, the system incorrectly labels an additional 9 seconds of time as seizure. OVLP is considered a very permissive way of scoring, resulting in artificially high sensitivities. In Figure 6, the OVLP metric will score both examples as 100% TP.
It is very difficult to compare the performance of various systems when only two values are reported (e.g. sensitivity and specificity) and when the prior probabilities vary significantly (in seizure detection, the a priori probability of a seizure is very low, which means assessment of background events dominate the error calculations). Often a more holistic view is preferred, such as a Receiver Operating Characteristic (ROC) or a Detection Error Trade-off (DET) curve. An ROC curve displays the TP rate as a function of the FP rate while a DET curve displays the FN rate as a function of the TP rate. When a single metric is preferred, the area under an ROC curve (AUC) is also an effective way of comparing the performance. A random guessing approach to classification will give an AUC of 0.5 while a perfect classifier will give an AUC of 1.0.
The proper balance between sensitivity and FA rate is often application specific and has been studied extensively in a number of research communities. For example, evaluation of voice keyword search technology was carefully studied in the Spoken Term Detection (STD) evaluations conducted by NIST. These evaluations resulted in the introduction of a single metric, Actual Term-Weighted Value (ATWV), to address concerns about tradeoffs for the different types of errors that occur in voice keyword search systems. Despite being popular in the voice processing community, ATWV has not been used in the bioengineering community.
It is important to understand that each of these measures estimates TP, TN, FP and FN through some sort of error analysis. From these estimated quantities, traditional derived measures such as sensitivity and specificity are computed. As a result, we will see that sensitivity is a function of the underlying metric, and this is why it is important there be community-wide agreement on a specific metric.
We now briefly describe each of these approaches and provide several examples that illustrate their strengths and weaknesses. These examples are drawn on a compressed time-scale for illustrative purposes and were carefully selected because they are indicative of scoring metric problems we have observed in actual evaluation data collected from our algorithm research.
1.2.1. NIST Actual Term-Weighted Value (ATWV)
ATWV is a measure that balances sensitivity and FA rate. ATWV essentially assigns an application-dependent reward to each correct detection and a penalty to each incorrect detection. A perfect system results in an ATWV of 1.0, while a system with no output results in an ATWV of 0.0 It is possible for ATWV to be less than zero if a system is doing very poorly (for example a high FA rate). Experiments in voice keyword search have shown that an ATWV greater than 0.5 typically indicates a promising or usable system for information retrieval by voice applications. We believe a similar range is applicable to EEG analysis.
The metric accepts as input a list of N-tuples representing the hypotheses for the system being evaluated. Each of these N-tuples consists of a start time, end time and system detection score. 
These entries are matched to the reference annotations using an objective function that accounts for both temporal overlap between the reference and hypotheses and the detection scores assigned by the system being evaluated. These detection scores are often likelihood or confidence scores. The probabilities of miss and FA errors at a detection threshold θ are computed using:
	(1)
	(2)
where  is the number of correct detections of terms with a detection score greater than or equal to θ,  is the number of incorrect detections of terms with a detection score greater than or equal to θ, and  is number of non-target trials for the term kw in the data. The number of non-target trials for a term is related to the total duration of source signal in seconds,, and is computed as 
A term-weighted value is then computed that specifies a trade-off of misses and FAs. ATWV is defined as the value of TWV at the system’s chosen detection threshold. Using a predefined constant, β, that was optimized experimentally (β = 999.9), ATWV is computed using:
	(3)
This metric has been widely used throughout the human language technology community for 15 years. This is a very important consideration in standardizing such a metric – researchers are using a common shared software implementation that ensures there are no subtle implementation differences between sites or researchers.
To demonstrate the features of this approach, consider the case shown in Figure 7. The hypothesis for this segment consists of several short seizure events while the reference consists of one long event. The ATWV metric will assign a TP score of 100% because the first event in the hypothesis annotation is mapped to the long seizure event in the reference annotation. This is somewhat generous given that 50% of the event was not detected. The remaining 5 events in the hypothesis annotation are counted as false positives. The ATWV metric is relatively insensitive to the duration of the reference event, though the 5 false positives will lower the overall performance of the system. The important issue here is that the hypothesis correctly detected about 70% of the seizure event, and yet because of the large number of false positives, it will be penalized heavily. 
In Figure 8 we demonstrate a similar case in which the metric penalizes the hypothesis for missing three non-seizure events in the reference. Approximately 50% of the segment is correctly identified. This type of scoring penalizing repeated events that are part of a larger event in the reference might make sense in an application like voice keyword search because in human language each word hypothesis serves a unique purpose in the overall understanding of the signal. However, for a two-class event detection problem such as seizure detection, such scoring too heavily penalizes the hypothesis for splitting a long event into a series of short events. [bookmark: _Ref482428471][bookmark: _Ref481934300][bookmark: _Ref481399044][image: ]
[bookmark: _Ref509352952]Figure 5. A typical situation where a hypothesis (HYP) has a 50% overlap with the reference (REF).

1.2.2. Dynamic Programming Alignment (DPALIGN)
The DPALIGN metric essentially performs a minimization of an edit distance (the Levenshtein distance) to map the hypothesis onto the reference. DPALIGN determines the minimum number of edits required to transform the hypothesis string into the reference string. Given two strings, the source string X = [x1, x2, ..., xn] of length n, and target string Y = [y1, y2, ..., ym] of length m, we define , which is the edit distance between the substring x1: xi and y1:yj, as: [image: ]
[bookmark: _Ref509355852]Figure 6. TP scores for the Any-Overlap method are 100% even though large portions of the event are missed.


 	(4)
The quantities being measured here are often referred to as substitution (sub), insertion (ins) and deletion (del) penalties. For this study, these three penalties are assigned equal weights of 1. A dynamic programming algorithm is used to find the optimal alignment between the decides the best alignment of the reference and hypothesis based on these weights. Though there are versions of this metric that perform time-aligned scoring in which both the reference and hypothesis must include start and end times, this metric is most commonly used without time alignment information. 
The metric is best demonstrated using the two examples shown in Figure 9. In the first example, the reference signal had three seizure events but the hypothesis only detected two seizure events, so there were two insertion errors. In the second example the hypothesis missed the third seizure event, so there were two deletion errors. For convenience, lowercase symbols indicate correct detections while uppercase symbols indicate errors. The asterisk symbol is used to denote deletion and insertion errors. Note that there is ambiguity in these alignments. For example, it is not really clear which of the three seizure events in the second example corresponded to each of the seizure events in the hypothesis. Nevertheless, this imprecision doesn’t really influence the overall scoring. Though this type of scoring might at first seem highly inaccurate since it ignores time alignments of the hypotheses, it has been surprisingly effective in scoring machine learning systems in sequential data applications (e.g., speech recognition).
1.2.3. Epoch-Based Sampling (EPOCH)
Epoch-based scoring uses a metric that treats the reference and hypothesis as signals. These signals are sampled at a fixed epoch duration. The corresponding label in the reference is compared to the hypothesis. Similar to DPALIGN, substitutions, deletions and insertion errors are tabulated with an equal weight of 1 for each type of error. This process is depicted in Figure 10. Epoch-based scoring requires that the entire signal be annotated, which is normally the case for sequential decoding evaluations. It attempts to account for the amount of time the two annotations overlap, so it directly addresses the inconsistencies demonstrated in Figure 7 and Figure 8.[bookmark: _Ref482455588][bookmark: _Ref481422318][bookmark: _Ref497416649][image: ]
[bookmark: _Ref499071678]Figure 7. ATWV scores this segment as 1 TP and 5 FPs.
[image: ]
[bookmark: _Ref497422356][bookmark: _Ref498384145]Figure 8. ATWV scores this segment as 0 TP and 4 FN events.
Ref: bckg seiz bckg seiz bckg **** ****
Hyp: bckg seiz bckg seiz bckg SEIZ BCKG
(Hits: 5 Sub: 0 Ins: 2 Del: 0 Total Errors: 2)
Ref: bckg seiz bckg seiz bckg SEIZ BCKG
Hyp: bckg seiz bckg seiz bckg **** ****
(Hits: 5 Sub: 0 Ins: 0 Del: 2 Total Errors: 2)
[bookmark: _Ref498385651]Figure 9. DPALIGN aligns symbol sequences based on edit distance and ignores time alignments.

One important parameter to be tweaked in this algorithm is the frequency with which we sample the two annotations, which we refer to as the scoring epoch duration. It is ideally set to an amount of time smaller than the unit of time used by the classification system to make decisions. For example, the hypothesis in Figure 10 outputs decisions every 1 sec. The scoring epoch duration should be set smaller than this. We use a scoring epoch duration of 0.25 sec for most of our work because our system epoch duration is typically 1 sec. We find in situations like this the results are not overly sensitive to the choice of the epoch duration as long as it is below 1 sec. This parameter simply controls how much precision one expects for segment boundaries. 
Because EPOCH scoring samples the annotations at fixed time intervals, it is inherently biased to weigh long seizure events more heavily. For example, if a signal contains one extremely long seizure event (e.g., 1000 secs) and two short events (e.g., each 10 secs in duration), the accuracy with which the first event is detected will dominate the overall scoring. Since seizure events can vary dramatically in duration, this is a cause for concern. [image: ]
[bookmark: _Ref498387710]Figure 10. EPOCH scoring directly measures the similarity of the time-aligned annotations. The TP, FN and FP scores are 71%, 29% and 33% respectively (note these are fractional numbers).


1.2.4. Any-Overlap Method (OVLP)
We previously introduced the OVLP metric as a popular choice in the neuroengineering community. OVLP is a more permissive metric that tends to produce much higher sensitivities. If an event is detected in close proximity to a reference event, the reference event is considered correctly detected. If a long event in the reference annotation is detected as multiple shorter events in the hypothesis, the reference event is also considered correctly detected. Multiple events in the hypothesis annotation corresponding to the same event in the reference annotation are not typically counted as FAs. Since FA rate is a very critical measure of performance in critical care applications, this is another cause for concern. The OVLP scoring method is demonstrated in Figure 11.
It has one significant tunable parameter – the guard band that controls the degree to which a misalignment is still considered a correct match. In this study, we use a fairly strict interpretation of this band and require some overlap between the two events in time – essentially a guard band of zero. The guard band needs to be tuned based on the needs of the application. Sensitivity generally increases as the guard band is increased. 
1.2.5. Time-Aligned Event Scoring (TAES)
Though EPOCH scoring directly measures the amount of overlap between the annotations, there is a possibility that this too heavily weights single long events. Seizure events can vary in duration from a few seconds to many minutes. In some applications, correctly detecting the numbers of events is as important as their duration. Hence, the TAES metric was designed as a compromise to these competing constraints. The essential parameters for calculation of sensitivity and specificity such as TP, TN and FP for TAES scoring metric are defined as follows:
[bookmark: _Hlk509425023]	(5) 
	(6) 
	(7) 
where H and R represent the reference and hypothesis events respectively.  represents the duration of the reference events. 
TAES gives equal weight to each event, but it calculates a partial score for each event based on the amount of overlap. The TP score is the total duration of a detected term divided by the total duration of the reference term. The FN score is the fraction of the time the reference term was missed divided by the total duration of the reference term. The FA score is the total duration of the inserted term divided by total amount of time this inserted term was incorrect according to the reference annotation. Therefore, like TP and FN, a single FP event contributes a fractional amount to the overall FP score if it correctly detects a portion of the same event in the reference annotation (partial overlap). An example of TAES scoring is depicted in Figure 12. 
1.2.6. Inter-Rater Agreement (IRA) 
Inter-rater agreement (IRA) is a popular measure when comparing the relative similarity of two annotations. We refer to this metric as a derived metric since it is computed from error counts collected using one of the other five metrics. IRA is most often measured using Cohen’s Kappa coefficient, which compares the observed accuracy with the expected accuracy. It is computed using: 
 	(8)
where is the relative observed agreement among raters and  is the hypothetical probability of chance agreement. 
The Kappa coefficient ranges between (complete agreement) and  (no agreement). It has been used extensively to assess inter-rater agreement for experts manually annotating seizures in EEG signals. Values in the range of  are common for these types of assessments. The variability amongst experts mainly involves fine details in the annotations, such as the exact onset of a seizure. These kinds of details are extremely important for machine learning and hence we need a metric that is sensitive to small variations in the annotations. For completeness, we use this measure as a way of evaluating the amount of agreement between two annotations.[image: ]
[bookmark: _Ref498388415]Figure 11. OVLP scoring is very permissive about the degree of overlap between the reference and hypothesis. The TP score for example 1 is 100% with no false alarms. In example 2, the system detects 2 out of 3 seizure events, so the TP and FN scores are 66% and 33% respectively.
[image: ]
[bookmark: _Ref500361644]Figure 12. TAES scoring accounts for the amount of overlap between the reference and hypothesis. TAES scores example 1 as 71% TP, 29% FN and 14% FP. Example 2 is scored as 100% TP, 100% FN and 100% FP.

1.2.7. A Brief Comparison of Metrics
A simple example of how these metrics compare on a specific segment of a signal is shown in Figure 13. A 10-sec section of an EEG signal is shown subdivided into 1-sec segments. The reference has three isolated events. The system being evaluated outputs one hypothesis that starts in the middle of the first event and continues through the remaining two events. ATWV scores the system as 1 TP and 2 FNs since it assigns the extended hypothesis event to the center reference event and leaves the other two undetected. The ATWV score is 0.33 for seizure events, 0.25 for background events, resulting in an average ATWV of 0.29. The sensitivity and FA rates for seizure events for this metric are 33% and 0 per 24 hrs. respectively. DPALIGN scores the system the same way since time alignments are ignored and the first event in each annotation are matched together, leaving the other two events undetected.
The EPOCH method scores the alignment 5 TP, 3 FP and 1 FN using a 1-sec epoch duration because there are 4 epochs for which the annotations do not agree and 5 epochs where they agree. The sensitivity is 75% and the FA rate per 24 hrs. is very high because of the 3 FPs. The OVLP method scores the segment as 3 TP and 0 FP because detected events have partial to full overlap with all the reference events, giving a sensitivity of 66% with an FA rate of 0. TAES scores this segment as 0.5 TP and 2.5 FN because the first event is only 50% correct and there are obviously FN errors for the 4th, 8th and 10th epochs, giving a sensitivity of 33% and a high FA rate.[image: ]
[bookmark: _Ref509416721]Figure 13. An example that summarizes the differences between scoring metrics.


IRA for seizure events is -0.05 because there are essentially 4 errors for 6 seizure events. The two-class, or multi-class Kappa score, is 0.07. IRAs below 0.5 indicate a poor match between the reference and the hypothesis.
It is difficult to conclude from this example which of these measures are most appropriate for EEG analysis. However, we see that ATWV and DPALIGN generally produce similar results. The EPOCH metric produces larger counts because it samples time rather than events. OVLP produces a high sensitivity while TAES produces a low sensitivity but a high FA rate.
1.3. Temporal Pattern Recognition Based on Hidden Markov Models
1.3.1. Feature Extraction of Temporal Signals (LFCCs)
Feature extraction for automatic classification of EEG signals typically relies on time frequency representations of the signal. Techniques such as cepstral-based filter banks or wavelets are popular analysis techniques in many signal processing applications including EEG classification. In this study, we developed and implemented a linear frequency cepstral coefficient approach for feature extraction of EEGs. This feature extraction is part of the architecture of AutoEEG, which automatically interprets EEGs, and delivers high performance on clinical data. An overview of the system is shown in Figure 14. 
The system detects three events of clinical interest: (1) spike and/or sharp waves (SPSW), (2) periodic lateralized epileptiform discharges (PLED), and (3) generalized periodic epileptiform discharges (GPED). SPSW events are epileptiform transients that are typically observed in patients with epilepsy. PLED events are indicative of EEG abnormalities and often manifest themselves with repetitive spike or sharp wave discharges that can be focal or lateralized over one hemisphere. These signals display quasi-periodic behavior. GPED events are similar to PLEDs, and manifest themselves as periodic short-interval diffuse discharges, periodic long-interval diffuse discharges and suppression-burst patterns according to the interval between the discharges. Triphasic waves, which manifest themselves as diffuse and bilaterally synchronous spikes with bifrontal predominance, typically at a rate of 1-2 Hz, are also included in this class. 
The system also detects three events used to model background noise: (1) artifacts (ARTF) are recorded electrical activity that is not of cerebral origin, such as those due to the equipment, patient behavior or the environment; (2) eye movement (EYEM) are common events that can often be confused with a spike; (3) background (BCKG) is used for all other signals. This architecture incorporates a traditional hidden Markov model (HMM) based system and uses two stages of postprocessing to produce epoch labels. An N-channel EEG is transformed into N independent feature streams using a standard sliding window based approach. These features are then transformed into EEG signal event hypotheses using a standard HMM recognition system. These hypotheses are postprocessed by examining temporal and spatial context to produce epoch labels. [image: ]
[bookmark: _Ref509421528][bookmark: _Ref279176972][bookmark: _Ref279176952]Figure 14. A two-level architecture for automatic interpretation of EEGs that integrates hidden Markov models for sequential decoding of EEG events with deep learning for decision-making based on temporal and spatial context.
[image: ]
[bookmark: _Ref509427170]Figure 15. An illustration of how the differential energy term accentuates the differences between spike-like behavior and noise-like behavior. Detection of SPSW events is critical to the success of the overall system.

Epochs are typically 1 sec in duration, while features are computed every 0.1 secs using 0.2 sec analysis windows. These parameters were optimized experimentally. Neurologists review EEGs in 10 sec windows, and it is common that pattern recognition systems classify 1 sec epochs. We further divide these 1 sec epochs into 10 frames of 0.1 secs each so that we can model an epoch with an HMM. An illustration of how the differential energy term accentuates the differences between spike-like behavior and noise-like behavior is illustrated in Figure 15.
For this study we use “The Temple University Hospital Corpus for Six Events of Clinical Interest”. These six classes were arrived at through several iterations of a study conducted with Temple University Hospital neurologists. Automatic labeling of these events allows a neurologist to rapidly search long-term EEG recordings for anomalous behavior. Performance requirements for this application are extremely aggressive. For the system to be clinically useful, detection rates for the three signal classes must be at least 95% with a false alarm rate below 5%. This is a challenge for clinical data because the recordings contain many artifacts that can easily be interpreted as spikes. Therefore, neurologists still rely on manual review of data in clinical applications.
Our system uses a fairly standard cepstral coefficient-based feature extraction approach similar to the Mel Frequency Cepstral Coefficients (MFCCs) used in speech recognition. This approach may be called as Linear Frequency Cepstral Coefficients (LFCCs). Though popular alternatives to LFCCs in EEG processing include wavelets, which are used by many commercial systems, our experiments with such features have shown very little advantage over LFCCs on the TUH EEG Corpus. Therefore, in this study we have focused on filter bank approaches. Further, unlike speech recognition which uses a mel scale for reasons related to speech perception, we use a linear frequency scale for EEGs, since there is no physiological evidence that a log scale is meaningful. A block diagram of the feature extraction process used in this work for automatic classification of EEG signals is presented in Figure 16.
The focus of this section is an exploration of some traditional tuning parameters associated with cepstral coefficient approaches. In this study, we limit our explorations to the tradeoffs in computing energy and differential features, since these have the greatest impact on performance.
It is common in the LFCC approach to compute cepstral coefficients by computing a high resolution fast Fourier Transform, downsampling this representation using an oversampling approach based on a set of overlapping bandpass filters, and transforming the output into the cepstral domain using a discrete cosine transform. The zeroth-order cepstral term is typically discarded and replaced with an energy term as described below.
There are two types of energy terms that are often used: time domain and frequency domain. Time domain energy is a straightforward computation using the log of the sum of the squares of the windowed signal:
	(9)
We use an overlapping analysis window (a 50% overlap was used here) to ensure a smooth trajectory of this features.
The energy of the signal can also be computed in the frequency domain by computing the sum of squares of the oversampled filter bank outputs after they are downsampled:
 	(10)
This form of energy is commonly used in speech recognition systems because it provides a smoother, more stable estimate of the energy that leverages the cepstral representation of the signal. However, the virtue of this approach has not been extensively studied for EEG processing.
In order to improve differentiation between transient pulse-like events (e.g., SPSW events) and stationary background noise, we have introduced a differential energy term that attempts to model the long-term change in energy. This term examines energy over a range of M frames centered about the current frame, and computes the difference between the maximum and minimum over this interval: 
	(11)
We typically use a 0.9 sec window for this calculation. This simple feature has proven to be surprisingly effective.
The final step to note in our feature extraction process is the familiar method for computing derivatives of features using a regression approach.
	(12)
where  is a delta coefficient, from frame t computed in terms of the static coefficients  to . A typical value for N is 9 (corresponding to 0.9 secs) for the first derivative in EEG processing, and 3 for the second derivative. These features, which are often called deltas because they measure the change in the features over times, are one of the most well-known features in speech recognition. We typically use this approach to compute the derivatives of the features and then apply this approach again to those derivatives to obtain an estimate of the second derivatives of the features, generating what are often called delta-deltas. This triples the size of the feature vector (adding deltas and delta-deltas), but is well-known to deliver improved performance. This approach has not been extensively evaluated in EEG processing. [image: ]
[bookmark: _Ref509422539][bookmark: _Ref496773362][bookmark: _Ref452070712]Figure 16. An overview of the feature extraction algorithm.

Dimensionality is something we must always pay attention to in classification systems since our ability to model features is directly related to the amount of training data available. The use of differential features raises the dimension of a typical feature vector from 9 (e.g., 7 cepstral coefficients, frequency domain energy and differential energy) to 27. There must be sufficient training data to support this increase in dimensionality or any improvements in the feature extraction process will be masked by poor estimates of the model parameters (e.g., Gaussian means and covariances). As we will show in the next section, the TUH EEG Corpus is large enough to support such studies.
We have used a subset of TUH EEG that has been manually labeled for the six types of events described in Section I. The training set contains segments from 359 sessions while the evaluation set was drawn from 159 sessions. No patient appears more than once in the entire subset, which we refer to as the TUH EEG Short Set. A distribution of the frequency of occurrence of the 6 types of events in the training and evaluation set is shown in Table 3. The training set was designed to provide a sufficient number of examples to train statistical models such as HMMs. Note that some classes, such as SPSW, occur much less frequently in the actual corpus than common events such as BCKG. In fact, 99% of the data is assigned to the class BCKG, so special care must be taken to build robust classifiers for the non-background classes. High performance detection of EEG events requires dealing with infrequently occurring events since the majority of the data is normal (uninformative). Hence, the evaluation set was designed to contain a reasonable representation of all classes.
We refer to the 6 classes shown in Table 3 as the 6-way classification problem. This is not necessarily the most informative performance metric. It makes more sense to collapse the 3 background classes into one category. We refer to this second evaluation paradigm as a 4-way classification task: SPSW, GPED, PLED and BACKG. The latter class contains an enumeration of the 3 background classes. Finally, in order that we can produce a DET curve, we also report a 2-way classification task in which we collapse the data into a target class (TARG) and a background class (BCKG).Event
Train
Eval

No.
% (CDF)
No.
% (CDF)
SPSW
645
0.8% (  1%)
567
1.9% (  2%)
GPED
6184
7.4% (  8%)
1,998
6.8% (  9%)
PLED
11,254
13.4% ( 22%)
4,677
15.9% ( 25%)
EYEM
1,170
1.4% ( 23%)
329
1.1% ( 26%)
ARTF
11,053
13.2% ( 36%)
2,204
7.5% ( 33%)
BCKG
53,726
63.9% (100%)
19,646
66.8% (100%)
Total:
84,032
100.0% (100%)
29,421
100.0% (100%)
[bookmark: _Ref509429291][bookmark: _Ref431896119]Table 3. An overview of the distribution of events in the subset of the TUH EEG Corpus used in our experiments.

DET curves are generated by varying a threshold typically applied to likelihoods to evaluate the tradeoff between detection rates and false alarms. However, it is also instructive to look at specific numbers in table form. Therefore, all experiments reported in the tables use a scoring penalty of 0, which essentially means we are evaluating the raw likelihoods returned from the classification system. In virtually all cases, the trends shown in these tables hold up for the full range of the DET curve.No.
System Description
Dims.
6-Way
4-Way
2-Way
1
Cepstral
7
59.3%
33.6%
24.6%
2
Cepstral + Ef
8
45.9%
33.0%
24.0%
3
Cepstral + Et
8
44.9%
33.7%
24.8%
4
Cepstral + Ed
8
55.2%
32.8%
24.3%
5
Cepstral + Ef +Ed
9
39.2%
30.0%
20.4%
[bookmark: _Ref509430257][bookmark: _Ref431900481]Table 4. Performance on the TUH EEG Short Set of the base cepstral features augmented with an energy feature. System no. 5 uses both frequency domain and differential energy features. Note that the results are consistent across all classification schemes.

1.3.1.1. Absolute Features
The first series of experiments was run on a simple combination of features. A summary of these experiments is shown in Table 4. Cepstral-only features were compared with several energy estimation algorithms. It is clear that the combination of frequency domain energy and differential energy provides a substantial reduction in performance. However, note that differential energy by itself (system no. 4) produces a noticeable degradation in performance. Frequency domain energy clearly provides information that complements differential energy.
The improvements produced by system no. 5 hold for all three classification tasks. Though this approach increases the dimensionality of the feature vector by one element, the value of that additional element is significant and not replicated by simply adding other types of signal features.
1.3.1.2. Absolute Features
A second set of experiments were run to evaluate the benefit of using differential features. These experiments are summarized in Table 5. The addition of the first derivative adds about 7% absolute in performance (e.g., system no. 6 vs. system no. 1). However, when differential energy is introduced, the improvement in performance drops to only 4% absolute.
The story is somewhat mixed for the use of second derivatives. On the base cepstral feature vector, second derivatives reduce the error rate on the 6-way task by 4% absolute (systems no. 1, 6 and 11). However, the improvement for a system using differential energy is much less pronounced (systems no. 5, 10 and 15). In fact, it appears that differential energy and derivatives do something very similar. Therefore, we evaluated a system that eliminates the second derivative for differential energy. This system is labeled no. 16 in Table 5. We obtained a small but significant improvement in performance over system no. 10. The improvement on 4-way classification was larger, which indicates more of an impact on differentiating between PLEDs, GPEDs and SPSW vs. background. This is satisfying since this this feature was designed to address this problem.
The results shown in Table 3, Table 4, and Table 5 hold up under DET curve analysis as well. DET curves for systems nos. 1, 5, 10, and 15 are shown in Figure 17. We can see that the relative ranking of the systems is comparable over the range of the DET curves. First derivatives deliver a measurable improvement over absolute features (system no. 10 vs. no. 5). Second derivatives do not provide as significant an improvement (system no. 15 vs. no. 10). Differential energy provides a substantial improvement over the base cepstral features.No.
System Description
Dims.
6-Way
4-Way
2-Way
6
Cepstral + 
14
56.6%
32.6%
23.8%
7
Cepstral + Ef  + 
16
43.7%
30.1%
21.2%
8
Cepstral + Et + 
16
42.8%
31.6%
22.4%
9
Cepstral + Ed + 
16
51.6%
30.4%
22.0%
10
Cepstral + Ef +Ed + 
18
35.4%
25.8%
16.8%
11
Cepstral +  + 
21
53.1%
30.4%
21.8%
12
Cepstral + Ef  +  + 
24
39.6%
27.4%
19.2%
13
Cepstral + Et +  + 
24
39.8%
29.6%
21.1%
14
Cepstral + Ed +  + 
24
52.5%
30.1%
22.6%
15
Cepstral + Ef +Ed +  + 
27
35.5%
25.9%
17.2%
16
(15) but no  for Ed
26
35.0%
25.0%
16.6%
[bookmark: _Ref509430293][bookmark: _Ref431900668]Table 5. The impact of differential features on performance is shown. For the overall best systems (nos. 10 and 15), second derivatives do not help significantly. Differential energy and derivatives appear to capture similar information.

It should be noted that user requirements for this type of technology includes an extremely low false alarm rate. Neurologists have expressed a need for a false alarm rate on the order of no more than one or two per day per bed while maintaining a detection rate of 95%. In related work we are able to approach these levels of performance using postprocessing steps alluded to in Figure 14. At these levels of performance, the differences between systems becomes more significant, and the use of second derivatives can potentially be more significant.[image: ]
[bookmark: _Ref509431110][bookmark: _Ref431909961]Figure 17. A DET curve analysis of feature extraction systems that compares absolute and differential features. The addition of first derivatives provides a measurable improvment in performance while second derivatives are less beneficial.

In this section, we have essentially calibrated some important algorithms used in feature extraction for EEG processing. We have shown that traditional feature extraction methods used in other fields such as speech recognition are relevant to EEGs. The use of a novel differential energy feature improved performance for absolute features (system nos. 1-5), but that benefit diminishes as first and second order derivatives are included. We have shown there is benefit to using derivatives and there is a small advantage to using frequency domain energy.
1.3.2. Sequential Modeling with Hidden Markov Models (HMMs)
A clinical decision support tool that automatically interprets EEGs can reduce time to diagnosis and enhance real-time applications such as ICU monitoring. Clinicians have indicated that a sensitivity of 95% with a specificity below 5% was the minimum requirement for clinical acceptance. We propose a high-performance classification system based on principles of big data and machine learning. A hybrid machine learning system that uses hidden Markov models (HMM) for sequential decoding and deep learning networks for postprocessing is proposed. These algorithms were trained and evaluated using the “The Temple University Hospital Corpus for Six Events of Clinical Interest”. 
An overview of our proposed system is shown in Figure 18. An N-channel EEG is transformed into N independent feature streams using a standard sliding window based approach. A sequential modeler analyzes each channel and produces event hypotheses. Three passes of postprocessing are performed to produce the final output. In this section, we discuss sequential decoding of EEGs using Hidden Markov Models.
Hidden Markov Models (HMMs) are among the most powerful statistical modeling tools available today for signals that have both a time and frequency domain component. HMMs are a class of doubly stochastic processes in which discrete state sequences are modeled as Markov chains. HMMs have been used extensively in speech recognition where a speech signal can be decomposed into an energy and frequency profile in which particular events in the frequency domain can be used to identify the sound spoken. The challenge of interpreting and finding patterns in EEG signal data is very similar to that of speech related projects with a measure of specialization.
Like speech recognition systems, we assume that the EEG signal is a realization of some message encoded as a sequence of one or more symbols. We model an EEG as a sequence of one of six symbols: SPSW, PLED, GPED, EYEM, ARTF and BCKG. Let each event be represented by a sequence of feature vectors or observations O, defined as: 
	(13)
Here  is the feature vector observed at time t. Then considering  is the ith event in our dictionary, the isolated event recognition problem can be regarded as finding the most probable event which for a given set of prior probabilities, , depend only on the likelihood . We train one HMM model for each event using manually annotated data. [image: ]
[bookmark: _Ref496795396][bookmark: _Ref452070717][bookmark: _Hlk509435432]Figure. 19. A left-to-right HMM is used for sequential decoding in the first pass of processing.

A simple left-to-right GMM-HMM, illustrated in Figure. 19, was used for sequential decoding of EEG signals. A GMM-HMM is characterized by N number of states, L-component Gaussian mixture model, the transition probability  from state i to j and the output probability  for symbol o in the transition process. Considering  as the forward probability where (i = 1, 2,…, N; t = 1, 2, …, T) ,  as the backward probability where (j = 1, 2, …, N; t = T-1, …,0), and P(O|M) as the probability that model M generates symbol series O, the probability that a transition from state i to state j happens at time t can be defined as: 
	(14)
The reestimation formulae for the transition probabilities are: 
	(15)
If the output vector, , follows an n-dimensional normal distribution, the output density function is as follows: 
	(16)
where  is the mean and  is the covariance matrix. The mean and covariance for each Gaussian mixture component can be estimated by: [bookmark: _Ref509433266][bookmark: _Ref496773288][bookmark: _Ref496772867][bookmark: _Ref451785963][bookmark: _Ref452070702][image: ]
Figure 18. A three-pass architecture for automatic interpretation of EEGs that integrates hidden Markov models for sequential decoding of EEG events with deep learning for decision-making based on temporal and spatial context. 

	(17)
	(18)
In the first pass of signal modeling shown in Figure 18, we divide each channel of the EEG signal into epochs. Then each epoch is represented by a sequence of frames where each frame is represented by a feature vector. During training, we estimate the parameters of the K models (from the training dataset by iterating over all epochs using Equations. (14-18). To determine these parameters in an iterative fashion, it is first necessary to initialize them with a carefully chosen value. Once this is done, more accurate parameters, in the maximum likelihood sense, can be found by applying the so-called Baum-Welch reestimation algorithm. Decoding is typically performed using the Viterbi algorithm. Then using one HMM model per label, we generate one posterior probability for each model and we select the label that corresponds to the highest probability.Event
ARTF
BCKG
EYEM
GPED
PLED
SPSW
ARTF
41.24
45.19
2.18
3.81
2.77
4.81
BCKG
7.02
71.93
2.59
7.37
2.28
8.81
EYEM
2.13
0.61
82.37
2.13
8.51
4.26
GPED
7.46
4.85
2.39
53.32
20.42
11.55
PLED
0.70
1.85
4.70
17.62
54.80
20.32
SPSW
4.41
8.29
9.17
33.33
4.59
40.21
[bookmark: _Ref509514728][bookmark: _Ref509436390]Table 6. The 6-way classification results for the first pass of processing.
Event
BCKG
SPSW
GPED
PLED
BCKG
82.30
8.35
6.94
2.42
SPSW
21.87
40.21
33.33
4.59
GPED
14.71
11.55
53.32
20.42
PLED
7.26
20.32
17.62
54.80
Table 7. The 4-way classification results for the first pass of processing.
Event
TARG
BCKG
TARG
86.92
13.08
BCKG
18.20
81.80
Table 8. The 2-way classification results for the first pass of processing.



A 6-way classification experiment was conducted using the models described in Figure. 19. Each state uses 8 Gaussian mixture components and a diagonal covariance assumption (drawing on our experience with speech recognition systems and balancing dimensionality of the models with the size of the training data). Models were trained using all events on all channels resulting in what we refer to as channel independent models. Channel dependent models have not proven to provide a boost in performance and add considerable complexity to the system.
The results for the first pass of processing are shown in Table 6. A more informative performance analysis can be constructed by collapsing the three background classes into one category. We refer to this second evaluation paradigm as a 4-way classification task: SPSW, GPED, PLED and BACKG. The latter class contains an enumeration of the three background classes. The 4-way classification results for the first pass of processing are presented in Table 7. Finally, in order that we can produce a DET curve we also report a 2-way classification result in which we collapse the data into a target class (TARG) and a background class (BCKG). The 2-way classification results for the first pass of processing are presented in Table 8. Note that the classification results for all these tables are measured by counting each epoch for each channel as an independent event. We refer to this as forced-choice event-based scoring because every epoch for every channel is assigned a score based on its class label.
1.3.3. Automatic Detection of Abnormal EEGs Using HMMs
Determination of normality is the first step in automatic interpretation of an EEG and can be used to reduce the false alarm rate on tasks such as seizure detection. High false alarm rates are a critical reason automated technology is not used in clinical settings. While some work has been presented on the identification of EEG abnormalities specific to certain pathological or physiological conditions, the study of the general background EEG as a resource for the classification of normal and abnormal records has not been investigated. 
For the purposes of the study, a demographically balanced short subset of the TUH EEG database was selected. This database was specifically used for the pilot studies and the selection of an appropriate model for the baseline. The age and gender of the patients were considered for the selection of the data. Because pediatric EEGs are very different in nature from adult EEGs, the majority of the records utilized were obtained from patients that were older than 20 years old. Figure 20 provides histograms of ages for the training and evaluation sets respectively. It is possible to see that, excluding a small number of outliers in the datasets, all of the patients are in the age range of 20-90, with a mean of 46.6 years and a standard deviation of 14.7 years. The genders of the patients, as it can be also seen in Figure 20, were also kept balanced. # Gaussian Mixtures
# HMM States
Correct Detection (%)
1
1
30.2%
1
2
34.9%
1
3
34.9%
2
1
23.6%
2
2
19.8%
2
3
22.6%
3
1
23.6%
3
2
17.9%
3
3
17.0%
4
1
17.9%
4
2
35.9%
4
3
22.6%
[bookmark: _Ref509443287]Table 9. GMM-HMM open-loop error rates for various HMM parameters.


The selected data was divided into two sets: a training set, which contained 80 abnormal and 82 normal EEGs, and an evaluation set, which contained 55 abnormal and 51 normal EEGs. From these recordings, only one channel was considered for the final analysis. Several experiments were conducted in order to optimize the HMM system such as optimizing the number of Gaussian mixtures. To avoid the problem of overfitting, the short dataset and the system were used for the optimization of the HMM portion of each system. The first step for these experiments was to find the optimal number of Gaussian mixtures and states for the HMM by running classification experiments with the full set of features and the first 10 minutes for each file. Once the system’s parameters were properly optimized, we used the models to find the optimal amount of input time for the signal by varying the input time from 5 minutes to 25 minutes in steps of 5 minutes. [image: ]
[bookmark: _Ref509441028][bookmark: _Ref468228834][bookmark: _Toc486333206]Figure 20. Distribution of the patients’ ages and genders for the short dataset. a) Gender distribution of the training dataset; b) Age distribution for the training dataset; c) Gender distribution for the evaluation dataset and d) Age distribution for the evaluation dataset.

Once the system was fully optimized, we evaluated performance for several electrode locations as shown in Figure 21. We selected channels that represented at least one general area of the scalp (frontal, parietal, temporal or occipital). Since our analysis is mostly focused on the background EEG, which tends to be symmetric, only the left side of the scalp was analyzed.
The channel test with the HMM system was conducted in order to verify whether the channel optimization could be generalized. Since the optimization process for the GMM-HMM system was conducted with the short database, the best system was then trained and evaluated with the full dataset in order to validate the design on previously unseen data.[image: ]
[bookmark: _Ref509441941][bookmark: _Ref485764267][bookmark: _Toc486333213]Figure 21. Location of studied channels in the 10-20 standard system of electrode placement for the TCP montage.

The optimization of GMM-HMM system for this classification problem involves the selection of parameters such as the number of Gaussian mixtures and the number of HMM states. The first 10 minutes of data (features) for the T5-O1 channel were used as an input to the system. Table 9 gives a summary of the open-loop results that were obtained through the evaluation of several system parameters. The closed loop performance for the best system (#GMM = 3, #HMM = 3) achieved an error rate of 13.6%.
To understand how much signal information would work better for the identification of abnormal EEGs, the optimized system was used to process different input lengths. Table 10 shows this analysis and reveals that the best performance can be obtained for an input time of 10 minutes. The length of most the recordings in the dataset are less than 25 minutes, so the performance saturates for durations longer than 25 minutes.Input (min)
#Gaussians /#HMM States
Correct Detection (%)
5
3/3
19.8%
10
3/3
17.0%
15
3/3
19.8%
20
3/3
20.8%
25
3/3
23.6%
[bookmark: _Ref509443210]Table 10. Correct detection rate for different signal input lengths.


[bookmark: _Toc484016573]Thus far the results that were presented were calculated with data from the T5-O1 channel, which was found to be optimal for the baseline systems. To make sure the channel selection was still optimal, we explore performance as a function of channel in Table 11. We observe that the channel that performed best for the GMM-HMM system is the same that was discovered through the baseline system experiments – T5-O1. In this sense, it can be said that this temporal-occipital channel has great relevance in the classification of abnormal EEGs.#Gaussians /# HMM States
Channel
Correct Detection (%)
3/3
Fp1-F7
35.8%
3/3
T5-O1
17.0%
3/3
F7-T3
23.6%
3/3
C3-Cz
18.9%
3/3
P3-O1
20.8%
[bookmark: _Ref509443464]Table 11. Correct detection rate for different channels.

The best the GMM-HMM system yields an error rate of 17.0% with 78.2% detection rate on full dataset. 
Thus far, a series of HMM-based models have been evaluated on the short database. In order to further test the fit of these models, we evaluated selected models on the full dataset described in Section 1.1.4. The error rate, as it was expected, increased significantly with the introduction of new data that contained a variety of conditions. This system yielded an error rate of 26.1%. The addition of new data significantly increased the error rate that was obtained with the short dataset, showing that the generated GMM-HMM model is not complex enough to properly explain the data. In this sense, steps were taken to increase the model complexity with the full dataset.
1.3.4. Temporal Pattern Recognition of EEGs for Six Events
1.3.4.1. HMMs and GMMs
[bookmark: _Hlk510019921]We further developed our recognition system using a renowned automatic speech recognition (ASR) software called Kaldi. Speech and EEGs possess similar behavior in a way that they both have important features which are based on time-frequency analysis. EEG signals can be modeled with the sequence modeling which can be efficiently done by Hidden Markov Models. Any speech recognition problem can fundamentally be divided in to two problems (1) word recognition and (2) phone/word level segmentation. Kaldi is renowned for the its superior recognition capabilities. So here we use its strength, word recognition, and adapt the system for the application of seizure detection. We essentially make this task a binary classification task where recognition system has to detect whether the observed EEG pattern is a seizure event or not.
A Seizure detection problem can be solved by analysis in spatial and temporal domain. We model recognition system for temporal domain information and implement heuristic post-processing approach to extract information related to spatial domain. In other words, we train our system on one channel at a time.
We define “SEIZ” and “BCKG” class-keywords for seizure and no-seizure events. Adaptation steps include updating speaker-to-utterance maps, pronunciation dictionary, topology and language model. As a first step, we preprocess data and convert it into Kaldi compatible formats. For the HMM topology, instead of using the Bakis model commonly used in speech-community, we use the one shown in Figure 22 with left-to-right with four emitting states where each of these hidden states has probabilities assigned to its following, itself as well as all its previous states. The default transition probabilities are assigned to 0.25. It makes sense to use such a network if inherent behavior of the EEGs is understood. EEG events such as seizures can have duration of 3 seconds to up to several hours (status epilepticus) or even days (refractory status epilepticus). Modeling the fundamental left-to-right Bakis model is not suitable for such long and complicated events. Additionally, the morphologies of such events play an important role. For example, seizure morphologies can have intermittent spike and slow wave/complexes, which can also be widely observed during interictal or postictal stages. It is impossible to recognize an event by selecting a small window in time (as small as 2-3 seconds). Same is true for the background events too. Defining such a topology tend to favor the modeling of the prolonged complicated EEG events. The Language model for this classification problem is crude, because we only have two phones “SEIZ” and “BCKG”. The adaptation of Kaldi for seizure detection is attempted by dividing the recognition task in to four stages: [image: ]
[bookmark: _Ref509445163]Figure 22. HMM topology used for EEG event classification.

(1) Feature selection and preprocessing, 
(2) Acoustic modeling, 
(3) Decoding, 
(4) Post-processing.
Fundamentally, there are five types of rhythms defined according to their frequency ranges for EEG interpretation. These rhythms play a crucial role during the diagnosis. These rhythms are:
(1) Delta (0 - 3 Hz)
(2) Theta (3 - 8 Hz)
(3) Alpha (8 - 13 Hz)
(4) Beta (13 - 30 Hz)
(5) Gamma (30 - 100 Hz)
In contrast, speech recognition features correspond to the human auditory range where most common features being used are MFCC. Non-linear (Mel) Cepstral Coefficients mainly mimics the logarithmic perception of pitch of human auditory system. Despite the EEGs containing information in time-frequency domain similar to speech, most important information can be found within the lower range of the frequency spectrum in a linear fashion since four rhythms Delta, Theta, Alpha and Beta contain almost all the information for the diagnosis of patients. Each bin in this lower frequency range is weighted equally in terms of its importance. To obtain relevant information from this frequency range, we use the Linear Frequency Cepstral Coefficients (LFCC) instead of the non-linear ones as discussed in section 1.3.1.
Prior to modeling the acoustic model, standardization of features is performed by applying Cepstral Mean Variance Normalization (CMVN) on all 26-dimensional features. Unnormalized features were used as well during the training process of both GMM and DNN based acoustic models.
During acoustic modeling, HMM states in Kaldi are modeled for pdf-ids. Pdf-ids are indices for individual probability density functions (PDF) of gaussian components. The pdf-ids can also be referred to as context dependent states because they are extracted from the context dependent decision tree where each leave represents a pdf-id. Our primary Kaldi system is a monophone system. We use Gaussian Mixture Models (GMMs) to model HMMs. To initialize the model from so called “flat-start” model, we consider global mean and variance of training data as initial parameters and assign all transition probabilities to be equal. Similarly, priors for each word/event are uniformly distributed too. We use iterative Viterbi training method with 40 iterations to model our fundamental HMM-GMM monophone system. Each Gaussian component here is a multivariate Gaussian, which represents features. Diagonal covariance matrices are used to represent the 26-dimensional features due to its higher dimensionality. This is done by applying Discrete Cosine Transform (DCT) to decorrelate the features.
The Viterbi algorithm is efficiently fast and searches for the most likely state-sequence that can generate the observations. Initially, after getting observations (features) from emitting states, we equally segment the observation alignments and equally assign the observations to states which updates its global parameter values. After this first iteration, we find better hard alignments among observation and states; we update the parameters of the states which again changes the alignments. We iteratively update the parameters and alignments 40 times to help the acoustic model converge. Cycling through parameters and alignments in such manner help optimize the system and converge eventually.[image: ]
[bookmark: _Ref509446388]Figure 23. Post-processing for per-channel seizure detection.

Seizures can be observed and interpreted on variety of modalities such as large variation in durations, seizure types (electrographic and clinical), other events (i.e. chewing) intermixed with the actual morphology of interest. To represent all the modalities representing EEG events, 1000 Gaussian targets are assigned in our fundamental GMM model.
During Decoding stage, we are looking for the most likely word sequence given a sequence of observation vectors. That is found by searching all possible state sequences and find the most likely path which can generate the observed data. Here again, we use Viterbi algorithm to find the best possible path. Viterbi algorithm can be represented as: 
	(19)
Here,  is observed data for each time stamp,  are the emission probabilities of that data and are the transition state probabilities. we are unfolding our Markov chain and representing segments to see the state changes on each time stamp. For efficiency purposes, Viterbi algorithm is used by limiting the search space for N-best sets of hypotheses. We use lattices for decoding purposes. A major reason of using Kaldi lattices for decoding is that, lattices keep track of time information for each frame and a set of spanning arcs representing phone/word hypotheses. At each node, lattice arc carries the information of the acoustic and language Model (LM) scores. The acoustic scores are the extent of match between features and phones and LM scores gives the probability of the word/event following the recognized word. [image: ]
[bookmark: _Ref509480097]Figure 24. ROC curve of channel based vs. overall channel performances of the baseline HMM-GMM system.

Word lattices are used by most speech recognizers as a compact tool representing the alternative hypotheses. Since, timing information is preserved, it becomes an essential tool for mapping hypotheses events back to its actual word boundaries. Since, our classification is mainly for two classes, we limit the hypothesis search-space by keeping the lattice beam value at 1.0, as compared to speech where it can reach up to 40.0. During this decoding stage, the framerate is converted to our feature’s framerate which is 100 milliseconds. We push the lattices prior to performing decoding to normalize the probabilities of the detected sequences.
Post-processing performed on the decoding results is completely heuristic and performed to exploit the information related to the spatial domain. In electroencephalogram, almost all seizures can be observed on more than a few channels (with the exception of extremely focal, noisy or low energy events). Since an ictal can occur focally, ordinarily multiple adjacent electrodes are able to detect the changes in the electrical field. Focality of such ictal events can be determined by checking the phase reversals and polarity of the signals. If an activity is not observed on multiple electrodes, the detected ictal-like activities are most likely an artifact. Also, during the error-analysis phase we observed that, the detected seizure events on the reference channels, A1 and A2, were mostly artifacts. This is because the reference channels are attached to patient’s ears and are highly susceptible to any movement and EKG related artifacts.
The post-processing method only performs elimination process of detected hypotheses and can be divided in to four stages. Elimination is performed on the hypotheses events which are:
(1) with probability less than 0.99
(2) from reference channels A1 and A2[image: ]
[bookmark: _Ref509496913][bookmark: _Ref509484003]Figure 25. An architecture that integrates IPCA for spatial context analysis and HMM for sequential modeling.

(3) less than 4 seconds in duration
(4) occurring on less than 8 channels
Note that, the post-processing steps have been applied in the same chronological order as described. After each step, the overall channel hypothesis is updated, and then next post-processing step is applied on the outlasted events. Figure 23 shows an example of post-processing with the explanation of what events are being rejected and accepted during the post-processing step and due to what reason.
The performance of the Kaldi HMM-GMM system is evaluated on the TUSZ v1.1.1 dataset. The HMM-GMM monophone system’s best performance is achieved using unnormalized LFCC features on 22-channels. Additionally, acoustic scale with a value 0.83 (lowest possible) has proven efficient during the training and decoding for this fundamental system. The behavior of the system is better observed along with the Receiver Operating Characteristic (ROC) curve than only from the results of evaluation metrics. The ROC curves make it possible to compare systems if they are evaluated on different operating points.
ATWV
DPAlign
EPOCH
OVLP
TAES
Sensitivity
17.75 %
27.36 %
28.73 %
34.20 %
23.79 %
Specificity
90.04 %
95.37 %
95.68 %
96.82 %
92.13 %
FAs/ 24 Hrs.
16.37
7.90
3399.08
7.18
15.30
[bookmark: _Ref509447005]Table 12. HMM-GMM monophone system’s performance.

In Table 12, we present results based on all the evaluation metrics discussed in section 1.2. Here, the Any-overlap (OVLP) method is more emphasized because this metric is widely used in neuroscience community and makes perfect sense for the seizure detection problem. According to the OVLP method, the sensitivity of the system is 34.20% and the specificity is 96.82% with 7.18 false positives per 24 Hours. The comparison of raw results versus post-processed results is shown in the ROC curve in Figure 24 which are shown as channel-based results (hmm_gmm_ch) in dotted orange line and overall channel results (hmm_gmm_ov) in solid blue line to understand the importance of our heuristic post-processing approach. After post-processing the performance has steady rise and is marginally better than channel-based performance in majority of the span. In any clinical application, the area of interest should be in low FPR range. Post-processed results show significantly better performance than shown with the raw results. The performance can be considered relatively poor because this only addresses the word recognition problem. The question of where the event starts and ends still remains unanswered. 
We develop other HMM based hybrid systems on top of this established basic monophone system to enhance the performance of the system which will be discussed in the following segments. 
1.3.4.2. IPCA/HMM
To explore the potential of HHMs to encode long-term dependencies, we designed another architecture, where Incremental Principal Components Analysis (IPCA) was used for dimensionality reduction. HMM networks which operate directly on features spanning long periods of time need more memory efficient approaches. IPCA has constant memory complexity, on the order of the batch size, enabling the use of a large datasets without loading the entire dataset into memory. IPCA builds a low-rank approximation for the input data using an amount of memory which is independent of the number of input data samples. It is still dependent on the input data features, but changing the batch size allows for control of memory usage. The architecture of the IPCA/HMM system is presented in Figure 25. Samples are converted to features by the standard feature extraction technique that is described previously. The features are delivered to the IPCA layer for spatial context analysis and dimensionality reduction. The output of the IPCA layer is fed to the HMM for classification. The input to the IPCA has a dimension that is a multiplication of the number of channels, the feature vector length, so the IPCA input is a vector of dimension 22 × 26= 572. A batch size of 50 is used in IPCA and the output dimension is 20, 40, and 80. The best result is generated by output dimension 80. The performance of the systems is presentenced in Table 13.Output Dimension
80
40
20
Sensitivity
73.41 %
71.77 %
70.14 %
Specificity
21.45 %
20.69 %
21.02%
FAs/ 24 Hrs.
739.69
747.74
739.55
1. [bookmark: _Ref509496671][bookmark: _Ref509490808]Table 13. IPCA/HMM systems’ performance.
[image: A close up of a map  Description generated with very high confidence]
1. [bookmark: _Ref509497498][bookmark: _Ref509481127]Figure 26. ROC curve of the LDA-STC (MLLT) system and the baseline HMM-GMM system.

1.3.4.3.  LDA/MLLT/HMM
Previously, we developed the HMM-GMM monophone system where we used the Discrete Cosine Transform (DCT) to decorrelate the features by making our multivariate Gaussian’s covariance matrices diagonal. Along with that, there are other data driven approaches using which decorrelation and/or dimensionality reduction can be achieved. On top of our previous HMM system, we develop a multi-pass system to improve the performance of our recognition system even further. Here, we implement a similar HMM-GMM system by applying the Linear Discriminant Analysis (LDA) on data and then applying Maximum Likelihood Linear Transform (MLLT) which is also known as the Semi-Tied Covariance (STC). 
We apply supervised approach of dimensionality reduction called LDA as a first step in this system. The objective of the LDA here is to increase the ratio of between class variance to the average within class variance for each feature dimension. This can be expressed as:
1. 	(20)
Where  is the transformation matrix with p as the size of transformed vector. and  are between class and within class covariance matrices. Prior to applying LDA, we splice 3 neighboring feature vectors from the current frame and form a composite feature vector by concatenating them. We iteratively do this for every frame. Instead of using actual class or phone/word labels we use pdf-ids of GMMs. In other words, we can call this as acoustic states which are certainly more fine grained than actual phone/word labels and they have been proven effective for dimensionality reduction in speech-community.
The importance of the MLLT system is that it does feature normalization so that we can make use of correlation between features during modeling the acoustic model. MLLT systems are also known as Semi-Tied Covariance (STC) and hence the name. One way to imagine this is by considering a latent variable between transition states and observations. In our HMM-GMM monophone model, this is an HMM with GMM state-output distributions. We can make use of factor-analyzed covariance matrices instead state-output distribution. 
For the factor analyzed covariance matrices, the covariance matrix for each Gaussian component m is represented by
1. 	(21)
Where  is the component-specific transformation matrix (loading matrix) and  is each gaussian’s diagonal matrix (representing features). Factor-analyzed HMMs generalize this by tying over multiple components of GMMs of the transformation matrices and using GMMs to model the latent variable. Computation of likelihoods depends on the inverse covariance matrix (precision matrix). The general form of any inverse covariance/precision matrix is:
1. 	(22)
Where is a weight vector specific to each GMM component and are global semi-definite matrices.
MLLT or STC is one simple structured covariance representation where number of bases in its precision matrix is equal to the feature dimensions. Each Gaussian component’s likelihood can be computed as:
1. 	(23)
Where is a diagonal matrix formed by the GMM weight vectors  and precision matrix can simply be represented as:
1. 	(24)
The matrix A is referred as the semi-tied transform.
The HMM-GMM monophone system was our fundamental building block on top of which we develop our LDA + MLLT/STC system. At first, instead of using uniformly distributed priors for all the words, we use posteriors of previous HMM-GMM baseline model as the priors of our current system. Before starting the training process of the current model, we perform forced alignment on previous model’s utterances. This aligning process using reference transcript with the previous most correct acoustic model helps the current model to further improve and refine its parameters. At first, we splice previous and next 3 samples relative to current feature sample and concatenate them which gives us 26×3 (left context) + 26 + 26×3 (right context) = 182-dimensional vector for each frame. We preform LDA on each frame with its classes as pdf-ids and reduce the feature dimensionality to 40 dimensions. Finally, we perform the training with 35 iterations with performing MLLT 4 times intermittently. Target gaussians for the MLLT system are the same as baseline HMM-GMM model. The training is done on unnormalized features and acoustic scale used is 0.1.
Decoding and postprocessing is very similar to the baseline HMM-GMM model. We apply the Viterbi algorithm and extract information from the lattices. During decoding, we make use of semi-tied transformation matrix A to transform test dataset features. After postprocessing the channel-based results, the LDA-MLLT system gives better results than our previous baseline system and can be observed in Table 13 and Figure 26 Sensitivity and Specificity of LDA-MLLT system according to the OVLP method is 40.10% and 95.89% which is relatively better than our previous HMM-GMM baseline experiment. The comparison between two systems can be observed in ROC curve shown in Figure 26. The area of interest should be always at lower false alarm rate. LDA-MLLT system’s performance is slightly better than our previous baseline system in that region and trend reverses at around 50% FA rate. 
ATWV
DPAlign
EPOCH
OVLP
TAES
Sensitivity
21.14 %
30.36 %
42.57 %
40.10 %
27.16 %
Specificity
89.45 %
94.25 %
92.90 %
95.89 %
90.67 %
FAs/ 24 Hrs.
17.95
9.84
5585.6
9.12
17.97
1. [bookmark: _Ref509481514]Table 14. LDA-MLLT system’s performance.

1.3.4.4. Speaker Adaptive Training (SAT)
After getting promising results from the LDA-MLLT system, we tried to explore the possibility of training systems by transforming features related to individual subjects. During the MLLT system, we used context information by taking transform of a frame along with its adjacent frames, applying LDA and finally applying MLLT on it. In the Speaker Adaptive Training (SAT) system, we try to transform features related to individual patient. The SAT systems in Kaldi use Maximum Likelihood Linear Regression (MLLR) which can be applied to update/transform the means and covariance parameters of gaussian components of the GMMs. Essentially, the MLLR are set of transforms that maps an existing model-set into a new adapted model-set such that the likelihood of the adaptation data is maximized. MLLR for GMM parameters can be represented by:
1. 	(25)
Where s indicates speaker (in our case, it indicates a patient) and m indicates the Gaussian components. A and H are the separate transformation matrices for mean and variance vectors respectively.
For this experiment, we use the feature space Maximum Likelihood Linear Transform (fMLLR) or the Constrained Maximum Likelihood Linear Transform (CMLLR). In CMLLR, instead of estimating two separate transformation matrices for the means and variances, we put constraint of keeping them identical. Hence the name Constrained MLLR. The Gaussian parameters of which can be represented as:
1. 	(26)
and based on CMLLR, likelihood of observed data can be expressed as:
1. 	(27)
Where
1. 	(28)
Here, the CMLLR transformation matrices are dependent on the model parameters but parameters are not transformed themselves. It makes this type of transforms efficient if the speaker or acoustic environment changes rapidly. 
We perform acoustic modeling on top of our last optimized system which was the MLLT system. First, we perform forced alignment on previously trained model. Acoustic modeling using the Speaker Adaptive Training (SAT) or Patient Adaptive Training (PAT), if we may say, encode parameters of the model for specific patients instead of doing so for the phones or words which is our ultimate goal. The transformation matrix is determined for every single patient and then the canonical model is estimated using the speaker/patient specific  transforms. The overview of the SAT training can be seen in Figure 27.
The canonical model’s parameter estimation is performed as follows:
(1) Create the patient-independent canonical model and initialize the transformation matrices as identity for each patient.
(2) Feed in data specific to each patient iteratively and estimate the SAT transformation matrix.
(3) Estimate canonical model from speaker transforms.
(4) Continue from 2nd step until convergence or maximum number of iterations are reached.
Using CMLLR the canonical mean can be estimated by:
1. 	(29)
Where  is the posterior occupation probability of component m of state  generating the observation at time t specific to the data of the speaker/patient. Unnormalized features were used during the training and decoding phases. 
Decoding results are performed in the same fashion as all former Kaldi systems. We perform decoding in two stages. First, we only decode results based on CMLLR transforms and then we also collect results for CMLLR+SAT transforms. Table 15. Shows the postprocessed results for the final system. Since the operating point is far from our previous systems we are getting higher sensitivities with high false alarms. The system yields 53.09% sensitivity and 83.98% specificity with 42.07 false positives per 24 hours. The comparison between EPOCH scoring and TAES scoring suggests that the system is false alarming a lot during longer ictal events. In Figure 28 ROC curve gives better comparison between our former optimized system (MLLT), current system with the CMLLR transform only and with the CMLLR+SAT transforms. There is a negligible improvement in the system throughout the graph. The CMLLR transform gives trivial improvement but the SAT transforms show no improvement at all. The primary reasons for lack of improvement could be size of data. Because the system tries to optimize model parameters specific to individual patient, it requires massive training sets. Additionally, CMLLR transforms are proven effective if the events are less than 10 seconds long. EEG events such as seizure can last up to hours or even days. Since the current system does not show any marginal difference in improvement of performance, during the following acoustic models of our multipass systems, we will be using the LDA-MLLT based system as a reference for the computational efficiency. [image: A close up of a map  Description generated with very high confidence]
1. [bookmark: _Ref509507311]Figure 28. ROC curve of the LDA-MLLT system, the SAT system with CMLLR.
[image: A picture containing screenshot  Description generated with very high confidence]
1. [bookmark: _Ref509499352]Figure 27. Overview of SAT system model composition.

1.3.5. Temporal and Spatial Context Analysis with Hybrid HMMs and Deep Learning
1.3.5.1. Hybrid HMMs and SdAs
In this section, we describe a hybrid HMM and deep learning system that was illustrated in Figure 18. 
1.3.5.1.1. Second Pass: Temporal and Spatial Context Analysis Based on Deep Learning
The goal of the second pass of processing in Figure 18 is to integrate spatial and temporal context to improve decision-making. Therefore, the output of the first pass of processing, which is a vector of six posterior probabilities for every epoch of each channel, postprocessed by a deep learning system. Deep learning technology automatically self-organizes knowledge in a data-driven manner and learns to emulate a physician’s decision-making process.
Deep Learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition and many other domains in recent years. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. 
In the second pass of processing, we are using a specific type of deep leaning network known as a Stacked denoising Autoencoders (SdA). SdAs have proven to perform well for applications where we need to emulate human knowledge. Since interrater agreement for annotation of seizures tends to be relatively low and somewhat ambiguous, we need a deep learning structure that can deal with noisy inputs. From a structural point of view, SdAs are a form of stacking denoising autoencoders that form a deep network by using the latent representation of the denoising autoencoder found in the layer below as the input to the current layer. [image: ]
[bookmark: _Ref509509381][bookmark: _Ref496776066][bookmark: _Ref452070721]Figure 29. In a stacked denoising autoencoder the input, x, is corrupted to x ̃. The autoencoder then maps it to y and attempts to reconstruct x.

Denoising Autoencoders are themselves an extension of a classical autoencoder. An autoencoder takes an input vector , and first maps it to a hidden representation through a deterministic mapping:
	(30)
where  is a  weight matrix, b is a bias vector,  is a nonlinearity such as Sigmoid function and . The latent representation y, or code, is then mapped back, with a decoder, into a reconstruction  of the same shape as :
	(31)
The weight matrix o of the reverse mapping may optionally be constrained by , in which case the autoencoder is said to have tied weights. The parameters of this model are optimized to minimize the average reconstruction error using a loss function, L, such as reconstruction cross-entropy:
	(32)
To implement a denoising autoencoder, we train an autoencoder to reconstruct a clean “repaired” input from a corrupted, partially destroyed one. This is done by first corrupting the initial input x to get a partially destroyed version  ̃ by means of a stochastic mapping . Then this corrupted input is mapped, similar to a basic autoencoder, to a hidden representation  from which we reconstruct . The schematic representation of the process is presented in Figure 29 As before, the parameters are trained to minimize the average reconstruction error over a training set, making  as close as possible to the uncorrupted input . But the key difference is that   is now a deterministic function of  rather than  and thus the result of a stochastic mapping of . 
The application of deep learning networks like SdAs generally involves three steps: design, training and implementation. In the design step, the number of inputs and outputs, the number of layers, and the function of nodes are defined. During training, the weights of nodes are determined through a deep learning process. In the last step, the statistical model is implemented using the fixed parameters of the network determined during training. Preprocessing of the input data is an additional step that is extremely important to various aspects of the deep learning training process. 
NIST
DPAlign
EPOCH
OVLP
TAES
Sensitivity
40.71 %
49.83 %
49.03 %
53.09 %
44.19 %
Specificity
77.25 %
81.02 %
87.77 %
83.98 %
74.00 %
FAs/ 24 Hrs.
50.97
42.50
9616.37
42.07
56.69
[bookmark: _Ref509499524]Table 15. fMLLR + SAT system’s performance.

The block diagram of the second stage of processing is depicted in Figure 30. This stage consists of three parallel SdAs designed to integrate spatial and temporal context to improve decision-making. These SdAs are implemented with varying window sizes to effectively perform a multi-time-scale analysis of the signal and map event labels onto a single composite epoch label vector. A first SdA, referred to as an SPSW-SdA, is responsible for mapping labels into one of two classes: epileptiform and non-epileptiform. A second SdA, EYEM-SdA, maps labels onto the background (BCKG) and eye movement (EYEM) classes. A third SdA, 6W-SdA, maps labels to any one of the six possible classes. The first two SdAs use a relatively short window context because SPSW and EYEM are localized events and can only be detected when we have adequate temporal resolution. 
Training of these three SdA networks is done in two steps: pre-training and fine-tuning. Denoising autoencoders are stacked to form a deep network. The unsupervised pre-training of such an architecture is done one layer at a time. Each layer is trained as a denoising autoencoder by minimizing the error in reconstructing its input (which is the output code of the previous layer). Once the first k layers are trained, we can train the k+1 layer because we can now compute the code or latent representation from the layer below.
Once all layers are pre-trained, the network goes through a second stage of training called fine-tuning. Here we consider supervised fine-tuning where we want to minimize prediction error on a supervised task. For this, we first add a logistic regression layer on top of the network. We then train the entire network as we would train a multilayer perceptron. At this point, we only consider the encoding parts of each auto-encoder. This stage is supervised, since now we use the target class during training.
Additionally, Figure 30 shows that input data to deep learning networks is preprocessed using a global principal components analysis (PCA) to reduce the dimensionality before applying it to these SdAs. PCA is applied to each individual epoch by concatenating each channel output into a supervector and then reducing its dimensionality before it is input into SdA. For rare and localized events, which are in this case SPSW and EYEM, we use an out-of-sample technique to increase the number of training samples. 
Finally, using a block called an enhancer, the outputs of these three SdAs are then combined to obtain the final decision. To add the three outputs together, we initialize our final probability output with the output of the 6-way classifier. For each epoch, if the other two classifiers detect epileptiform or eye movement and the 6-way classifier was not in agreement with this, we update the output probability based on the output of 2-way classifiers. The overall result of the second stage is a probability vector of dimension six containing a likelihood that each label could have occurred in the epoch. It should also be noted that the outputs of these SdAs are in the form of probability vectors. A soft decision paradigm is used rather than hard decisions because this output is smoothed in the third stage of processing.
The output of the first stage of processing is a vector of six scores, or likelihoods, for each channel at each epoch. Therefore, if we have 22 channels and six classes we will have a vector of dimension 6 x 22 = 132 scores for each epoch. This 132-dimension epoch vector is computed without considering similar vectors from epochs adjacent in time. Information available from other channels within the same epoch is referred to as “spatial” context since each channel corresponds to a specific electrode location on the skull. Information available from other epochs is referred to as “temporal” context. The goal of this level of processing is to integrate spatial and temporal context to improve decision-making.
To integrate context, the input to the second pass deep learning system is a vector of dimension 6 x 22 x window length, where we aggregate 132-dimension vectors in time. If we consider a 41-second window, then we will have a 5,412-dimension input to the second pass of processing. This input dimensionality is high even though we have a considerable amount of manually labeled training. To deal with this problem we follow a standard approach of using Principal Components Analysis (PCA) before every SdA. The output of the PCA is a vector of dimension 13 for SdA detectors that look for SPSW and EYEM and 20 for 6-way SdA classifier.[image: ]
[bookmark: _Ref509509589][bookmark: _Ref496777811][bookmark: _Ref452070727]Figure 30. An overview of the second pass of processing.

 Further, since we do not have enough SPSW and EYEM events in the training dataset, we must use an out-of-sample technique to train the SdA. Three consecutive outputs are averaged, so the output is further reduced from 3 x 13 to just 13, using a sliding window approach to averaging. Therefore, the input for SPSW SdA and EYEM SdA decreases to 13 x window length and 20 x window length for 6-way SdA.Event
ARTF
BCKG
EYEM
GPED
PLED
SPSW
ARTF
27.49
61.73
7.28
0.00
1.08
2.43
BCKG
7.00
82.03
5.79
0.97
0.36
3.86
EYEM
4.21
16.84
77.89
0.00
0.00
1.05
GPED
0.60
14.69
0.00
59.96
10.26
14.49
PLED
1.40
22.65
0.80
13.83
52.30
9.02
SPSW
7.69
35.90
2.56
28.21
0.00
25.64
Table 16. The 6-way classification results for the second pass of processing.
Event
BCKG
SPSW
GPED
PLED
BCKG
95.60
3.24
0.62
0.54
SPSW
46.15
25.64
28.21
0.00
GPED
15.29
14.49
59.96
10.26
PLED
24.85
9.02
13.83
52.30
Table 17. The 4-way classification results for the second pass of processing.
Event
TARG
BCKG
TARG
78.94
21.06
BCKG
4.40
95.60
[bookmark: _Ref509510417]Table 18. The 2-way classification results for the second pass of processing.


We used an open source toolkit, Theano, to implement the SdAs. The parameters of the models are optimized to minimize the average reconstruction error using a cross-entropy loss function. In the optimization process, a variant of stochastic gradient descent is used, referred to as minibatches. Minibatch stochastic gradient descent works identically to stochastic gradient descent, except that we use more than one training example to make each estimate of the gradient. This technique reduces variance in the estimate of the gradient, and often makes better use of the hierarchical memory organization in modern computers.
SPSW SdA uses a window length of 3 which means it has 39 inputs and 2 outputs. It has three hidden layers with corruption levels of 0.3 for each layer. The number of nodes per layer are: first layer = 100, second layer = 100, third layer = 100. The parameters for pre-training are: learning rate = 0.5, number of epochs = 200, batch size = 300. The parameters for fine-tuning are: learning rate = 0.2, number of epochs = 800 and batch size = 100.
EYEM SdA uses a window length of 3 which means it has 39 inputs and 2 outputs. It has three hidden layers with corruption levels of 0.3 for each layer. The number of nodes per layer are: first layer = 100, second layer = 100, third layer = 100. The parameters for pre-training are: learning rate = 0.5, number of epochs = 200, batch size = 300. The parameters for fine-tuning are: learning rate = 0.2, number of epochs = 100 and batch size = 100.
Six-way SdA uses a window length of 41 which means it has 820 inputs and 6 outputs. It has three hidden layers with corruption levels of 0.3 for each layer. The number of nodes per layer are: first layer = 800, second layer = 500, third layer = 300. The parameters for pre-training are: learning rate = 0.5, number of epochs = 150 and batch size = 300. The parameters for fine-tuning are: learning rate = 0.1, number of epochs = 300 and batch size = 100.
The 6-way, 4-way and 2-way classification results for the second stage of processing are presented in Table 16, Table 17, Table 18 respectively. Note that unlike the tables for the first pass of processing, the classification results in each of these tables are measured once per epoch – they are not per-channel results. We refer to these results as epoch-based.i
j
P(i,j)
j
P(i,j)
j
P(i,j)
j
P(i,j)
j
P(i,j)
j
P(i,j)
SPSW
SPSW
0.40
PLED
0.00
GPED
0.00
EYEM
0.10
ARTF
0.20
BCKG
0.30
PLED
SPSW
0.00
PLED
0.90
GPED
0.00
EYEM
0.00
ARTF
0.05
BCKG
0.05
GPED
SPSW
0.00
PLED
0.00
GPED
0.60
EYEM
0.00
ARTF
0.20
BCKG
0.20
EYEM
SPSW
0.10
PLED
0.00
GPED
0.00
EYEM
0.40
ARTF
0.10
BCKG
0.40
ARTF
SPSW
0.23
PLED
0.05
GPED
0.05
EYEM
0.23
ARTF
0.23
BCKG
0.23
BCKG
SPSW
0.33
PLED
0.05
GPED
0.05
EYEM
0.23
ARTF
0.13
BCKG
0.23
[bookmark: _Ref496792649][bookmark: _Ref452070571]Table 19. A bigram probabilistic language model for the third pass of processing which models all possible transitions from one of the six classes to the next.

1.3.5.1.2. Third Pass: Statistical Language Modeling
Neurologists generally impose certain restrictions on events when interpreting an EEG. For example, PLEDs and GPEDs don’t happen in the same session. None of the previous stages of processing address this problem. Even the output of the second stage accounts mostly for channel context and is not extremely effective at modelling long-term temporal context. The third pass of processing addresses this issue and improves the overall detection performance by using a finite state machine based on a statistical language model.
As is shown in Figure 18, the third stage of postprocessing is designed to impose some contextual restrictions on the output of the second stage. These contextual relationships involve long-term behavior of the signal and are learned in a data-driven fashion. This approach is also borrowed from speech recognition where a probabilistic grammar is used that combines the left and right contexts with the labels. This is done using a finite state machine that imposes specific syntactic constraints.
In this study, a bigram probabilistic language model that provides the probability of transiting from one type of epoch to another (e.g. PLED to PLED) is prepared using the training dataset and also in consultation with neurologists in Temple Hospital University. The bigram probabilities for each of the six classes are shown in Table 1, which models all possible transitions from one label to the next. The remaining columns alternate between the class label being transitioned to and its associated probability. The probabilities in this table are optimized on a training database that is a subset of TUH-EEG. For example, since PLEDs are long-term events, the probability of transitioning from one PLED to the next is high – approximately 0.9. However, since spikes that occur in groups are PLEDs or GPEDs, and not SPSWs, the probability of transitioning from a PLED to SPSW is 0.0. Therefore, these transition probabilities emulate the contextual knowledge used by neurologists.
After compiling the probability table, a long window is centered on each epoch and the posterior probability vector for that epoch is updated by considering left and right context as a prior (essentially predicting the current epoch from its left and right context). A Bayesian framework is used to update the probabilities of this grammar for a single iteration of the algorithm:
	(33)
	(34)
	(35)
	(36)
In these equations, k = 1, 2… K where K is the total number of classes (in this study K = 6), L is number of epochs in a file,  is the prior probability for an epoch (a vector of length K) and M is the weight. LPP and RPP are left and right context probabilities respectively.  is the decaying weight for window, α is the weight associated with  and  and  are normalization factors.  is the prior probability,  is the posterior probability of epoch C for class k given the left and right contexts, y is the grammar weight, n is the iteration number (starting from 1) and  is the normalization factor.  is a representation of the probability table shown in Table 19. The algorithm iterates until the label assignments, which are decoded based on a probability vector, converge. The output of this stage is the final output and what was used in the evaluations.
The output of the second stage of processing is a vector of six scores, or likelihoods, per epoch. This serves as the input for the third stage of processing. The optimized parameters for the third pass of processing are: prior probability for an epoch, , is 0.1; the weight, M, is 1; the decaying weight, , is 0.2; the weight associated with  , is 0.1; the grammar weight, y, is 1; the number of iterations, n, is 20, and the window length to calculate the left and right prior probabilities is 10. The 6-way, 4-way and 2-way classification results are presented in Table 20, Table 21 and Table 22 respectively. Note that these results are also epoch-based. In conclusion, the 6-way classification task can be structured into several subtasks. Of course, due to the high probability of the signal being background, the system is heavily biased towards choosing the background model. Therefore, in Table 7 we see that performance on BACKG is fairly high. Not surprisingly, BCKG is most often confused with SPSW. SPSW events are short in duration and there are many transient events in BCKG that resemble an SPSW event. This is one reason we added ARTF and EYEM models, so that we can reduce the confusions of all classes with the short impulsive SPSW events. As we annotate background data in more detail, and identify more commonly occurring artifacts, we can expand on our ability to model BCKG events explicitly.Event
ARTF
BCKG
EYEM
GPED
PLED
SPSW
ARTF
14.04
72.98
10.18
0.00
0.00
2.81
BCKG
3.42
81.40
8.93
0.30
0.00
5.95
EYEM
2.30
17.24
79.31
0.00
0.00
1.15
GPED
0.30
3.65
0.00
65.05
13.37
17.63
PLED
0.00
10.76
0.49
9.78
65.28
13.69
SPSW
10.00
33.33
13.33
10.00
0.00
33.33
Table 20. The 2-way classification results for the third pass of processing.
Event
BCKG
SPSW
GPED
PLED
BCKG
95.11
4.69
0.19
0.00
SPSW
56.67
33.33
10.00
0.00
GPED
3.95
17.63
65.05
13.37
PLED
11.25
13.69
9.78
65.28
Table 21. The 4-way classification results for the third pass of processing.
Event
TARG
BCKG
TARG
90.10
9.90
BCKG
4.89
95.11
Table 22. The 6-way classification results for the third pass of processing.
Pass
Sensitivity
Specificity
1 (HMM)
86.78
17.70
2 (SdA)
78.93
4.40
3 (SLM)
90.10
4.88
Table 23. The 2-way classification results for the third pass of processing

GPEDs are, not surprisingly, most often confused with PLED events. Both events have a longer duration than SPSWs and artifacts. From Table 7, we see that performance on these two classes is generally high. The main difference between GPED and PLED is duration, so we designed the postprocessing to learn this as a discriminator. For example, in the second pass of processing, we implemented a window duration of 41 seconds so that the SdA system would be exposed to long-term temporal context. We also designed three separate SdA networks to differentiate between short-term and long-term context. In Table 17 we see that the performance of GPEDs and PLEDs improves with the second pass of postprocessing. More significantly, the confusions between GPEDs and PLEDs also decreased. Note also that in Table 17 performance of BCKG increased significantly. Confusions with GPEDs and PLEDs dropped dramatically to below 1%.[image: ]
[bookmark: _Ref496803350][bookmark: _Ref452070731][bookmark: _Ref497001989]Figure. 31. DET curves are shown for each pass of processing. The “zero penalty” operating point is also shown since this was used in Table 6 to Table 8,Table 16 to Table 18 and Table 20 to Table 22.

While performance across the board increased, performance for SPSW dropped by adding the second pass of postprocessing. This is a reflection on the imbalance of the data. Less than one percent of data is annotated as SPSWs, while we have ten times more training samples for GPEDs and PLEDs. Note that we used an out-of-sample technique to increase the number of training samples for SPSWs, but even this technique could not solve the problem of a lack of annotated SPSW data. By comparing Table 6 to Table 8 we saw a similar behavior with the EYEM class because there is also fewer EYEM events. [image: ]
1. Figure. 31. DET curves are shown for each pass of processing. The “zero penalty” operating point is also shown since this was used in Table 6 to Table 8,Table 16 to Table 18 and Table 20 to Table 22.

A summary of the results for different stages of processing is shown in Table 23. The overall performance of the multi-pass hybrid HMM/deep learning classification system is promising: more than 90% sensitivity and less than 5% specificity.
Because the false alarm rate in these types of applications varies significantly with sensitivity, it is important to exam performance using a DET curve. A DET curve for the first, second and third stage of processing is given in Figure. 31. Note that the tables previously presented use the unprocessed likelihoods output from the system. They essentially correspond to the point on the DET curve where a penalty of 0 is applied. This operating point is identified on each of the curves in Figure. 31. We see that the raw likelihoods of the system correspond to different operating points in the DET curve space. From Figure. 31 it is readily apparent that postprocessing significantly improves our ability to maintain a low false alarm rate as we increase the detection rate. In virtually all cases, the trends shown in Table 6 to Table 8,Table 16 to Table 18 and Table 20 to Table 23 hold up for the full range of the DET curve. This study demonstrates that a significant amount of contextual processing is required to achieve a specificity of 5%.
Virtually all previous R&D efforts involving EEG, including seizure detection, have been conducted on small databases. Often these databases are not good representations of the type of data observed in clinical environments. Transient artifacts, not common in databases collected under research conditions, can significantly degrade performance. Not surprisingly, despite high accuracies presented in the research literature, the performance of commercially available systems has been lacking in clinical settings. There is still great demand for an automated system that achieves a low false alarm rate in clinical applications.
We have presented a three-pass system that can achieve high performance classifying EEG events of clinical relevance. The system uses a combination of HMMs for accurate temporal segmentation and deep learning for high performance classification. In the first pass, the signal is converted to EEG events using a hidden Markov model based system that models the temporal evolution of the signal. In the second pass, three stacked denoising autoencoders (SDAs) with different window durations are used to map event labels onto a single composite epoch label vector. We demonstrated that both temporal and spatial context analysis based on deep learning can improve the performance of sequential decoding using HMMs. In the third pass, a probabilistic grammar is applied that combines left and right context with the current label vector to produce a final decision for an epoch. 
Our hybrid HMM/deep learning system delivered a sensitivity above 90% while maintaining a specificity below 5%, making automated analysis a viable option for clinicians. This framework for automatic analysis of EEGs can be applied in other classification tasks such as seizure detection or abnormal detection. There are many straightforward extensions of this system that can include more powerful deep learning networks such as Long Short-Term Memory Networks or Convolutional Neural Networks. This is the subject of our ongoing research.
1.3.5.2. P-norm DNN
After developing multiple GMM based HMM models, we can use the features generated by those models to train Deep Neural Network based HMMs. We adapt a model called P-norm networks provided from Kaldi’s recipe. P-norm HMM-DNN model is designed in a very dynamic way which updates network structures, parameters and learning rates of the model during the ongoing training process. The P-norm networks use nonlinearities in its layers called P-norm nodes which has been inspired from Maxout functions. These nonlinearities do dimensionality reduction within the layers and can be considered analogous to the Max Pooling layers in CNNs. P-norm nonlinearity can be represented as:
1. 	(37)
Where G is the group size. The output dimension of the P-norm nonlinearity will be the Gth fraction of the input dimension. For example, if the group size is 5 then for each group of 5 neurons, the output would be the p-norm between all 5 neurons. We use the p-value equal to 2 (Euclidean Norm) in our experiments. 
Ideally, we should feed the features that we computed from all our previous GMM-based systems which are LFCC + LDA + MLLT + CMLLR reduced to 40 dimensions. Since, the performance of our SAT system with CMLLR features was not promising as expected, the p-norm DNN system is developed on top of the LDA-MLLT system. [image: ]
1. [bookmark: _Ref509518163]Figure 32. Stretched out valleys for error surface.

We collected 40-dimensional feature vectors by applying LDA and MLLT transform in our previously optimized system. Here, all these 40-dimensional feature vectors are then concatenated with adjacent 4 frames and dimensionality reduction is performed one more time by a Fixed-affine-component transform to decorrelate temporal data further. The Fixed-affine-transform reduces the in-between class variance of our LDA features. Here, the dimensionality of the output is kept intact. These feature vectors are then shuffled and dumped in to the memory with small chunks of samples. A small portion of these features are used as a temporary validation set for crosschecking the performance of the system during the training process. [image: A close up of a map  Description generated with very high confidence]
1. [bookmark: _Ref509518052]Figure 33. ROC curve comparison between the LDA-STC (MLLT) system and the P-norm DNN system.

If the neural network learns from a given set of training data too well, it becomes prune to overfitting. On the other hand, if the network fails to learn anything from the data, the situation becomes ill-conditioning. A common example of ill-conditioning for error function is stretched out narrow valleys shown in Figure 32. Ill-conditioning is measured by calculating eigenvalues of network’s Hessian. We use preconditioning stochastic gradient descent (SGD) to address this issue. In the preconditioned SGD step, we use matrix-valued learning rate instead of scalar value. For each minibatch, if the gradients have a high variance, this preconditioning component reduce the learning rate along the dimensions which are prune to rapid changes. This prevents sudden variations in parameter values while processing the minibatches and helps to keep the system stable. 
We initialize the neural network training by adding only one layer with minibatch size half the assigned minibatch size (64 labels) for the experiment. Minibatch size assigned are 128 labels per thread. The P-norm layer input dimensions are 3000 and output dimensions are 300 so the group size of P-norm layers would be 10. After every two iterations, we add one additional hidden layer until maximum number of hidden layers are reached. In our experimental setup, 3 hidden layers are used. Total number of epochs are 20. Initial learning rate is 0.04 which we drop exponentially after each epoch iteration till 15th epoch. During final 5 epochs the learning rate is kept constant at 0.004. For acoustic modeling, we iterate through the model 20 times where we apply preconditioning on feature subspace every 4 iterations. This preconditioning is applied on a minibatch level. The normalization component is applied globally on all activations functions to have a unit standard deviation. Activation functions used during final layer is the Softmax nonlinearity with the dimension of context dependent states (pdf-ids). The Softmax function normalizes the output value which can then be interpreted as the probabilities of individual states. 
Note that, during the iterations when we add hidden layers, or when we initialize the network, no normalization or precondition is applied. 
Decoding is performed similar to previous GMM based models. We keep lattice-beam value at 1.0 for smaller search space and extract hypotheses from lattices. The features used in this experiment were unnormalized. After postprocessing the results, our DNN system show fundamental improvement in the performance which can be seen from Table 24. The system here is at different operating point than previous systems. The OVLP scores, sensitivity 60.09% and specificity 89.28% with FA rate 25.7 per 24 hours, are significantly better than previous baseline systems. 
NIST
DPAlign
EPOCH
OVLP
TAES
Sensitivity
39.08 %
52.28 %
45.82 %
60.09 %
46.93 %
Specificity
81.35 %
87.11 %
93.00 %
89.28 %
79.35 %
FAs/ 24 Hrs.
38.62
26.99
5505.16
25.7
43.29
1. [bookmark: _Ref509518030]Table 24. P-norm DNN system’s performance.

NIST
DPAlign
EPOCH
OVLP
TAES
Sensitivity
31.92 %
38.92 %
24.97 %
49.83 %
36.74 %
Specificity
94.10 %
97.86 %
97.28 %
98.80 %
94.51 %
FAs/ 24 Hrs.
9.90
3.73
2137.81
2.58
11.00
1. [bookmark: _Ref509519706]Table 25. HMM-DNN system’s performance.


The improvement in the performance can also be observed from the ROC curve shown in Figure 33. True Positive rate (TPR) is consistent and always higher than the LDA-MLLT system. Changes in the post-processing parameters should extend this performance in even lower ranges of FPRs.
1.3.5.3. HMM/DNN[image: ]
[bookmark: _Ref509519646]Figure 34. The DNN topology.

Like the P-norm DNN system, this is one of the DNN based systems that we have developed on top former optimized LDA-MLLT system. Although, the speech tools used in this experiment are from Kaldi ASR toolkit, the DNN model is not. We use open source python based deep learning toolkit known as Keras with Theano as a backend for DNN training. So, this acoustic model is integration of Kaldi and Keras. Before starting the training process, we collect the priors from previous model. We also perform the forced alignment with the default beam value of 10.  We use LDA features from our former MLLT system and add 5 adjacent frames of context information both direction of each frame. So, features of each frame contains data corresponds to 11 frames which is being fed to the input of our DNN architecture.The network architecture has an input layer with size of 1024 nodes. It has two hidden layers with the same size as input layer and output layer has the size equal to the total number of context dependent states. In our case, it is 7. This architecture can be observed in Figure 34. First three layers (1 input + 2 hidden) use the rectified linear unit (ReLU) and final layer use the Softmax as its activation functions. We use the stochastic gradient descent (SGD) with momentum value 0.5 as our optimizer and Categorical-crossentropy as our loss functions. Mini batch size is 128 utterances. The training process starts with higher learning rate of 0.1 for 4 epochs. After that step, during each iteration, we reduce learning rate by half and train the system with epoch value of 1 until the learning rate reaches to 0. The implementation was not Time-distributed, means the whole minibatch passed to the system was processed analogous to image processing.[image: ]
[bookmark: _Ref509519357]Figure 35. ROC curve comparison between the HMM-DNN system and the P-norm DNN system

Decoding is performed on the lattices with a beam value of 1.0 as all previous HMM systems. The post-processed results shown in Table 25 indicates significant improvement compared to previous GMM-HMM based models. ROC curve shown in Figure 35 compares two DNN systems developed on top of LDA-MLLT systems. We can see that for the same post-processing parameters, the system’s performance on lower FPR range differs. The advantage of current system is: it has very good performance in the low FPR range which makes this system more suitable for the real-world applications. 
1.4.  Convolutional Neural Networks for Spatio-Temporal Sequence Recognition
1.4.1. Deep 2D Networks
Convolutional Neural Networks (CNNs) have delivered state of the art performance on highly challenging tasks such as speech and image recognition CNNs are usually comprised of convolutional layers along with subsampling layers which are followed by one or more fully connected layers. In the case of two dimensional CNNs that are common in image and speech recognition, the input to a convolutional layer is W × H × N data (e.g. an image) where W and H are the width and height of the input data, and N is the number of channels (e.g. in an RGB image, N = 3). The convolutional layer will have K filters (or kernels) of size M × N × Q where M and N are smaller than the dimension of the data and Q is typically smaller than the number of channels. In this way CNNs have a large learning capacity that can be controlled by varying their depth and breadth to produce K feature maps of size (W-M+1) × (H-N+1). Each map is then subsampled with max pooling over P × P contiguous regions. An additive nonlinearity is applied to each feature map either before or after the subsampling layer.[image: ]
[bookmark: _Ref509735941]Figure 36. Two-dimensional decoding of EEG signals using a CNN/MLP hybrid architecture is shown that consists of six convolutional layers, three max pooling layers and two fully-connected layers.

Our overall architecture of a system that combines CNN and a multi-layer perceptron (MLP) is shown in Figure 36. The network contains six convolutional layers, three max pooling layers and two fully-connected layers. A rectified linear unit (ReLU) non-linearity is applied to the output of every convolutional and fully-connected layer. Drawing on an image classification analogy, each image is a signal where the width of the image (W) is the window length multiplied by the number of samples per second, the height of the image (H) is the number of EEG channels and the number of image channels (N) is the length of the feature vector.
In our optimized system, a window duration of 7 seconds is used. The first convolutional layer filters the input of size of 70 × 22 × 26 using 16 kernels of size 3 × 3 with a stride of 1. The second convolutional layer filters its input using 16 kernels of size 3 × 3 with a stride of 1. The first max pooling layer takes as input the output of the second convolutional layer and applies a pooling size of 2 × 2. This process is repeated two times more with 32 and 64 kernels. Next, a fully-connected layer with 512 neurons is applied and the output is fed to a 2-way sigmoid function which produces a two-class decision (the final epoch label).
1.4.2.  Abnormal EEG Detection 
A 2D CNN was trained and evaluated with the features described before for the full abnomal dataset. The features that correspond to windows of data that last t seconds long serve as inputs to the network. Multiple channels can be input to the system allowing modeling of spatial correlations.
Elements of the design, such as the resolution of the input and the depth of the network were evaluated through experimentation. In addition, the premise that the abnormality of an EEG can be better evaluated better from certain areas of the scalp, rather than a single channel, was investigated. In this case, however, instead of using only one channel for these tests, 4 channels from each area of the scalp were selected for the evaluation of each system. The information from four areas of the scalp was isolated and utilized individually for the training and evaluation of the system. For simplicity, these areas are called Region I (frontal), Region II (Centro-temporal), Region III (Centro-temporal-parietal), Region IV (Temporal-occipital). Figure 37 shows an illustration of the scalp regions that were individually tested with the CNN system. 
To justify the use of deep architectures for this problem, it was necessary to compare performance to shallower versions of the architecture. To accomplish this, the depth of the CNN-MLP network was analyzed. For simplicity, a convolutional layer (Lx), where x is the layer depth was defined as follows:
2D Convolutional layer with ReLU activation
2D Convolutional layer with ReLU activation
Maxpooling (2, 2)
Dropout (25%)
After the last convolutional layer, every system was fully connected to a fully connected MLP layer. The fully connected layer F can be defined as follows:
Flattening Layer
Fully Connected MLP with ReLU activation
Dropout (50%)
Fully Connected MLP with Softmax activation
The activation functions used through the systems, ReLU and Softmax, are defined in Equation 38 and Equation 39 respectively:
[bookmark: cnn_relu] ,	(38)
[bookmark: cnn_softmax] .	(39)
The number of stacked convolutional layers was varied in order to find the optimal depth for the classification system. A fully connected layer with Softmax activation was connected to the last convolutional layer in order to output a class probability. Configuration
# Convolutional Layers
Error (%)

1
53.4%

2
22.9%

3
21.2%

4
25.8%
[bookmark: _Ref509739627][bookmark: _Ref486007903][bookmark: _Toc486333196]Table 26. Network depth analysis for the classification of abnormal EEGs.
Window Duration
# Convolutional Layers
Error (%)
3 seconds
3
55.5%
5 seconds
3
46.6%
7 seconds
3
21.2%
9 seconds
3
26.2%
Table 27. Window duration analysis for the input of the CNN.
Ref/Hyp
Normal
Abnormal
Normal
81.9%
18.1%
Abnormal
24.6%
75.4%
Table 28. Abnormal EEG classification based on scalp location of the input channels.

Before the main experiments were conducted, the closed loop performance of the system was studied as a function of training iterations. In order to observe the overfitting of the objective function, the dropout regularization layers for the CNN were deactivated for the experiment. In this way, the function would not be modified towards good generalization, and the overfitting of the system would be ideally observed. The behavior of the system trained with two different optimizers, basic Stochastic Gradient Descend (SGD) and Adaptive moment estimation (Adam), was analyzed as a function of the number of training epochs.
The behavior of the systems as the training iterations increased are shown in Figure 38. The initial iterations show the trend that would be expected in this type of analysis. As the number of training iterations increase, the training error decreases, and the evaluation error decreases as well, until the system starts overfitting (8th iteration). After the 8th iteration, however, the error rate of the system dramatically increases, and the performance saturates for both optimizers. The increase in the error rate and performance saturation in the later iterations is not expected behavior and will require further investigation. 
The error rates that were obtained through the different network depths are reported in Table 26. From this summary, it is possible to see that the three-layer representation yielded the best results for the abnormal EEG classification task. It can also be seen that the shallower network produced the worst results out of all the systems. With these results, it is possible to justify the use of a deep learning architecture for the problem. [image: ]
[bookmark: _Ref486007611][bookmark: _Toc486333215]Figure 37. Diagram that shows the regions of the scalp (Regions I-IV) that were individually processed with the CNN end-to-end deep learning system.

The resolution of the input was also investigated. The window length was varied in several optimization experiments. A system with three convolutional layers was implemented in order to conduct the window duration analysis. Table 27 summarizes the results for the window duration experiments, and shows that the best results are obtained with a window duration of 7 seconds. In practice, the analysis of EEGs is conducted through the observation of 10-second windows of data and the analysis of the presence or absence of features in the time domain signal. A 7-second window compares favorably to the 10-second window used in manual interpretation. 
The CNN systems that were presented thus far used 22 channels from a standard TCP montage. The localization studies, which analyzed the system’s performance at different regions of the scalp (see Figure 37), were conducted with 4 channels for each scalp region. The results are reported in Table 28, and show that the best performance is obtained from the occipital region (Region IV in Figure 37). These results show that the performance for the best localized system is worse than the performance when all the channels across the scalp are included (26.2% vs. 21.2%). This could be attributed to a lack of training data for this very complex system. Region
Channels
Error (%)
REGION I
Fp1-F7, Fp1-F3, Fp2-F4, Fp2-F8
42.7%
REGION II
T3-C3, C3-Cz, Cz-C4, C4-T4
30.1%
REGION III
T3-T5, C3-P3, C4-P4, T4-T6
53.4%
REGION IV
T5-O1, P3-O1, P4-O2, T6-O2
26.2%
Table 29. Confusion Matrix for the CNN-MLP system.

It is interesting to compare the trends that the performance exhibited for both, the HMM system with the short dataset and the deep learning CNN system with the full dataset. Figure 39 shows that the behavior for both systems with regards to location of the input follows a very similar pattern, with the best results being produced by the occipital channels and the worse results being produced by inputs from the central-parietal region. 
The results presented demonstrate that the best performance for the system with the full database was obtained with the CNN/MLP algorithm, which achieved a 21.2% error rate. The confusion matrix for this system is presented in Table 29. [image: ]
[bookmark: _Ref486007860][bookmark: _Toc486333216]Figure 38. Error rate as a function of the number of training epochs for SGD and Adam optimizer. The figure additionally shows the training time as a function of the number of training epochs.


1.4.3. Pre-training
Deep learning methods aim at learning feature hierarchies with features from higher levels of the hierarchy formed by the composition of lower level features. They include learning methods for a wide array of deep architectures, including neural networks with many hidden layers and graphical models with many levels of hidden variables, among others. Theoretical results, suggest that in order to learn the kind of complicated functions that can represent high-level abstractions, one may need deep architectures. These recent demonstrations of the potentials of deep learning algorithms were achieved despite the serious challenge of training models with many layers of adaptive parameters. Virtually, in all instances of deep learning, the objective function is a highly non-convex function of the parameters, with the potential for many distinct local minima in the model parameter space. The principal difficulty is that not all of these minima provide equivalent generalization errors. For deep architectures, the standard training schemes (based on random initialization) tend to place the parameters in regions of the parameters space that generalize poorly—as was frequently observed empirically but rarely reported. The breakthrough to effective training strategies for deep architectures came in 2006 with unsupervised pre-training followed by supervised fine-tuning. The unsupervised learning algorithm learns a nonlinear transformation of its input that captures the main variations in its input. This unsupervised pre-training sets the stage for a final training phase where the deep architecture is fine-tuned with respect to a supervised training criterion with gradient-based optimization. [image: ]
[bookmark: _Ref486008577][bookmark: _Toc486333217]Figure 39. Performances for the HMM system with the short dataset and the CNN system with the full dataset with respect to the location of the input on the scalp.

Our pretraining is based on the deep Convolutional Auto-Encoder(CAE) with Pooling. An AE is trained in unsupervised fashion which allows extracting useful features from unlabeled data. Deep CAEs can be better at this task because they fully utilize the properties of convolutional neural networks (CNNs), which have been proven to provide better results on noisy and corrupted data. A typical CAE network begins with a data layer which loads data from a disk and ends with one or several loss layers which specify a goal of learning (also known as an error, cost, objective or loss function). Our CAE models include convolutional, pooling, fully-connected, deconvolution, unpooling and loss layers. The convolutional/deconvolution layer followed by an activation function is described by the expression:
 .	(40)
Where  is the latent representation of the kth feature map of the current layer,  is an activation function,  is lth feature map of the group of feature maps L of the previous layer or lth-channel of input image with total L channels in a case of the first convolutional layer, ⊗ denotes the 2D convolution operation, and  are the weights (filters) and the bias of the kth feature map of the current layer respectively. If  is an a feature map with size m × m and the filters are n × n , a convolutional layer performs ‘valid convolution’ and the size of the output feature map (m − n +1) × (m − n +1) is decreasing. A deconvolution layer performs “full convolution” and the size of the output feature map (m + n −1) × (m + n −1) is increasing. This is how convolutional layers provide encoding of an input data by decreasing the output feature maps from layer to layer in the encoder part and, inversely, how deconvolution layers provide reconstruction of the input by the increasing the output feature maps from layer to layer in the decoder part. A max-pooling layer pools features by taking the maximum activity within input feature maps (outputs of the previous convolutional layer) and produces (i) its output feature map with reduced size according to the size of pooling kernel and (ii) supplemental switch variables (switches) which describe the position of these max-pooled features. The unpooling layer restores the max-pooled feature either (i) into the correct place, specified by the switches, or, (ii) into some specific place within the unpooled output feature map. Figure 40 illustrates typical convolutional Autoencoder architecture. The CAE model contains three pairs of convolutional and pooling layers in the encoder part and, inversely, four deconvolutions and unpooling layers in the decoder part. The CAE sets the initial values of parameters of final training phase where the hybrid deep structure including Convolutional Neural Networks (CNN) and Long Short-Term Memory Networks (LSTM) is located. The performance of the structure with pretraining is 30% sensitivity with a false alarm rate of 53 per 24 hours.
1.4.4. Residual Neural Networks for Increasing the Depth of the Structure
In previous section we presented, that a significant big data resource, TUH EEG Corpus, has recently become available for EEG interpretation creating a unique opportunity to advance technology using CNNs. The depth of a CNN is of crucial importance. State of the art results can be achieved by exploiting very deep models, but very deep models are prone to degradation in performance with respect to generalization and suffer from convergence problems. In this study, a deep residual learning framework is introduced that mitigates these problems by reformulating the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. This architecture delivers 30% sensitivity at 16 false alarms per 24 hours. This architecture enables designing deeper architectures that are easier to optimize and can achieve better performance than prior state of the art.
Deep residual networks have emerged as a family of extremely deep architectures showing compelling accuracy and easier to optimize. They delivered state of the art performances in image classification and speech recognition. Deep neural networks classify information by integrating low, medium, and high-level features in an end-to-end multilayer system. It is shown that feature extraction can be more powerful by increasing the number of stacked layers or in other word the depth of network. Recent studies prove that the depth of network is of crucial importance, and the best results on the challenging image and speech recognition tasks all exploit extremely deep models, with a depth of sixteen to thirty.
The notorious problem of vanishing/exploding gradient, which mitigate convergence from the first batch of training, has been a challenge in increasing the depth of a network. This problem, however, has been largely addressed by normalized initialization and intermediate normalization layers, which enable networks with tens of layers to start converging for stochastic gradient descent (SGD) with backpropagation. 
When deeper networks are able to start converging, a degradation problem has been exposed: with the network depth increasing, accuracy gets saturated (which might be unsurprising) and then degrades rapidly. Unexpectedly, such degradation is not caused by overfitting, and adding more layers to a suitably deep model leads to higher training error. The degradation (of training accuracy) indicates that not all systems are similarly easy to optimize. Let us consider a shallower architecture and its deeper counterpart that adds more layers onto it. There exists a solution by construction to the deeper model: the added layers are identity mapping, and the other layers are copied from the learned shallower model. The existence of this constructed solution indicates that a deeper model should produce no higher training error than its shallower counterpart. But experiments show that our current solvers on hand are unable to find solutions that are comparably good or better than the constructed solution (or unable to do so in feasible time). 
Here we want to address the degradation problem by introducing a deep residual learning framework. Instead of hoping each few stacked layers directly fit a desired underlying mapping, they explicitly let these layers fit a residual mapping. Formally, denoting the desired underlying mapping as H(x), they let the stacked nonlinear layers fit another mapping of F(x) := H(x) - x. The original mapping is recast into F(x) + x. It ts shown experimentally that it is easier to optimize the residual mapping than to optimize the original, unreferenced mapping. To the extreme, if an identity mapping were optimal, it would be easier to push the residual to zero than to fit an identity mapping by a stack of nonlinear layers. The formulation of F(x)+x can be realized by feedforward neural networks with “shortcut connections”.[image: ]
[bookmark: _Ref509827378]Figure 40. Typical convolutional autoencoder architecture.

From implementation perspective, residual neural networks can be implemented using functional API approach. Sequential and Functional API are two different approaches for defining deep learning models in tools like Keras and TensorFlow. We previously used sequential models to design deep 2D networks. The Sequential model is a linear stack of layers. The functional API is the way to go for defining complex models, such as multi-output models, directed acyclic graphs, or models with shared layers. In fact, the Functional API was designed to make it easier to build neural network models that are non-sequential, as most of the NN research was pointing in that direction, for example Residual Networks and Siamese networks, or just networks with multiple inputs and/or outputs. The Functional API makes it pretty easy to build complex models, and it also has advantages as you can design networks and use them as modules to build a more complex model. So basically, you use the sequential model if your model is simple and basically just a sequence of layers, and you use the Functional API to make more complex models, which includes non-sequential connections and multiple inputs/outputs. A state of the art residual neural networks for automatic analysis of EEGs is designed and presented in Figure 41. The performance of this system is compare with CNN/MLP in Table 30. Additionally, the DET curve that compares the performance of this system against other systems that are presented in this report is presented in Figure 42.[image: ]
[bookmark: _Ref509828769]Figure 41: Two-dimensional decoding of EEG signals using a CNN/MLP hybrid architecture is shown that consists of six convolutional layers, three max pooling layers and two fully-connected layers.

1.5. Learning Temporal Dependencies Using Recurrent Networks
1.5.1. Learning to Forget: Continual Prediction with IPCA and LSTM
To improve our ability to model context, a hybrid system composed of an HMM and a Long Short Term Memory (LSTM) network was implemented. These networks are a special kind of recurrent neural network (RNN) architecture that is capable of learning long-term dependencies and can bridge time intervals exceeding 1,000 steps even for noisy incompressible input sequences. This is achieved by multiplicative gate units that learn to open and close access to the constant error flow.
Like the HMM/SdA hybrid approach previously described, the output of the first pass is a vector of dimension 2 × 22 × the window length. Therefore, we also use PCA before LSTM to reduce the dimensionality of the data to 20. For this study, we used a window length of 41 for LSTM, and this layer is composed of one hidden layer with 32 nodes. The output layer nodes in this LSTM level use a sigmoid function. The parameters of the models are optimized to minimize the error using a cross-entropy loss function. Adaptive Moment Estimation (Adam) is used in the optimization process. System
Sensitivity
Specificity
FA/24 Hrs.
CNN/MLP
39.09%
76.84%
77
ResNet
30.50%
94.24%
13.78
[bookmark: _Ref509828560]Table 30: Performance on the TUSZ.
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[bookmark: _Ref509828879]Figure 42. A DET curve comparing performance on TUSZ.

To explore the potential of LSTMs to encode long-term dependencies, we designed another architecture, where Incremental Principal Components Analysis (IPCA) was used for dimensionality reduction. LSTM networks which operate directly on features spanning long periods of time need more memory efficient approaches. IPCA has constant memory complexity, on the order of the batch size, enabling use of a large dataset without loading the entire dataset into memory. IPCA builds a low-rank approximation for the input data using an amount of memory which is independent of the number of input data samples. It is still dependent on the input data features, but changing the batch size allows for control of memory usage.
The architecture of our IPCA/LSTM system is presented in Figure 43. In the IPCA/LSTM system, samples are converted to features by our standard feature extraction method previously described. Next, the features are delivered to an IPCA layer for spatial context analysis and dimensionality reduction. The output of IPCA is delivered to a one-layer LSTM for classification. The input to IPCA has a dimension that is a multiplication of the number of channels, the feature vector length, the number of features per seconds and window duration (in seconds). We typically use a 7-second window duration, so the IPCA input is a vector of dimension 22 × 26 × 7 × 10 = 4004. A batch size of 50 is used in IPCA and the output dimension is 25. In order to learn long-term dependencies, one LSTM with a hidden layer size of 128 and batch size of 128 is used along with Adam optimization and a cross–entropy loss function.
1.5.2. End-to-end Sequence Labeling via hybrid deep architectures by Integrating LSTMs and Convolutional Gates 
In our best state of the art architecture, which is shown in Figure 44, we integrate 2D CNNs, 1-D CNNs and LSTM networks, which we refer to as a CNN/LSTM, to better exploit long-term dependencies. Note that the way that we handle data in CNN/LSTM is different from the CNN/MLP system presented in Figure 36. Drawing on a video classification analogy, input data is composed of frames distributed in time where each frame is an image of width (W) equal to the length of a feature vector, the height (H) equals the number of EEG channels, and the number of image channels (N) equals one. Then input data consists of T frames where T is equal to the window length multiplied by the number of samples per second. In our optimized system with a window duration of 21 seconds, the first 2D convolutional layer filters 210 frames (T = 21 × 10) of EEGs distributed in time with a size of 26 × 22 × 1 (W = 26, H = 22, N = 1) using 16 kernels of size 3 × 3 and with a stride of 1. The first 2D max pooling layer takes as input a vector which is 260 frames distributed in time with a size of 26 × 22 × 16 and applies a pooling size of 2 × 2. This process is repeated two times with two 2D convolutional layers with 32 and 64 kernels of size 3 × 3 respectively and two 2D max pooling layers with a pooling size 2 × 2.
The output of third max pooling is flattened to 210 frames with size of 384 × 1. Then a 1D convolutional layer filters the output of the flattening layer using 16 kernels of size 3 which decreases the dimensionality in space to 210 × 16. Then we apply a 1D maxpooling layer with a size of 8 to decrease the dimensionality to 26 × 16. This is the input to a deep bidirectional LSTM network where the dimensionality of the output space is 128 and 256. The output of the last bidirectional LSTM layer is fed to a 2-way sigmoid function which produces a final classification of an epoch. To overcome the problem of overfitting and force the system to learn more robust features, dropout and Gaussian noise layers are used between layers. To increase non-linearity, Exponential Linear Units (ELU) are used. Adam is used in the optimization process along with a mean squared error loss function. [image: ]
[bookmark: _Ref482454487][bookmark: _Ref481417593]Figure 43: An architecture that integrates IPCA for spatial context analysis and LSTM for learning long-term temporal dependencies.

The lack of big data resources that can be used to train sophisticated statistical models compounds a major problem in automatic seizure detection. Inter-rater agreement for this task is low, especially when considering short seizure events. Manual annotation of a large amount of data by a team of certified neurologists is extremely expensive and time consuming. In this study, we are reporting results for the first time on the TUSZ and a comparable corpus, DUSZ, from Duke University. TUSZ was used as the training and test set corpus, while DUSZ was used as a held-out evaluation set. It is important to note that TUSZ was collected using several generations of Natus EEG equipment, while DUSZ was collected using Nihon Kohden equipment. Hence, this is a true open-set evaluation since the data were collected under completely different recording conditions. A summary of these corpora is shown in Table 32.
A comparison of the performance of the different architectures presented in this section, for sensitivity in range of 30%, are shown in Table 31. The related DET curve is illustrated in Figure 45. These systems were evaluated using a method of scoring popular in the EEG research community known as the overlap method. 
It is important to note that the results are much lower than what is often published in the literature on other seizure detection tasks. This is due to a combination of factors including (1) the neuroscience community has favored a more permissive method of scoring that tends to produce much higher sensitivities and lower false alarm rates; and (2) TUSZ is a much more difficult task than any corpus previously released as open source. The evaluation set was designed to be representative of common clinical issues and includes many challenging examples of seizures.
Also, note that the HMM baseline system, which is shown in the first row of Table 2, operates on each channel independently. The other methods consider all channels simultaneously by using a supervector that is a concatenation of the feature vectors for all channels. The baseline HMM system only classifies epochs (1 sec in duration) using data from within that epoch. It does not look across channels or across multiple epochs when performing epoch-level classification. The results of the hybrid HMM and deep learning structures show that adding a deep learning structure for temporal and spatial analysis of EEGs can decrease the false alarm rate dramatically. Further, by comparing the results of HMM/SdA with HMM/LSTM, we find that a simple one layer LSTM performs better than 3 layers of SdA due to LSTM’s ability to explicitly model long-term dependencies. Note that in this case the complexity and training time of these two systems is comparable. System
Sensitivity
Specificity
FA/24 Hrs.
HMM
30.32%
80.07%
244
HMM/SdA
35.35%
73.35%
77
HMM/LSTM
30.05%
80.53%
60
IPCA/LSTM
32.97%
77.57%
73
CNN/MLP
39.09%
76.84%
77
[bookmark: _Hlk492772043]CNN/LSTM
30.83%
96.86%
7
[bookmark: _Ref509854374]Table 31: Performance on the TUSZ.
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[bookmark: _Ref492780231]Figure 45: A DET curve comparing performance on TUSZ.
Description
TUHS
Duke

Train
Eval
Eval
Patients
64
50
45
Sessions
281
229
45
Files
1,028
985
45
Seizure (secs)
17,686
45,649
48,567
Non-Seizure (secs)
596,696
556,033
599,381
Total (secs)
614,382
601,682
647,948
Table 32: An overview of the TUHS and Duke corpora.
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[bookmark: _Ref492849033]Figure 44: A deep recurrent convolutional architecture for two-dimensional decoding of EEG signals that integrates 2D CNNs, 1-D CNNs and LSTM networks is shown.

The best overall system is the combination of CNN and LSTM. This doubly deep recurrent convolutional structure models both spatial relationships (e.g., cross-channel dependencies) and temporal dynamics (e.g., spikes). For example, CNN/LSTM does a much better job rejecting artifacts that are easily confused with spikes because these appear on only a few channels, and hence can be filtered based on correlations between channels. The depth of the convolutional network is important since the top convolutional layers tend to learn generic features while the deeper layers learn dataset specific features. Performance degrades if a single convolutional layer is removed. For example, removing any of the middle convolutional layers results in a loss of about 4% in the sensitivity.
We have also conducted an evaluation of our CNN/LSTM system on a DUSZ. The results are shown in Table 33. A DET curve is shown in Figure 46. At high false positive rates, performance between the two systems is comparable. At low false positive rates, false positives on TUSZ are lower than on DUSZ. This suggests there is room for additional optimizations on DUSZ.
In these experiments, we observed that the choice of optimization method had a considerable impact on performance. The results of our best performing system, CNN/LSTM, was evaluated using a variety of optimization methods, including SGD, RMSprop as shown in Table 4. The best performance is achieved with Adam, a learning rate of ,, a learning rate decay of 0.0001, exponential decay rates of  for the moment estimates and a fuzz factor of . The parameters follow the notation described in. Table 34 also illustrates that Nadam delivers comparable performance to Adam. Adam combines the advantages of AdaGrad which works well with sparse gradients, and RMSProp which works well in non-stationary settings.
Similarly, we evaluated our CNN/LSTM using different activation functions, as shown in Table 35. ELU delivers a small but measurable increase in sensitivity, and more importantly, a reduction in false alarms. ReLUs and ELUs accelerate learning by decreasing the gap between the normal gradient and the unit natural gradient. ELUs push the mean towards zero but with a significantly smaller computations footprint. But unlike ReLUs, ELUs have a clear saturation plateau in its negative regime, allowing them to learn a more robust and stable representation, and making it easier to model dependencies between ELUs.
In conclusion, in our work, we introduced a variety of deep learning architectures for automatic classification of EEGs including a hybrid architecture that integrates CNN and LSTM. While this architecture delivers better performance than other deep structures, its performance still does not meet the needs of clinicians. Human performance on similar tasks is in the range of 65% sensitivity with a false alarm rate of 12 per 24 hours. The false alarm rate is particularly important to critical care applications since it impacts the workload experienced by healthcare providers.Corpus
Sensitivity
Specificity
FA/24 Hrs.
TUSZ
30.83%
96.86%
7
DUSZ
33.71%
70.72%
40
[bookmark: _Ref509854446]Table 33: Performance of CNN/LSTM on DUSZ.
Opt.
Sensitivity
Specificity
FA/24 Hrs.
SGD
23.12%
72.24%
44
RMSprop
25.17%
83.39%
23
Adagrad
26.42%
80.42%
31
Adadelta
26.11%
79.14%
33
Adam
30.83%
96.86%
7
Adamax
29.25%
89.64%
18
Nadam
30.27%
92.17%
14
Table 34: Comparison of optimization algorithms.
Activation
Sensitivity
Specificity
FA/24 Hrs.
Linear
26.46%
88.48%
25
Tanh
26.53%
89.17%
21
Sigmoid
28.63%
90.08%
19
Softsign
30.05%
90.51%
18
ReLU
30.51%
94.74%
11
ELU
30.83%
96.86%
7
Table 35: Comparison of activation functions.
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[bookmark: _Ref509854481][bookmark: _Hlk509905219]Figure 46: A performance comparison of TUSZ and DUSZ.


The primary error modalities observed were false alarms generated during brief delta range slowing patterns such as intermittent rhythmic delta activity. A variety of these types of artifacts have been observed mostly during inter-ictal and post-ictal stages. Training models on such events with diverse morphologies has the potential to significantly reduce the remaining false alarms. This is one reason we are continuing our efforts to annotate a larger portion of TUSZ.
1.5.3. Exploration of Gated Recurrent Units in End-to-end Sequence Labeling
A significant big data resource, known as the TUH EEG Corpus (TUEEG), has become available for EEG interpretation creating a unique opportunity to advance technology. Using a subset of this data that has been manually annotated for seizure events, a novel deep structure has been recently introduced which achieves a low false alarm rate on EEG signals. This system integrates convolutional neural networks (CNNs) with recurrent neural networks (RNNs) to deliver state of the art performance. We also explore improved initialization methods and regularization approaches.
A recurrent neural network (RNN) is an extension of a conventional feedforward neural network which can handle a variable-length input. The RNN handles the variable-length sequence by having a recurrent hidden state whose activation at each time is dependent on that of the previous time. Standard RNNs are hard to train due to the well-known vanishing or exploding gradient problems. To address the vanishing gradient problem, the gated recurrent network architectures such as long short-term memory (LSTM)  unit and gated recurrent unit (GRU) were proposed .
LSTM was presented in ‎section 1.5.2. and is formulated as[image: ]
[bookmark: _Ref482474881][bookmark: _Ref481428312]Figure 47: A deep recurrent convolutional architecture for two-dimensional decoding of EEG signals that integrates 2D CNNs, 1-D CNNs and LSTM networks is shown. In this structure, LSTMs can be easily replaced by GRUs.


 .	(41)
 .	(42)
 .	(43)
 .	(44)
Where , , , , and are the input gate, forget gate, cell state, output gate and block output at time instance t, respectively;  is the input at time t; , and are the weight matrices applied on input and recurrent hidden units, respectively;  and  are the sigmoid and tangent activation functions, respectively;  and  are the peep-hole connections and biases, respectively; and ∘ means element-wise product.
A GRU architecture was found to achieve better performance than LSTM on some tasks. A GRU is formulated as:
 .	(45)
 .	(46)
 	(47)
 .	(48)
As one can see, a GRU architecture is similar to LSTM but without a separate memory cell. Unlike LSTM, a GRU does not include output activation functions and peep-hole connections. It also integrates the input and forget gates into an update gate, to balance between the previous activation, , and the candidate activation, . The reset gate, , allows it to forget the previous state. 
Our basic architecture, which employs a convolutional recurrent neural network, is presented in Figure 47. In this architecture, we integrate 2D CNNs, 1-D CNNs and LSTM networks to better exploit long-term dependencies. This structure currently uses LSTMs. However, we can easily replace LSTMs with GRUs. Feature extraction is performed using a fairly standard linear frequency cepstral coefficient-based feature extraction approach (LFCCs) popularized in applications such as speech recognition. We also use first and second derivatives of the features since these provide a small improvement in performance. System
Sensitivity
Specificity
FA/24 Hrs.
CNN/GRU
30.83%
91.49%
21
CNN/LSTM
30.83%
97.10%
6
[bookmark: _Ref493341469]Table 36. Recognition results for convolutional recurrent neural networks using GRU and LSTM architectures, for sensitivity in range of 30%.
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[bookmark: _Ref501484970]Figure 48. DET Curves for convolutional recurrent neural networks using GRU and LSTM architectures.


Drawing on a video classification analogy, input data to the first layer of CNNs is composed of frames distributed in time where each frame is an image of width (W) equal to the length of a feature vector, the height (H) equals the number of EEG channels, and the number of image channels (N) equals one. Input data consists of T frames where T is equal to the window length multiplied by the number of samples per second.Initialization
Sensitivity
Specificity
FAs
L1/L2
30.8%
97.1%
6
Dropout
30.8%
96.9%
7
Gaussian
30.8%
95.8%
9
L2
30.2%
95.6%
10
L1
30.0%
43.7%
276
[bookmark: _Ref493186342]Table 37. Recognition results for convolutional LSTM architecture, for sensitivity in range of 30%, using different regularizations.
[image: ]
[bookmark: _Ref493186406]Figure 49. DET curves for the CNN/LSTM architecture using different regularizations.

In our optimized system with a window duration of 21 seconds, the first 2D convolutional layer filters 210 frames (T = 21 × 10) of EEGs distributed in time with a size of 26 × 22 × 1 (W=26, H=22, N=1) using 16 kernels of size 3 × 3 and with a stride of 1. The first 2D max pooling layer takes as input a vector which is 260 frames distributed in time with a size of 26 × 22 × 16 and applies a pooling size of 2 × 2. This process is repeated two times with two 2D convolutional layers with 32 and 64 kernels of size 3 × 3 respectively and two 2D max pooling layers with a pooling size 2 × 2.
The output of the third max pooling layer is flattened to 210 frames with size of 384 × 1. Then a 1D convolutional layer filters the output of the flattening layer using 16 kernels of size 3 which decreases the dimensionality in space to 210 × 16. Then we apply a 1D maxpooling layer with a size of 8 to decrease the dimensionality to 26 × 16. This is the input to a deep bidirectional LSTM network where the dimensionality of the output space is 128 and 256. The output of the last bidirectional LSTM layer is fed to a 2-way sigmoid function which produces a final classification of an epoch. Epochs are typically 1 sec in duration.
To overcome the problem of overfitting and force the system to learn more robust features, regularizations are used in first two layers of CNNs. To increase non-linearity, Exponential Linear Units (ELU) are used. Adam is used in the optimization process along with a mean squared error loss function.
The lack of big data resources that can be used to train sophisticated statistical models compounds a major problem in automatic seizure detection. Inter-rater agreement for this task is low, especially when considering short seizure events. Manual annotation of a large amount of data by a team of certified neurologists is extremely expensive and time consuming. It is difficult to employ large numbers of board-certified neurologists to perform this task. In this study, we are reporting results on the TUH EEG Seizure Corpus (TUSZ). This dataset, which is publicly available, is a subset of the TUH EEG Corpus that focuses on the problem of seizure detection.
A comparison of the performance of the convolutional recurrent neural networks using GRU and LSTM architectures, for sensitivity in range of 30%, are shown in Table 36. The related DET curve is illustrated in Figure 48 These systems were evaluated using a method of scoring popular in the EEG research community known as the overlap method. 
By comparing the results of CNN/LSTM with CNN/GRU, demonstrated in Figure 48, we find that in lower false positive rates, CNN/LSTM has significantly better performance from CNN/GRU, due to the fact that while GRU unit controls the flow of information like the LSTM unit, but it does not have a memory unit. LSTMs can remember longer sequences better than GRUs and outperform it in this task, since seizure detection requires modeling long distance relationships. Additionally, the training time of CNN/GRU was 10% less than CNN/LSTM. Hence, the training time of these two systems is comparable, since most of the cycles are used for training of convolutional layers. 
In neural networks, determining the proper initialization strategy for the parameters in the model is part of the difficulty in training. Hence, we investigated a variety of initialization methods using the structure introduced in Figure 47. These results are presented in Table 38. The related DET curve is illustrated in Figure 50. In our experiments, we observed that the proper initialization of weights in a convolutional recurrent neural network is critical to convergence. For example, initialization with zeros or ones methods completely stalled the convergence process. Also, as we can see in Table 38, the performance of the system for the same sensitivity of 30% can change from 7 to 40, for different initialization methods. This decrease in performance and deceleration of convergence arises because some initializations can result in the deeper layers receiving inputs with small variances, which in turn slows down back propagation, and retards the overall convergence process.
The best performance is achieved using orthogonal initialization. This method is a simple yet effective way of combatting exploding and vanishing gradients. Orthogonal matrices preserve the norm of a vector ‎and their eigenvalues have absolute value of one. This means that, no matter how many times we perform repeated matrix multiplication, the resulting matrix doesn't explode or vanish. Also in orthogonal matrices, columns and rows are all orthonormal to one another, which helps the weights to learn different input features.Initialization
Sensitivity
Specificity
FAs
Orthogonal
30.8%
96.9%
7
Lecun Uniform
30.3%
96.5%
8
Glorot Uniform
31.0%
94.2%
13
Glorot Normal
29.5%
92.4%
18
Variance Scaling
31.8%
92.1%
19
Lecun Normal
31.8%
92.1%
19
He Normal
31.3%
91.1%
22
Random Uniform
30.2%
90.0%
25
Truncated Normal
31.6%
87.8%
31
He Uniform
29.2%
85.1%
40
[bookmark: _Ref493026254][bookmark: _Hlk493025557]Table 38. Results for CNN/LSTM, for sensitivity in the range of 30%, using different initialization methods.
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[bookmark: _Ref493026395][bookmark: _Ref493026352]Figure 50. DET curves for the CNN/LSTM architecture using different initialization methods.

Overfitting is a serious problem in deep neural nets with many parameters. In this study, we used five popular regularization methods to address this problem. By using L1, L2 and L1/L2 techniques, we apply penalties on layer parameters during optimization. These penalties are incorporated in the loss function that the network optimizes. In an alternative approach, we used dropout to prevents units from co-adapting too much by randomly dropping units and their connections from the neural network during training. Also, we studied the impact of introducing zero-centered Gaussian noise to the network. The results of these experiments are presented in Figure 37 along with a DET curve in Figure 49.
While generally L1/L2 has the best performance, as we move towards a low FA rate, dropout delivers a lower FA rate. Additionally, we found that the primary error modalities observed were false alarms generated during brief delta range slowing patterns such as intermittent rhythmic delta activity. Our closed-loop experiments showed us that all the regularizing methods presented in Figure 37 are playing an important role in increasing the false alarms of slowing patterns. Even though dropout is effective in CNNs, when dropout is placed over kernels it leads to diminished results. To solve this problem, in our future work, an efficient Bayesian convolutional neural network is being explored that places a probability distribution over the CNN’s kernels. This approach offers better robustness to overfitting on small data and show improve the robustness of our training process.
[bookmark: _GoBack]In this section, we investigated two deep learning architectures (LSTM and GRU) for automatic classification of EEGs using CNNs. LSTMs outperformed GRUs. We also studied initialization and regularizations of these networks. In future research, we are designing a more powerful architecture based on reinforcement learning concepts. We are also optimizing regularization and initialization algorithms for these approaches. Our goal is to approach human performance which is in the range of 75% sensitivity with a false alarm rate of 1 per 24 hours. Robust training procedures are needed to make this technology relevant to a wide range of healthcare applications.
1.6. Robust Training Algorithms
1.6.1. Improving the Robustness of Train via Curriculum Learning
Machine learning literature is filled with scenarios in which researchers must solve a non-convex optimization task. A common approach for avoiding a spurious local minima in these cases is to use multiple runs with random initializations and pick the best solution amongst them However, this approach is an ad hoc and computationally expensive as one may be required to use several runs to obtain an accurate solution. Curriculum learning was proposed as an alternative method for training with non-convex objectives. The general concept behind curriculum learning is to use easy samples first and gradually introduce more complex samples. Identifying the difficulty level of samples is a major challenge. System
Sensitivity
Specificity
FA/24 Hrs.
CNN/LSTM
Without CL
30.83%
97.10%
6
CNN/LSTM
With CL
32.13%
95.13%
10
[bookmark: _Ref509906882]Table 39. Recognition results for CNN/LSTM architectures which is trained with and without curriculum learning. 
[image: ]
[bookmark: _Ref509906813]Figure 51. A performance comparison of CNN/LSTM system which is trained with and without curriculum learning.

We propose a new data selection strategy, based on a less sensitive algorithm that excels at automatic segmentation, to triage samples, rank the data based on posteriors generated in this first pass, and then proceed with training a more complex deep learning system using this derived ordering of the data. We use a hybrid hidden Markov model / Stacked denoising Autoencoder based system which is illustrated in Figure 18 for the first pass, and a more powerful system based on a Convolutional Neural Network and a Long Short-Term Memory Network which is shown in Figure 44 for the second pass. The  first pass outputs posterior probabilities for each epoch of data. The data is divided into easy and hard epochs by setting a threshold. If the posterior probability of each is greater than the threshold, it is considered as easy data ( vs hard data). The second pass is trained on easy data first followed by training on hard data.
We demonstrate this strategy on a seizure detection task based on the TUH EEG Seizure Corpus. A comparison of the performance of the CNN/LSTM, which trained both with and without the curriculum learning method, is shown in Table 39. The related DET curve is illustrated in Figure 51. These systems were evaluated using a method of scoring popular in the EEG research community known as the overlap method.
1.6.2. Improving the Robustness of Train via Self-Paced Learning
The main challenge in using the curriculum learning strategy is that it requires the identification of easy and hard samples in a given training dataset. However, in many real-world applications, such as ranking of training samples, the record may be onerous or conceptually difficult or conversely, intuitively “easy” for a human, may not match what is easy for the algorithm in the feature and hypothesis space employed. To alleviate these deficiencies, we introduce self-paced learning. In the context of human education, self-paced learning refers to a system where the curriculum is determined by the pupil’s abilities rather than being fixed by a teacher. We build on this intuition for learning latent variable models by designing an iterative approach that simultaneously selects easy samples and updates the parameters at each iteration. The number of samples selected at each iteration is determined by a weight that is gradually annealed such that later iterations introduce more samples. The algorithm converges when all samples have been considered and the objective function cannot be improved further. Note that, in self-paced learning, the characterization of what is “easy” applies not to individual samples, but to sets of samples; a set of samples is easy if it admits a good fit in the model space.
Self-paced Learning incorporates a self-paced function and a pace parameter into the learning objectives to jointly learn the curriculum and model parameters. Formally, we denote the training dataset as  where denotes the  observed sample, and  represents its label. Let denote the loss function which calculates the cost between the ground truth label   and the estimated label Here w represents the model parameter inside the decision function . In self-paced learning, variable v is introduced into the learning objective to indicate whether the  sample is easy or not. The target of self-paced learning is to jointly learn the model parameter w and the latent weight variable  v = [v1, · · · , vn] by minimizing:
 	(49)
[bookmark: _Hlk509912669]where n and  ) is the self-paced function. The parameter  is the “age” of the self-paced learning model which  controls the learning pace. In the process of the self-paced learning calculation, we gradually increase  to learn new samples. When  is small, only “easy” samples with small losses will be considered into training. As  grows, more samples with larger losses will be gradually appended to train a more “mature” model.
Our system produced a sensitivity of 31% with 80 false alarms per 24 hours with an initial value  and increasing by 20% in each iteration. Although the performance is not close to our overall best performance, it is faster than the best system. 
[image: ]
[bookmark: _Ref509917483]Figure 52: Unsupervised Learning by Adversarial Nets for Automatic Analysis of EEGs

1.7. Generative Adversarial Networks: Unsupervised Learning
1.7.1. On Convergence and Stability of Generative Adversarial Networks
The promise of deep learning is to discover rich, hierarchical models that represent probability distributions of data. The most striking successes in deep learning have involved discriminative models, usually those that map a high-dimensional, rich sensory input to a class label. Deep generative models have had less of an impact, due to the difficulty of approximating many intractable probabilistic computations that arise in maximum likelihood estimation and related strategies. Generative adversarial networks (GAN's) are a recent popular technique for learning generative models for high-dimensional unstructured data. In this framework, the generative model is pitted against an adversary: a discriminative model that learns to determine whether a sample is from the model distribution or the data distribution.  This framework can yield specific training algorithms for many kinds of model and optimization algorithm.
GAN is a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to 1/2 everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples. The intuition behind GAN can be explained by counterfeiters vs police game. The generative model can be thought of as analogous to a team of counterfeiters, trying to produce fake currency, while the discriminative model is analogous to the police, trying to detect the counterfeit currency. Competition in this game drives both teams to improve their methods until the counterfeits are indistinguishable from the genuine articles.[image: ]
[bookmark: _Ref509959003]Figure 53. Unsupervised Learning by Adversarial Nets for Automatic Analysis of EEGs.

The special case is when the generative model generates samples by passing random noise through a multilayer perceptron, and the discriminative model is also a multilayer perceptron. We refer to this case as adversarial nets. To learn the generator’s distribution over data x, we define a prior on input noise variables , then represent a mapping to data space as , where G is a differentiable function represented by a multilayer perceptron with parameters . We also define a second multilayer perceptron , that outputs a single scalar. represents the probability that x came from the data rather than . We train D to maximize the probability of assigning the correct label to both training examples and samples from G. We simultaneously train G to minimize . In other words, D and G play the following two-player minimax game with value function :
 	(50)
The adversarial nets training algorithm can be explained as:
for number of training iterations do
for k steps do
· Sample minibatch of m noise samples from noise prior .
· Sample minibatch of m examplesfrom data generating distribution  
· Update the discriminator by ascending its stochastic gradient:
 	(51)
end for
· Sample minibatch of m noise samples from noise prior 
· Update the generator by descending its stochastic gradient:
end for 
An illustration of adversarial nets for automatic analysis of EEGs is presented in Figure 52.
1.7.2. Unsupervised Spatio-Temporal Modeling Using Deep Convolutional GANs 
As we mentioned in last section, GANs provide an attractive alternative to maximum likelihood techniques.  However, GANs have been known to be unstable to train, often resulting in generators that produce nonsensical outputs. In this section, we present a deep convolutional generative adversarial network for automatic analysis of EEGs and evaluate a set of constraints on the architectural topology of Convolutional GANs that make them more stable to train for spatio-temporal modeling. The proposed DCGAN structure is presented in Figure 53.[image: ]
[bookmark: _Ref509959065]Figure 54. Generated EEG Samples with DCGAN.

In the proposed DCGAN structure, the generative model takes 100 random inputs, and eventually maps them down to a matrix with size of [21, 22, 250]. It is composed of transposed convolutional neural networks with upsamplers. Additionally, Rectified linear units (ReLU) and dropout are used as activation function and regularization, respectively. Also Adam and binary cross-entropy are applied as the optimizer and loss function.
In this architecture, the discriminative model takes in [21, 22, 250] vectors from two sources, (synthetic data) generators and (real data) features, and then decide if they are real or (synthetic) fake. It is composed of strided convolutional neural networks. Leaky ReLU units are used as activation functions. Also, Adam is applied as optimizer and binary cross-entropy as loss function.
In order to increase the stability of DCGAN we use these techniques: Pretraining of discriminator; One-sided label smoothing; Eliminating fully connected layers on top of convolutional features; Replacing deterministic spatial pooling functions (such as maxpooling) with strided convolutions, which allows the network to learn its own spatial downsampling. We use this approach in the generator, allowing it to learn its own spatial upsampling; Using ReLU activation in generator for all layers except for the output; Normalizing the input to [-1, 1] for discriminator; Using Tanh activation in the last layer except for the output; Using Leaky ReLU activation in the discriminator for all layers except for the output; Freezing the weights of discriminator during adversarial training process. Unfreezing during discriminative training; Eliminating Batch Normalization in all the layers in both of generator and discriminator.
The generated EEGs with DCGAN can be informative and useful for debugging of the convolutional structures for automatic analysis of EEGs. For example, a generated EEG sample with a DCGAN is presented in Figure 54. s picture shows us that while convolutional structures are able to learn focality, they suffer from learning sharp waves during a seizure. As a result, instead of generating seizures, they generate signals with the morphology of slowing.
We also developed experiments for seizure detection, using just the discriminator in DCGAN. While this is not a common approach, the results were interesting. In summary, we achieved 56% sensitivity with 210 FA per 24 hrs, using classifier of DCGAN with label smoothing technique, batch size of 64, and window length of 7 seconds. This confirms the hypothesis that GAN structures can be used for automatic analysis of EEGs.
[image: ]
[bookmark: _Ref509920435]Figure 55. Illustration of Supervised Learning Using CGAN.

In next section, we present the future direction of our research, regarding developing supervised and semi-supervised GAN framework for spatio-temporal modeling of EEGs.
1.7.3. Supervised and semi-supervised learning using GANs
Firstly, we present a supervised framework for automatic analysis of EEGs. Let’s assume that our dataset is comprised of n + m Samples of EEGs
 	(50)
Where the first n samples are annotated as:
 	(50)
In the supervised setting (i.e., m = 0), the goal is to learn a generative model that samples from the conditional data distribution ), by transforming vectors of noise z as . There are two proposed approaches for solving this problem: Conditional GAN’s (CGAN’s) and Auxiliary-classifier GAN’s (ACGAN’s)
A framework for supervised learning using conditional GAN (CGAN) is presented in Figure 4. In order to learn the conditional distribution of , a discriminator  is trained jointly. The goal of the discriminator is to distinguish whether the joint samples are samples from the data or from the generator. The supervised loss functions for the generator and discriminator for conditional GAN (C-GAN) are as follows:
 	(50)
 	(50)
The above equations are alternatively optimized with respect to and respectively. The architecture for supervised learning using CGAN is presented in Figure 55.[image: ]
[bookmark: _Ref509920522]Figure 56. Illustration of Supervised Learning Using ACGAN.

Secondly, we present a supervised learning framework using ACGAN. An alternative approach to supervised conditional generation is to only supply the training samples x to the discriminator and ask the discriminator to additionally recover annotations. In particular, the discriminator  produces two outputs: 
	 : the probability of x being real or fake, 
	 : the estimated conditional probability of y given x. 
We can define the attribute loss function as
 	(50)
And the loss function for the discriminator is given by
 	(50)
The loss function for the generator is given by
 	(50)
The architecture for supervised learning using ACGAN is presented in Figure 56.
Lastly we want to present a semi-supervised conditional GAN framework for automatic analysis of EEGs. Most of the research on GAN's is focused on either the unsupervised setting, where the data is unlabeled, or on supervised setting using conditional GAN's where the goal is to learn a conditional model of the data given labels. Given that labels are expensive, it is of interest to explore semi-supervised settings where only a small fraction of the data have labels, while a majority of the data are unlabeled. There are limited work on semi-supervised conditional GANs. We can use GAN's to perform semi-supervised classification by using a generator-discriminator pair to learn an unconditional model of the data and then tune the discriminator using the small amount of labeled data for prediction. We can partition the discriminator's task of evaluating if the joint samples of training data and labels are real or fake into two separate tasks: evaluating if the training samples are real or fake, and prediction of labels. We subsequently use all the labeled and unlabeled data to assist the discriminator with the first task, and only the labeled images for the second task. A structure for semi-supervised conditional GAN is presented in Figure 57.[image: ]
[bookmark: _Ref509920631]Figure 57. Illustration of Semi Supervised Conditional GANs.

In summary in this section, we introduced a new model for building conditional generative models in a semi-supervised setting to conditionally generate and classify data given labels by adapting the GAN framework. We also introduced a new model for building conditional generative models in a supervised setting. We investigated the potential of GANs for increasing interpretability of deep learning and debugging of the data and network based on the observations of the output of generators. 
1.8. Seizure Prediction
1.8.1. Random Forests
Along with seizure detection, we also explored the possibilities of predicting seizures ahead of time so that unexpected physical as well as cognitive injuries to the subject can be avoided. The seizure prediction problem is clinically of greater importance than the seizure detection, as predicting seizures can lead to preventing seizure and thereby having a direct impact on the patient’s quality of life. However, seizure prediction poses a greater challenge than the seizure detection problem. Usual interictal events related to patients contain various morphologies that exists during actual ictal events. They can only be differentiated by considering context, patient’s baseline EEG morphologies, frequency, duration and evolution. We developed seizure prediction systems on the digital electrographs using hybrid machine learning architectures including Random Forest (RF) and Multi-Layer Perceptron (MLP). 
The preprocessing of input features, model architecture, postprocessing, and scoring differs from our typical seizure detection systems. The training process has been done on the file bases. Since, all the files used in the Temple University Seizure Corpus are pruned (< 1hour), we split the data in to seizure files versus no-seizure files for training as well as evaluation purposes. All the files with seizures are assigned label 1 and background are assigned label 0. All the features related to 22 channels, for every 1 second window are fed to the system without any overlap with its previous window. An example of it with an MLP system is shown in Figure 59. To perform cross-validation and to train postprocessing models, we split training data into two subsets namely, training set and validation set.
During development of a seizure prediction system, we tried to train our systems based on all the seizure and non-seizure files combined. We also tried multiclass classification in which we assigned fixed interval labels on ictal events such as the pre-ictal, ictal, depolarization stage, post-ictal slowing and background. Both these approaches fail to improve system’s performance. We also tried specialized techniques, such as training Convolutional Neural Networks (CNN) but we still could not get any improvement in our seizure prediction system.
The seizure prediction system’s evaluation is made based on individual files. If a seizure is observed in a background file, it’s a false positive and if no seizures are observed on any epoch during a seizure file that is considered as a miss. The performance of the sensitivity and specificity along with the ROC curve doesn’t make sense for this problem since we are trying to collect the detection rate on various (negative) latency values. To achieve that, we set a false alarm (FA) rate to a constant value (i.e. 20%) and evaluate the detection rate/sensitivity of a system on various latencies. This is analogous to detecting system’s performance on various latencies where they are all on same operating point in the ROC curve. In the seizure file, if an ictal event starts at time t seconds, the prediction of an event can be measured at time (t – n) seconds. If timestamp at (t – n) seconds falls within any of the target latencies (i.e. -400 seconds), a hit is considered for that particular seizure file. Evaluation is made based on epoch level which are 1 second long.[image: A screenshot of a cell phone  Description generated with high confidence]
1. [bookmark: _Ref509921607]Figure 58. Comparison between baseline seizure prediction systems with random guessing.

The Random Forest algorithm is a generalization of decision tree learning and as its name suggests, RF consists of multiple classification trees. The RF works using ensemble method known as “Bootstrap Aggregation” or “Bagging”. Each tree in RF behaves as a separate model where input feature vectors are fed in and individual models are trained. Since, an individual tree is very sensitive to the training data, in general they possess high variance. The optimal split-points are decided by RF algorithm to get less variance and to create minimally correlated trees because correlated trees tend to bias the overall performance of the system. The trees’ classification is considered as votes. RF classifies based on maximum number of votes generated by its decision trees.
Here, RF results are compared with Random guess results which were created by assigning prior probability of seizure class to 25% (approximated from test data) and performing Z-test. The RF is designed based on 10 estimators with maximum depth level of 2. The performance between Random guess results and Random Forest system is shown in Figure 58 where it is obvious that RF systems perform much worse than Random Guessing.
An MLP is a fundamental block of feedforward artificial neural networks (ANNs). It consists of one or multiple hidden layers and an output layer. All the nodes in the hidden layers are fully connected with its previous and next layers. The layers excluding the input layer in MLP consists of nonlinear activation functions such as logistic/sigmoid. Just like any typical neural network, MLPs are optimized by backpropagation and the optimization techniques such as gradient descent.
We use three hidden layers with a size of (300, 30, 30) with the ReLU activation functions and an output layer with the logistic nonlinearity in our model architecture. The optimization technique used in this network is Adam. Figure 59 shows an overview of our designed model. From Figure 58, we can compare the baseline MLP system’s performance with respect to the Random Forest and the Random Guessing algorithms. The performance of MLP is higher than RF and slightly worse on majority of the latency values. 
1.8.2. Model Blending[image: A close up of a logo  Description generated with high confidence]
1. [bookmark: _Ref509921842]Figure 59. MLP architecture for seizure prediction.

During each pass of minibatch, the MLP systems are stabilized during every 3-10 iterations where we perform weight averaging on the whole neural network. Neural networks, in general, with fewer neurons possess more variance in their weights. Since, MLPs are very sensitive to the feature normalization, we average all the weights of the model during the training process.[image: A screenshot of a cell phone  Description generated with very high confidence]
1. Figure 60. Results of model blending (RF + MLP) at fixed FA rate of 19.93%.

The post-processed decoding results are shown in Figure 60. Here the best system is selected from a 5-fold cross validation. The performance is compared on various latencies and at constant False alarm level (~20%). As can be seen, the system is able to detect the seizures prior to its occurrence before 5 to 2 minutes with the sensitivity of approximately 26%. The performance level increases as the system observed more samples near the onset of the seizure. The system can detect seizure evets with the sensitivity of 57% after 10 seconds of its occurrence. Higher sensitivity values at -600 or -800 seconds seem to be just a fluke resulting from the noise in the seizure files.[image: A screenshot of a cell phone  Description generated with high confidence]
1. Figure 61. Results generated by SGD with the Backstitch algorithm for the RF + MLP model.

1.8.3. Stabilizing Training Process by Parameter Averaging and Backstitch
With some minor improvements in the system, we started to presume that due to higher learning rate, the system might be overshooting the minima of the error surface and not stabilize properly. In order to test our hypothesis and overcome this issue we implemented an algorithm called “Backstitch” along with the Stochastic Gradient Descent optimization algorithm. 
The backstitch algorithm is applied iteratively for each minibatch. While processing a minibatch, instead of taking a complete SGD step towards the direction of a gradient, we first take a step with -α times the current learning rate in negative direction and then take a full step 1+ α towards the direction of a gradient. The backstitch algorithm can be a crude way of removing any systematic biases when working with smaller datasets.
The post processed results shown in Figure 61 show no improvement in the performance than our baseline model-blending method. The α value used during the optimization was 0.3. The sensitivities for all negative latencies seem to be stuck around values ~20-25%. There is slight improvement 5 -15 seconds prior to the seizure onset. After onset, the performance reaches up to 38% sensitivity. Note that, this performance measurement, just like previous model-blending algorithm, is calculated at a constant FA rate of ~20%. Despite the slight performance degradation of the system and longer training time, the advantage of the backstitch algorithm is observed in data balancing perspective. It seems to be less sensitive to the ordering or the size of the data which has been observed during the experimentation.
Aim 2: Automatically Recognize Critical Concepts in an EMR
2.1. Automatic Labeling for Seizure Events
To be effective, state of the art machine learning technology needs large amounts of annotated data. There are numerous compelling applications in healthcare that can benefit from high performance automated decision support systems provided by deep learning technology, but they lack the comprehensive data resources required to apply sophisticated machine learning models. Further, for economic reasons, it is very difficult to justify the creation of large annotated corpora for these applications. Hence, automated annotation techniques become increasingly important. Manual annotation of clinical data is both time-consuming and expensive, requiring well-trained board-certified neurologists that are in short supply. Class
Sensitivity (%)

Before
After
GPED
52.8
56.5
PLED
54.2
60.4
SPSW
41.6
49.6
EYEM
81.8
82.1
BCKG
72.1
71.2
ARTF
41.2
39.1
[bookmark: _Ref509922789][bookmark: _Ref510050620]Table 40. Sensitivity of the six EEG event models before and after the first iteration of the self-training algorithm.

To address the lack of annotated data, we developed a self-training approach to iteratively annotate a large clinical EEG corpus. The main motivation for this task was to create and explore the impact of an algorithm that would work on large clinical EEG data resources. The principal outcome of this work is the ability to automatically annotate the entire TUH EEG database with a level of accuracy comparable to that of manual annotations made by human experts, allowing the implementation of more sophisticated deep learning systems.
The self-training algorithm that we developed was tested and implemented with the six EEG events that we mentioned above (SPSW, GPED, PLED, EYEM, ARTF, BCKG). A model for each class was first trained with a small pool of high confidence annotations made by experts. This trained model was then used to decode non-labeled data. The decoded events (1 second epochs) with the highest posterior probabilities (highest confidence labels) were then selected and added to the training pool to retrain the models. The retrained models were then evaluated in an open evaluation set and used to decode more unlabeled data in the corpus. These steps were repeated until the entire database was annotated with high confidence labels. Figure 62 depicts an overview of the entire process.
To obtain an early assessment of the effectiveness of this newly developed technique, we evaluated the sensitivity for each class after one iteration of the algorithm. Table 40 summarizes the observations of this experiments. It is possible to see that the sensitivity improved for the GPED, PLED and SPSW models. This improvement was less evident for the EYEM model, which only exhibited an improvement of ~0.3%. The BCKG and ARTF models, on the other hand showed a degradation in performance. Since the last three classes are all background events and are largely available across the corpus, the implementation of the self-training algorithm for them is not as critical as it is for the first three classes. As a matter of fact, the event with the least occurrences in the original annotated data is SPSW, and is therefore the class that we focus on expanding for the rest of the analysis.
This algorithm is innovative because, besides operating with high levels of confidence in a large clinical data resource, it works without any human supervision. For this reason, however, it is necessary to ensure that the [image: ]
[bookmark: _Ref509922947]Figure 62. A generic approach to self-training.

algorithm’s parameters are properly adjusted to select the correct number of high confidence events and maintain the performance of the system (or improve it) for future iterations. To optimize the algorithm and find a proper experimental scheme, we conducted two different types of tests: (1) analysis of the number of high confidence events to select for retraining, and (2) an analysis of the threshold for the posterior probabilities to be included for retraining. 
First, we investigated the impact of different rankings of epochs. We focused on the SPSW class for this parameter analysis. Figure 3 shows the trend in recognition performance when we reduce the number of included SPSW events during re-training. In this analysis, we controlled the amount of highly ranked epochs: by reducing the preserved features for re-training, an increasing of the recognition performance was observed. As shown in Figure 63 we began by augmenting the training set with the top 10% of the decoded features. As we tightened the inclusion thresholds, recognition performance increased.  [image: ]
[bookmark: _Ref509923141]Figure 63. Number of decoded SPSW epochs used for retraining.
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[bookmark: _Ref509923191]Figure 64. Effect of probability threshold variation over performance.

We conducted a series of experiments with different posterior probability (log likelihood) thresholds for the selected epochs. The results for the first part of the analysis helped to select an initial threshold, which was then varied to find is optimal value. Figure 64 depicts the recognition accuracy for SPSW events as a function of the threshold. Even though the figure shows that the optimal log-likelihood threshold for event selection is 355, the performance of the baseline is not compromised by threshold values as high as 375. 
The experiments that we present above allowed to properly tune the algorithm for the labeling of new SPSW epochs. To further test the variability of the system’s performance for a large amount of automatically labeled data, we ran the algorithm for 5 iterations. As is shown in Figure 65 , a large number of SPSW epochs (almost 30,000 new labels) were automatically labeled by our algorithm, while maintaining a performance comparable to that of the baseline system for SPSW. [image: ]
[bookmark: _Ref509923255]Figure 65. Effect of the added epochs for SPSW over performance for 5 iterations of the self-training algorithm.

The experiments that we have described to this point show that the approach that we have designed works for a large clinical EEG Corpus, TUH EEG, and provides high confidence annotations without human supervision. In other words, the implementation of this algorithm and future more sophisticated variations of it will not only allow the implementation of deep learning models for the decoding of EEG signals, but will also become a crucial tool in the annotation of the entire TUH EEG Corpus.
As an activity to support the increasingly complex training processes that we must use to train models with larger datasets, we invested time in the complete parallelization of our HMM training algorithms. More specifically, we substituted our isolated unit training system with an embedded training system that resembles algorithms that have been widely used in the speech recognition field to build sub-word systems. In essence, our new training procedure simultaneously updates all of the HMMs in a system using all of the input training data. Figure 66 depicts the training method that we were implementing before the modifications. This approach, although effective, is not suitable for operation in larger databases, since it estimates the HMM parameters in a serial way. The parallel solution that we have adapted to our system, shown in Figure 67, solves the problem of long training times by parallelizing the training operations. It can be seen that the input data is divided, and each partition is used to estimate parameters that are later combined by an accumulator, and used to update the HMMs.[image: ]
[bookmark: _Ref509923291]Figure 66. Process followed for the isolated unit training approach.


We investigated the effectiveness of the new training paradigm through the implementation of the same experiment with both sequential and parallel training. The experiment that we decided to use for comparison of the two training techniques was a seizure detection problem, which typically requires many hours of training, due to the long annotated seizure segments. The system was based on a left-to-right 3-state HMM for each class. The probabilities yielded by this model were later post-processed with a Stacked denoising Autoencoder for temporal and spatial context integration. For simplicity, we trained only two models: seizure and background (non-seizure). The training set contained 172 EEG files recorded with 22 channels. We confirmed the efficiency of the parallel training method when we observed that this technique, which used 150 cores, took about 2 hours for training, whereas the sequential training approach exceeded 22 hours. 
The performance of the systems for the two different training implementations was comparable. This behavior was expected, since the system modeled was essentially the same. The sensitivity of the trained background model for parallel training (29.07%) was higher than that of the same model trained sequentially (27.38%). On the contrary, the sensitivity of the seizure model trained in parallel was higher (18.67%) than the sequentially trained model (16.60%). The sensitivity for the second pass of processing (P2) for the system trained in parallel was 96.16% (SEIZ) and 93.85% (BCKG). For the sequentially trained models, the sensitivity was 95.84% (SEIZ) and 93.13% (BCKG) respectively. [image: ]
[bookmark: _Ref509923330]Figure 67. Parallelized training approach.


One thing that we observed in the seizure detection experiment mentioned above, however, was the high False Alarm rate (FA), which reached 1754 false detections per 24-hour period for the first pass of processing and 14146 for the more sensitive second pass. Decreasing the FA is a crucial aspect for the development of a clinical event detection system. In this sense, we explored the possibility of making some changes in our system that would allow us to reach a good compromise between the FA and the sensitivity.
The sensitivity is a one-to-one comparison between the ground truth label and the prediction, i.e. there is no imposter case in this process. This could lead to an extreme case: when the window duration is small enough, theoretically we may achieve rather high sensitivity since the tiny window can lose most of the class-specific information in feature extraction. This conjecture is verified by our results in P2: the sensitivity is high but the FA is also very large. In order to better deal with the imposter case (related to FA), each feature needs to better represent the characteristics of specific class. Studies in the EEG signal processing field, have shown that, depending on the classification scenarios, the optimal window size for EEG analysis ranges from 3s to 30s. 
With the dataset and goal from the seizure detection system mentioned above, we conducted a series of experiments using different window sizes for decoding, we found that increasing the window duration can reduce the FA significantly. For P1 stage (HMM), increasing the window duration from 1 second (default) to 25 seconds the total FA rate reduced from 1754 per 24 hour to 404 per 24 hours. A similar FA reduction trend was observed from the P2 SdA processing stage: the FA rate reduced from 14146 per 24 hours to 141 per 24 hours. It is worth mentioning that since the individual EEG recordings may contain multiple classes (labels), the performance will reach an optimal point and then begin to drop as window duration continues to increase. The current experimental design clearly shows performance improvements, but since the same window length was applied globally, the big window may have covered multiple short events which belong to different classes during the evaluation. This will certainly reduce the sensitivity, which was noticed in our experiments too. Therefore, it is worth to investigate the topic of automatically adjusting window size locally using deep learning technology.
2.2.  (UTD) Multi-Task Active Deep Learning (MTADL) for Annotating EEG Reports
2.3. (TU, UTD) Automatic Indexing of EEG Clinical Information
2.4. (UTD) Capturing of Multimodal-Modal Clinical Knowledge from Reports and Signals  
2.5. Demo
An electroencephalogram (EEG) is a multi-channel signal which describes the electrical activity in the brain via voltages measured in a variety of locations on the scalp. EEG recordings can be interpreted using raw channels or after applying montages, which redefine channels as the difference of channel voltages. EEG recordings are most commonly stored as raw signals in the European Data Format (EDF). Existing EEG visualization tools, such as EDFBrowser and EEGLab, do not allow users to annotate directly over their signal displays. Our software is a comprehensive tool to observe, annotate and analyze signals using various digital signal processing (DSP) based EEG trends.
Our tool displays annotations in a time-aligned format and allows the direct creation and manipulation of these annotations. Figure 68 shows an example of multichannel annotation of an ictal event. An onset of this ictal event is precisely annotated on every channel. Here, the ictal onset varies from focal regions of the brain. The user can create, select, and operate on sets of annotations via an interface which pairs click and drag interaction with context menus for selection of annotation type or preferred action. The annotations themselves will “snap to boundary” in a manner similar to digital audio workstations such as Audacity – boundaries are adjustable, but overlap is prevented. This interface facilitates the annotation process through simplicity and efficiency, while ensuring the accuracy and precision of the user’s actions. The precision of an annotation is fixed based on the sampling rate of a signal.[image: ]
[bookmark: _Ref509924819]Figure 68. Multichannel annotation example.

We provide alternate visualizations of EEG events within an extensible framework that allows for the creation of new visualizations or analytics based on user needs. In addition to the conventional multi-waveform viewing capability to which neurologists are accustomed, we have additionally provided some of the advance trend analysis tools for quantitative EEG (qEEG) analysis which includes FFT spectrogram and energy-based amplitude EEG (aEEG). [image: ]
[bookmark: _Ref509925183]Figure 70. Preferences for Spectrogram settings.
[image: ]
[image: ]
[bookmark: _Ref509924992]Figure 69. Spectrograms (Top) and aEEG trend (Bottom).

These qEEG tools are becoming increasingly popular with clinicians as it is an efficient way to review continuous EEG (cEEG) and long-term monitoring (LTM) records. The FFT spectrogram and aEEG trends are shown in Figure 69. These visualization tools are customizable from a preferences menu that allows users to make underlying changes to the signals or trends. Features such as modifying the scale of an Energy plot or changing the type of window used for the Spectrogram plots are provided. A window of the spectrogram preferences section is shown in Figure 70.
An additional FFT plot is provided to observe the dominance of Delta, Theta, Alpha and Beta rhythms. These four rhythms play a crucial role during the diagnosis of a patient. For example, slow Alpha rhythms suggest that the patient’s mental status is moving towards a drowsy stage or a mildly abnormal state of the brain. This FFT plot is displayed on an individual channel level. An example of this feature can be observed in Figure 71.[image: ]
[bookmark: _Ref509925139]Figure 71. 4 FFT plot for EEG rhythms.

Our demo tool includes a variety of configurable filters which includes rhythm filters, detrending filters and other customizable FIR filters. There is a set of given filters which filter out all frequencies which are not included within the given EEG rhythm (i.e. Alpha). Detrending filters are basically moving average low pass filters. We implement detrending filters to keep the signal within its channel span during high fluctuations in signals. By default, the detrending option is enabled, however the user has capabilities to modify or disable its features. A Notch filter is also implemented to remove 50 or 60 Hz AC hum/artifact within the signals. All implemented filters are customizable, allowing a user to tweak the frequency ranges or the associated filter powers. The customization can be observed in Figure 72. These filters are implemented as finite impulse response (FIR) filters. FIR filters are selected to avoid any type of group delays during noisy phases of the signal.
There are other implemented features such as per-channel gain settings and timescale settings. These kinds of manual adjustment are useful when a channel, such as the Electrocardiogram (EKG) channel, has a gain disproportionate to that of the other channels. The signal can also be “played”, meaning that it automatically scrolls through the signal until a user finds a region of interest to annotate.
The demo software also integrates a search API for querying the TUH EEG Corpus. The API returns a list of the top ranked clinical reports, along with the corresponding EEG data. Our software allows users to easily review the reports and visualize the EEG signals within the same framework as previously described. 
Many of the features described are customizable via an integrated preferences window. This allows the customization of virtually all aspects of the available analytics. All of these parameters, as well as the previously described montages are saved separately from the demo software to text files. For example, a new montage (used to interpret EDF files) can be generated within the program to view new kinds of EEG events. Additionally, there is an option to convert EDF files to a PDF formatted file. This is useful in the case that the user wants to print or collect a segment of an EEG event for evidential or academic purposes.
Since this viewer is written in Python, it is easy to integrate with other software. It is developed with PyQt, a set of Python wrappers to the Qt GUI framework, making it cross-platform software capable of running on almost any OS. We currently use it on OSX, Windows, and Linux. [image: ]
[bookmark: _Ref509925084]Figure 72. Filter options in settings.


Aim 3: Retrieve Patient Cohorts from EMRs
3.1. (UTD) Defining and Generating Hierarchical Epileptiform Activity Descriptors (HAD)
3.1.1. (UTD) Developing MERCuRY 
3.1.2. (UTD) Improving the Patient Cohort Retrieval System
Aim 4: Validate the System by Collecting Feedback
4.1. (UTD) Automated Tagging of HADs
4.2. (UTD, TU) Evaluating and validating of the Patient Cohort Identification System Implemented in the MERCuRY System
4.2.1. (UTD) Evaluating Clinically Relevant Queries by Neurologists 
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Figure 2: Metrics describing the TUH-EEG corpus. [top left] histogram showing number of sessions
per patient; [top right] histogram showing number of sessions recorded per calendar year; [bottom left]
histogram of patient ages; [bottom right] histogram showing number of EEG-only channels (purple)
and total channels (green).
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