
  

Deep Learning from EEG Reports for Inferring Underspecified Information 

Travis R. Goodwin, MS1, Sanda M. Harabagiu, PhD1 
1The University of Texas at Dallas, Richardson, TX, USA 

Abstract 

Secondary use1 of electronic health records (EHRs) often relies on the ability to automatically identify and extract 

information from EHRs. Unfortunately, EHRs are known to suffer from a variety of idiosyncrasies – most prevalently, 

they have been shown to often omit or underspecify information. Adapting traditional machine learning methods for 

inferring underspecified information relies on manually specifying features characterizing the specific information to 

recover (e.g. particular findings, test results, or physician’s impressions). By contrast, in this paper, we present a 

method for jointly (1) automatically extracting word- and report-level features and (2) inferring underspecified 

information from EHRs. Our approach accomplishes these two tasks jointly by combining recent advances in deep 

neural learning with access to textual data in electroencephalogram (EEG) reports. We evaluate the performance of 

our model on the problem of inferring the neurologist’s over-all impression (normal or abnormal) from 

electroencephalogram (EEG) reports and report an accuracy of 91.4%, precision of 94.4%, recall of 91.2% and 𝐹1-

measure of 92.8% (a 40% improvement over the performance obtained using Doc2Vec). These promising results 

demonstrate the power of our approach, while error analysis reveals remaining obstacles as well as areas for future 

improvement.  

Introduction 

According to an in-depth study of malpractice claims against neurologists2, the most common findings were (1) lapses 

in communication between the neurologists and the patient, (2) lack of follow-up by the neurologist even when not 

primarily responsible, and (3) diagnostic errors. Each of these findings could be improved by automatically identifying 

abnormal vs. normal brain activity in neurology reports. Specifically, the ability to automatically identify the 

neurologist’s over-all impression of a neurological test would allow electronic health record (EHR) and clinical 

decision support (CDS) systems to not only automatically flag patients for follow-up but to also identify diagnostic 

errors and inconsistencies. Unfortunately, EHRs are known to suffer from myriad idiosyncrasies3,4, chief among them 

the prevalence of missing5, inconsistent, or underspecified data6,7.  

In this paper, we present a novel model for automatically recovering missing or underspecified8 information from 

EHRs. While traditional medical informatics approaches rely on specific, pre-specified features to predict information, 

our model harnesses the power of textual data and deep learning to automatically extract features from EHRs while 

simultaneously predicting the underspecified information. We present our model for the motivating task of recovering 

underspecified over-all impressions (normal vs. abnormal) from electroencephalogram (EEG) reports. To train and 

evaluate our model, we used the largest collection of publicly available EEG reports – the Temple University Hospital 

EEG Corpus9. In each EEG report, we removed the impression section written by the neurologist and trained our 

model to infer the over-all impression from the remaining content in the report. 

Inferring the over-all impression from EEG reports is a challenging problem because the over-all impression is 

informed by the neurologist’s subjective interpretation10 of the EEG recording as well as his or her neurological 

expertise and accumulated experience. In fact, it has been shown that the inter-interpreter agreement between 

neurologists is only moderate11. Consequently, automatically inferring the over-all impression requires accounting for 

the role of neurological knowledge and experience. The deep learning model we present in this paper is able to 

automatically infer such knowledge by processing the natural language within EEG reports. Specifically, our model 

operates in three steps: 

[Step 1] word-level features are automatically extracted based on their context by incorporating the skip-gram 

model11 popularized by the Word2Vec framework12; 

[Step 2] report-level features are automatically extracted using either (i) a deep averaging network (DAN)14, or 

(ii) a recurrent neural network (RNN)15,16; and 

[Step 3] the most likely over-all impression is predicted from word- and report-level features through densely-

connected “deep” neural layers. 
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Our experimental results against a number of competitive baselines show the promise of our model. Moreover, because 

our model learns to extract features automatically rather than relying on hand-crafted features capturing specific 

aspects of EEG reports or their over-all impressions, we believe that our approach may be used or enhanced to infer 

other types of missing information. 

Background 

An electroencephalogram (EEG) is a test used to measure the electrical activity of the brain. EEGs are used for the 

diagnosis of epilepsy17, learning disabilities18, and other neurological disorders19. After reviewing the electrical 

activity recorded during an EEG, a neurologist creates an EEG report. The American Clinical Neurophysiology 

Society (ACNS) guidelines for writing an EEG report10 states that “[t]he report of an EEG should consist of three 

principal parts: (1) Introduction, (2) Description of the record, and (3) Interpretation, including (a) impression 

regarding its normality or degree of abnormality, and (b) correlation of the EEG findings with the clinical picture.” In 

our experiments, we used the Temple University Hospital (TUH) EEG corpus9, and found that most EEG reports 

began by documenting the CLINICAL HISTORY of the patient, describing the patient’s age, gender, and relevant medical 

conditions at the time of the recording (e.g., “after cardiac arrest”, “female patient”) followed by a list of the 

medications which may influence the EEG. The INTRODUCTION section documented the setting of the EEG (e.g. 

“digital video EEG”, “using standard 10-20 system of electrode placement with 1 channel of EKG”), as well as the 

patient’s state of consciousness and whether or not they had been fasting, (e.g., “fasting”, “sleep deprivation”, or 

“comatose”). The DESCRIPTION section was the largest section in most EEG reports, and provided a description of any 

notable epileptiform activity (e.g. “sharp wave”), patterns (e.g. “burst suppression pattern”) and events (“very quick 

jerks of the head”). In general, the ACNS guidelines state that the EEG description should contain an objective and 

complete description of the background electro-cerebral activity as well as a detailed account of all waveforms in the 

record. In the IMPRESSION section, by contrast, the physician indicates their subjective, over-all impression of the EEG 

recording – normal or abnormal – as well as any contributing epileptiform phenomena (listed in order of significance). 

The final section in the EEG reports was the CLINICAL CORRELATION section explaining what the EEG findings mean 

in regards to the clinical picture of the patient (e.g. “very worrisome prognostic features”). 

Related Work 

A review of recent literature showed that the most common approach to handling missing or underspecified 

information is to either ignore it, or simply use the information provided by the most similar report20. Unfortunately, 

this approach (known in the machine learning community as approximate nearest neighbor21) suffers from two major 

problems: (1) it requires an accurate and complete metric for measuring the similarity between two patients or two 

EHRs, and (2) it often produces information which is not consistent with the original report. By contrast, the model 

we propose in this paper is able to recover underspecified information by examining the content of the report and, 

thus, is able to produce more consistent information.  

To our knowledge, our deep learning model is the first reported architecture for automatically extracting high-level 

features from EEG reports. However, a number of neural architectures have been previously proposed for extracting 

high-level features from natural language in general. The Word2Vec (W2V) software12 produced by Google provides 

two mechanisms for learning high-level feature representations of words: (i) the skip-gram model12 and (ii) the 

continuous bag-of-words12 (CBOW) model. Although both models have been shown to achieve high performance in 

a number of natural language processing applications, the CBOW model has been shown to require significantly more 

data than the skip-gram model in order to learn meaningful representations12,13. Beyond W2V, the Global Vectors for 

Word Representation22 (GloVe) software provided by Stanford also learns word-level feature representations. While 

W2V learns the best representation of a word for predicting its context, GloVe learns a word representation through 

dimensionality reduction over the co-occurrence counts obtained from a document collection. In general, both GloVe 

and W2V have been shown to produce useful feature-representations of words in a variety of clinical applications23,24. 

In this paper, we consider the skip-gram model rather than CBOW or GloVe because it requires the least amount of 

training data and has the lowest computational complexity.  

One of the major promises of deep learning is the ability to consider complex, sequential information, such as the 

order of words in an EEG report. This is typically accomplished by using recurrent neural networks (RNNs). 

Unfortunately, RNNs have also been shown to struggle with long documents14 and to have difficulties accounting for 

long-distance interactions between words25. Consequently, we have also considered the Deep Averaging Network 

(DAN) proposed by Iyyer et al. (2105)14. While both RNNs and DANs can be used to learn the effect of semantic 

composition between words in an EEG report, the DAN has the advantage of reduced computational complexity and 
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can more easily represent long-distance interactions. In this paper, we evaluated both approaches for learning report-

level features from EEG reports.  

INTRODUCTION: The EEG was 

performed using the standard 10/20 
electrode placement system with an EKG 

electrode and anterior temporal electrodes. 

The EEG was recorded during wakefulness 
and photic stimulation, as well as 

hyperventilation, activation procedures 

were performed. 

MEDICATIONS: Depakote ER 

 

HISTORY: A 21-year-old man with a 
history of seizures since age 15. Has had 

five episodes since 2005, all tonic-clonic 

seizures with loss of consciousness lasting 

one to two minutes and postictal confusion.  

 

DESCRIPTION: The EEG opens to a 
well-formed 9 to 10Hz posterior dominant 

rhythm, which is symmetrically reactive to 

eye opening and eye closing, There is a 
normal amount of frontal central beta 

rhythm seen. The recording is only seen 

during wakefulness and he has normal 
response to hyperventilation and photic 

stimulation. 

 

 

 

IMPRESSION: Normal EEG in 
wakefulness. 

 

 

 

 

CLINICAL CORRELATION: This 
awake EEG is normal. Please note that a 

normal EEG does not exclude the diagnosis 

of epilepsy. 

INTRODUCTION: Digital video 

EEG is performed at the bedside using 
standard 10-20 system of electrode 

placement with one channel of EKG. 

The patient is sitting out of her bed. 
She is very confused and poorly 

cooperative. 

 

MEDICATIONS: Keppra. 

 

HISTORY:  An elderly woman with 
change in mental status, waxing and 

waning mental status, COPD, morbid 

obesity, and markedly abnormal EEG. 

Digital 3EG was done on June 27, 

2011. 

DESCRIPTION: Much of the EEG 
includes muscle artifact. When she Is 

cooperative, there is a theta pattern 

with bursts of frontal delta. Muscle 
artifact is remarkable when the patient 

becomes a bit more agitated. As she 

goes off to sleep, the deltas slowed 
considerably. There are handful of 

triphasic waves noted. Heart rate 84 

BPM. 

 

 

IMPRESSION: This is an abnormal 
EEG due to 1. Prominent versus 

frontally predominant rhythmic delta. 

2 Excess beta. 3. Excess theta. 

INTRODUCTION: Digital video EEG is performed at 

bedside using standard 10-20 system of electrode 
placement with 1 channel of EKG. The patient is agitated. 

 

 
 

 

 

MEDICATIONS: Keppra, Aricept, Senna, Aricept, 

ASA, famotidine 

HISTORY: 84-year-old woman of unknown handedness 
with advanced dementia, failure to thrive, change in 

mental status, TIA, dementia. 

 

 

 

DESCRIPTION: As the tracing opens, the patient has a 
lot of muscle activity. She seems to have facial twitching 

and grimacing and it almost looks like she has a suck or 

snout reflexes. Although the patient does not appear to 
interact with the physician in any way, this produces an 

alerting response with an increase in 5-7 hertz theta 

activity in the background. The overall background is 1 of 
shifting asymmetries with theta from side as with beta 

sometimes better represented on either side, shifting 

arrhythmic delta and intermittent, subtle attenuations in 
the background.  Following admission of the Ativan, the 

EEG becomes somewhat more discontinuous. 

IMPRESSION: This EEG is similar to the 2 previous 
studies this year which demonstrated a slow background. 

Each recording seems to demonstrate an increase in 

slowing. The administration of Ativan produced a 
somewhat discontinuous pattern as may be anticipated in 

a patient with advanced dementia. 

CLINICAL CORRELATION: No epileptiform features 
were seen. 

(a) (b) (c) 

Figure 1. Examples of EEG reports with (a) an over-all impression of NORMAL, (b) an over-all impression of 

ABNORMAL, and (c) an underspecified over-all impression which does not state whether the EEG was normal or 

abnormal. 

Methods 

When writing an EEG report, the neurologist typically documents their over-all impression of the EEG: whether it 

indicates normal or abnormal brain activity. However, this information is not always explicitly stated in the impression 

section of an EEG report and must sometimes be inferred by the reader. Figure 1 illustrates three EEG reports 

indicating (a) an over-all impression of NORMAL, (b) an over-all impression of ABNORMAL, and (c) an underspecified 

over-all impression. Note, in Figure 1, we have normalized the order and titles of the sections in each EEG report; in 

reality, however, we observed a total of 1,176 unique section titles in our collection. When producing an over-all 

impression, the neurologist interprets the EEG signal as well as the patient’s clinical history, medications, and the 

setting of the EEG. For example, consider report (b) from Figure 1: determining that the EEG was abnormal required 

identifying, among other findings, the frontal delta rhythm, while in report (c) the impression involves the drug Ativan 

and the patient’s prior diagnoses of dementia. These example show that automatically inferring the over-all impression 

requires accounting for high-level semantic information in EEG reports capturing the characteristics of the patient and 

the described EEG signal. Moreover, we observed that not all EEG reports included an impression section. 
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Consequently, we designed an approach for automatically inferring the overall impression from an EEG report even 

when the impression section is omitted. To accomplish this, we combined deep neural learning with the largest 

collection of publicly available EEG reports – the Temple University Hospital (TUH) EEG Corpus9. The TUH EEG 

Corpus contains 16,495 de-identified EEG reports generated at TUH between 2002 and 2013. We found that 15,313 

reports contained a clear over-all impression, while 1,029 reports had a missing or underspecified over-all impression. 

To train and evaluate our model, we considered only the reports with a clear over-all impression and (1) identified the 

over-all impression (which was used as the gold-standard) and (2) removed the impression section from the report. 

This allowed us to design a deep neural network to predict the over-all impression for EEG reports without relying on 

the impression section. We used a standard 3:1:1 split for training, development, and testing.  

When designing our deep neural network, we noticed that the natural language content of each EEG report was far 

from uniform. The number of sections, the title of sections, the number of sentences in each section, and the lengths 

of each sentence all varied between individual neurologists and individual reports. Moreover, when describing an 

EEG recording, each neurologist wrote in a different style: while some neurologists preferred terse economical 

language, others provided meticulous multi-paragraph discussions. Thus, it was necessary to design the deep neural 

network to be independent of the length (and style) of the language used by the neurologist. Our approach for 

determining the over-all impression from EEG reports takes advantage of recent advances in deep learning in order to 

(1) automatically preform high-level feature extraction from EEG reports and (2) determine the most likely overall 

impression based on trends observed in a large collection of EEG reports. High-level feature extraction was performed 

automatically and was accomplished in two steps. In the first step, we learned word-level features for every word used 

in any EEG report. In the second step, we learned how to combine and compose the word-level features to produce a 

high-level features characterizing the report itself. 

Formally, we represent each EEG report as a tensor, 𝑹 ∈ ℝ𝑁×𝑉  , where 𝑁 is the number of words in the report and 𝑉 

is the size of the vocabulary or number of unique words across all EEG reports in the training set (in our case, 𝑉 =
39,131). Each row 𝑹𝑖 is known as a one-hot vector which indicates that the 𝑖th word in the report corresponds to the 

𝑗th word in the vocabulary in by assigning a value of one to 𝑹𝑖𝑗 and a value of zero to all elements. The overall 

impression of an EEG report (obtained from the removed impression section) is represented as 𝑐 ∈ 𝐶 where 𝐶 =
{NORMAL, ABNORMAL}. The goal of the deep neural network presented in this paper is to determine the optimal 

parameters 𝜃 which are able to predict the correct assignment of 𝑐 for a report 𝑹: 

𝜃 = argmax
𝜃′

∑ log 𝑃(𝑐 | 𝑹; 𝜃′)

(𝑐,𝑹) ∈ 𝒳

(1) 

where 𝒳 indicates the training set of EEG reports. Unfortunately, determining the over-all impression directly from 

the words in each report is difficult. For example, spikes and sharp waves typically indicate abnormal brain activity 

but can be non-pathologic if they occur in the temporal regions of the brain during sleep: small sharp spikes in the 

temporal region of the brain during sleep are known as benign epileptiform transients of sleep (BETS) and do not 

indicate an abnormal EEG. Consequently, to correctly predict the overall impression 𝑐, it is important to consider 

high-level features characterizing the content each report rather than individual words. We extract these features 

automatically as part of our deep learning architecture. Specifically, we factorize the distribution used in Equation 1 

into three factors:  

 𝑃(𝑐 | 𝑹; 𝜃) = 𝑃(𝑾 | 𝑹) ⋅ 𝑃(𝒆 | 𝑾) ⋅ 𝑃(𝑐 | 𝒆; 𝜃) (2) 

The three factors in Equation 2 correspond to the three steps used to train our deep learning model: 

(1) produce a high-level feature representation 𝑾 of every word in 𝑹, i.e. 𝑃(𝑾 | 𝑹); 

(2) create a single high-level feature representation 𝒆 for the report itself by combining and composing the high-

level feature representations of every word in the report, i.e. 𝑃(𝒆 | 𝑾); and  

(3) determine the most likely over-all impression 𝑐 for the report based on its high-level feature representation 𝒆, 

i.e. 𝑃(𝑐 | 𝒆; 𝜃).  

Next, we will describe each of these steps in detail followed by a description of the training and application of our 

model to infer underspecified over-all impressions from EEG reports, as well as details on how model parameters 

were selected and the model parameters used in our experiments. 
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Learning Word-Level Features from EEG Reports 

We determine a high-level feature representation for each possible 

word 𝑣 ∈ [1, 𝑉] by examining the context around that word in each 

report, where 𝑉 is the size of the vocabulary (described above). To 

do this, we adapt the skip-gram model12. The skip-gram model learns 

a single feature representation for every word in the vocabulary based 

on all of its contexts across all EEG reports in the training set. 

Specifically, we learn the projection matrix 𝑼 ∈ ℝ𝑉×𝐾  where each 

row 𝑼𝑣 is the high-level feature representation of the 𝑣th word in the 

vocabulary. Figure 2 shows the architecture of the skip-gram model 

when considering the word EEG from the context Digital video EEG 

is performed (from report (c) in Figure 1). The goal of the skip-gram 

model is to learn the projection matrix 𝑼 which, when multiplied 

with the one-hot vector for EEG, is best able to predict the one-hot 

vectors associated with each context word, e.g., Digital, video, is, and 

performed. In this way, the skip-gram model is able to learn a 

representation for the word EEG which captures the facts that (1) an 

EEG can be performed and that (2) digital video is a type of EEG. 

We learn the optimal project matrix 𝑼 by training a separate neural 

network in which the input is every word 𝑹𝑖 ∈ 𝑹 in every report 𝑹 ∈
𝒳, and the goal is to predict the 𝑛 previous and 𝑛 following words 

using the projection matrix 𝑼:  

 𝑼 = max
𝑼′

∑ ∑ [ ∑ 𝑃(𝑹𝑖+𝑡|𝑹𝑖; 𝑼′)

−1

𝑡=−𝑛

+ ∑ 𝑃(𝑹𝑖+𝑡|𝑹𝑖; 𝑼′)

𝑡=𝑛

𝑡=1

]

𝑁

𝑖=1𝑹∈𝒳

 (3) 

where  

 𝑃(𝑹𝑖+𝑡|𝑹𝑖; 𝑼′) =
exp(𝑹𝑖+𝑡𝑼′ ⋅ 𝑹𝑖𝑼′)

∑ exp(𝑹𝑖𝑼′𝑣)𝑉
𝑣=1

 (4) 

In our experiments, we used 𝑛 = 2. Learning the optimal projection matrix 𝑼 allows the model to produce a high-

level feature representation of every word in the report, 𝑾 ∈ ℝ𝑁×𝐾 , by simply multiplying 𝑹 with 𝑼:  

 𝑾 = 𝑹𝑼 (5) 

where each 𝑾𝑖 indicates the word-level feature vector associated with 𝑹𝑖. The word-level feature vectors (𝑾) learned 

by the skip-gram model have a number of useful algebraic properties. Of particular note is their ability to capture 

semantic similarity, for example, closest feature vector to the word generalized is that of the word diffuse, and the 

closest feature vector to focal is that of the word localized. This highlights the ability of the skip-gram model to capture 

the fact that both generalized and diffuse refer to activity spread across a large area of the brain (e.g. both hemispheres, 

multiple lobes), while focal and localized describe activity concentrated in one or two regions of the brain. 

Learning EEG Report-Level Features 

Representing each word in a report as an independent feature vector is not sufficient to predict the overall impression. 

Instead, it is necessary to learn how to combine and compose the word-level feature vectors 𝑾 to create a single high-

level feature vector for the report, 𝒆. We considered two different neural architectures for learning 𝒆. The first model 

is based on a Deep Averaging Network (DAN)14, while the second uses a Recurrent Neural Network (RNN). Both 

architectures enable the model to learn a semantic composition but in different ways. Specifically, a DAN learns an 

un-ordered composition of each word in the document, while an RNN learns an ordered composition. However, the 

representation learned by an RNN often struggles to account for long-distance interactions and favors the latter half 

of each document. Consequently, we evaluated both models in order to determine the most effective architecture for 

learning report-level features from EEG reports. 

Figure 2. The skip-gram model used to learn 

word-level features for each word in an EEG 

report, shown on report (c) from Figure 1. 
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Deep Averaging Network for Inferring Underspecified Information. The Deep Averaging Network (DAN)14 

learns the report-level feature representation 𝒆 of a report based on its word-level features 𝑾. To understand the need 

for report-level features, consider the excerpt: 

Ex1: …a well-formed 9 to 10Hz posterior dominant rhythm, which is symmetrically reactive to eye opening and eye closing.  

Interpreting Ex1 requires understanding (1) that the words posterior dominant rhythm describe a single EEG activity, 

and (2) that the posterior dominant rhythm is well-formed. Clearly, word-level features are not sufficient to capture 

this information. Instead we would like to extract high-level semantic features encoding information across words, 

sentences, and even sections of the report. The DAN used in our model accomplishes these goals using five layers, as 

shown in Figure 3. The first two layers learn an encoding of each word 𝑾𝑖 associated with the report, and the third 

layer combines the resulting encodings to produce an encoding for the report itself. The final two layers refine this 

encoding to produce 𝒆.  To learn an encoding for each word, we apply two densely-connected Rectified Linear Units 

(ReLUs)26. The rectifying activation functions used in ReLUs have several notable advantages, in particular the ability 

to allow for sparse activation. This enables learning which words in an EEG report have the largest impact the over-

all impression. By using a ReLU for the first layer of our encoder, each word represented by feature vector 𝑾𝑖 is 

projected onto an initial encoding vector 𝒓𝑖
(1)

. The ReLU used in the second layer of the encoder produces a more 

expressive14 encoding 𝒓𝑖
(2)

. Both encodings are generated as: 

 𝒓𝑖
(1)

= max(𝑺1 ⋅ 𝑹𝑖 + 𝒃1, 0) (6) 

 𝒓𝑖
(2)

= max(𝑺2 ⋅ 𝒓𝑖
1 + 𝒃2, 0) (7) 

where 𝑺1, 𝑺2  ∈ 𝜃 are the learned weights of the connections between the neurons in layers 1 and 2, and 𝒃1, 𝒃2 ∈ 𝜃 

are bias vectors. While the encoding 𝒓𝑖
(2)

 represents information obtained from each word vector 𝑾𝑖 ∈ 𝑾, we are 

interested in producing a single representation that captures the information about the entire EEG report. This is 

accomplished by layers 3 through 5. In layer 3, the piece-wise average of all word vector encodings is produced: 

 𝒂 =
1

𝑁
∑ 𝒓𝑖

(2)

𝑁

𝑖=0

 (8) 

Layers 4 and 5 act as additional “deep” layers which enhance the quality of the encoding14. To implement layers 4 and 

5 we used two additional ReLUs: 

 𝒓(3) = max(𝑺3 ⋅ 𝒂 + 𝒃3, 0) (9) 

Figure 3. Architecture of the Deep Averaging Network (DAN) used to combine and compose word-

level features 𝑾1 ⋯ 𝑾𝑁 extracted from an EEG Report, shown on report (c) from Figure 1. 
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 𝒆 = max(𝑺𝑒 ⋅ 𝒓(3) + 𝒃𝑒 , 0) (10) 

where 𝑺3, 𝒃3, 𝑺𝑒 , 𝒃𝑒 ∈ 𝜃 are the learned weights and biases used by each ReLU layer. Equations 6 through 10 enable 

our model to generate a fixed-length high-level vector, 𝒆, which encodes semantic information about the entire EEG 

report. 

Recurrent Neural Network for Inferring Underspecified 

Information. In contrast to the DAN, the recurrent neural network 

(RNN) used in our model jointly learn how to (1) map a sequence of 

word-feature vectors (𝑾1, ⋯ 𝑾𝑁) to a sequence of hidden memory 

states (𝒎1, ⋯ 𝒎𝑁) as well as to (2) map the hidden memory states to a 

sequence of output vectors (𝒚1, ⋯ , 𝒚𝑁), as illustrates in Figure 4. 

Formally, for each word 𝑖 ∈ [1, 𝑁] where 𝑁 is the length of the EEG 

report, 

 𝒎𝑖 = 𝜎(𝑺𝑚 ⋅ [𝑾𝑖 + 𝒎𝑖−1]) (11) 

 𝒚𝑖 = 𝜎(𝑺𝑦 ⋅ 𝒎𝑖) (12) 

where 𝑺𝑚 , 𝑺𝑦 ∈ 𝜃 are the learned weights connecting the neurons in 

each layer. Unfortunately, RNNs are known to have difficulties 

learning long-range dependencies between words27. For example, 

consider the excerpt: 

Ex2: periodic delta with associated periodic paroxysmal fast activity identified 

from the left hemisphere with a generous field of spread including the 

centrotemporal and frontocentral region.   

A standard RNN would be unlikely to infer that the periodic delta 

activity was observed in the centrotemporal and frontocentral regions 

of the brain due to the significant number of words between them (19). 

In order to enable our RNLM to overcome this barrier, we implement 

each of our RNNs as a stacked series of long short-term memory units25 

(LSTMs) which are able to learn long-range dependencies by 

accumulating an internal memory.  

Inferring the Over-all Impression from EEG Reports 

The learned high-level feature vector 𝒆 is used to determine the most 

likely over-all impression associated with the EEG report. Given 𝒆, we approximated the likelihood of assigning the 

over-all impression 𝑐 to the EEG report associated with 𝒆, i.e. 𝑃(𝑐 | 𝒆;  𝜃), with a densely connected logistic sigmoid 

layer. The sigmoid layer computes a floating point number �̃� ∈ [0, 1] such that �̃� ≤ 0.5 if 𝑐 = NORMAL, and �̃� > 0.5 if 

𝑐 = ABNORMAL: 

 �̃� = 𝜎(𝑺𝑐 ⋅ 𝒆 + 𝒃𝑐) (13) 

where 𝑺𝑐 , 𝒃𝑐 ∈ 𝜃 are the learned weights and bias vector for the sigmoid layer, and 𝜎 is the standard logistic sigmoid 

function, 𝜎(𝑥) = 𝑒𝑥

𝑒𝑥+1⁄ . Equation 19 allows us to approximate the likelihood of the over-all impression 𝑐 ∈ 𝐶 being 

assigned to the report associated with 𝒆 as: 

 𝑃(𝑐 | 𝒆; 𝜃) = {
1 − �̃�, if 𝑐 = NORMAL

�̃�, if 𝑐 = ABNORMAL
 (14) 

Training the Model with EEG Reports 

We train our model by learning the parameters 𝜃 which minimize the loss when computing the over-all impression 𝑐 

for each report 𝑹 in the training set 𝒳. In our experiments, we used the cross-entropy loss between the predicted over-

all impression 𝑐 and the gold-standard value �̂� indicated by the neurologist (in the removed impression section). 

Formally: 

 ℒ(𝜃) ∝ ∑ [𝑃(𝑐 | 𝒆; 𝜃) ⋅ 𝑃(𝒆 | 𝑾) ⋅ 𝑃(𝑾 | 𝑹)] ⋅ log 𝑃(�̂�)

(𝑹,𝑐̂) ∈𝒳

 (15) 

Figure 4. Architecture of the Recurrent 

Neural Network (RNN) used to combine and 

compose word-level features W1 ⋯ WN 

extracted from an EEG Report, shown on 

report (c) from Figure 1. 
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where 𝑃(�̂�) = 1 if 𝑐 = ABNORMAL, and zero otherwise. We trained our model using adaptive moment estimation28 

(ADAM). 

Inferring Underspecified Information from EEG Reports 

The optimal over-all impression 𝑐 for a new EEG report 𝑹 can be determined in three steps: (1) transform 𝑹 into a 

word-level feature matrix, 𝑾 = 𝑼𝑹, using the projection matrix 𝑼 learned from the training data; (2) transform the 

word-level feature matrix 𝑾 into a single report-level feature vector 𝒆 using either the DAN or the RNN; and (3) 

determine the over-all impression 𝑐 from the report-level feature vector 𝒆. 

Implementation Details 

In our experiments, we implemented our model using Tensorflow29 (version 0.8). Because ADAM tunes the learning 

rate as it trains, we initialized ADAM using the default parameters in Tensorflow (learning rate = 0.001, 𝛽1 = 0.9, 

𝛽2 = 0.999, and 𝜖 = 𝑒−8). For the purposes of our experiments, gradient clipping was not applied, and no 

regularization terms were added. Model parameters were determined using a grid-search as follows: skip-gram, ReLU. 

and LSTM dimensionality were chosen from {100, 200, 500, 1000}. When performing grid search, we constrained 

all ReLUs to share the same dimensionality. We found the optimal dimensionality for the skip-gram embeddings, 

ReLU layers, and LSTM to each be 200 dimensions/units.  

Results 

Our model was evaluated by measuring its ability to correctly determine the over-all impression 𝒄 (i.e. normal or 

abnormal) for each report in the test set. To do this, we removed the impression section from each report in the test 

and compared the automatically produced over-all impressions against the over-all impressions given by the 

neurologists (obtained from the removed impression sections). Because our goal is to recover the over-all impression 

in reports which lack an over-all impression (normal or abnormal), we filtered out any reports which contained the 

word “normal” or “abnormal” after the impression section was removed. In our test set, we found that 76% of EEG 

impressions were abnormal and 24% were normal. We evaluated the performance of our model when incorporating 

either deep averaging network (DAN) or a recurrent neural network (RNN) to learn report-level features as well as 

the performance of five competitive baseline systems. 

Support Vector Machine (SVM). We trained two support vector machines (SVMs)30 to classify each EEG report as 

normal or abnormal based on the content of the report. The first SVM (SVM:BOW) was trained by transforming 𝑹 

into a single “bag-of-words” vector. SVM parameters were learned The second SVM (SVM:LDA) was trained by 

transforming 𝑹 into a topic vector using Latent Dirichlet Allocation (LDA). LDA was implemented using sklearn31 

with symmetric priors. Parameters were determined using grid search as follows: number of topics ∈ {𝟏𝟎𝟎, 𝟐𝟎𝟎,
𝟓𝟎𝟎, 𝟏𝟎𝟎𝟎}, kernel ∈ { 𝐥𝐢𝐧𝐞𝐚𝐫, 𝐫𝐚𝐝𝐢𝐚𝐥 𝐛𝐚𝐬𝐢𝐬 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 (𝐑𝐁𝐅), 𝐪𝐮𝐚𝐝𝐫𝐚𝐭𝐢𝐜, 𝐜𝐮𝐛𝐢𝐜 }, 𝑪 ∈ {𝟏𝟎−𝟒, 𝟏𝟎−𝟑, 𝟏𝟎−𝟐,
𝟏𝟎−𝟏, 𝟏, 𝟏𝟎, 𝟏𝟎𝟐, 𝟏𝟎𝟑, 𝟏𝟎𝟒}. The optimal kernel for both SVMs was RBF, the optimal value of 𝑪 was 𝟏𝟎𝟑. For 

LDA, the optimal number of topics was 𝟐𝟎𝟎. 

Approximate Nearest Neighbor (ANN:Lev). The traditional approach for recovering missing or underspecified 

information is to simply use the information given in the closest document. In this baseline, the over-all impression 

was assigned using the over-all impression given by the closest report 𝑹′ in the training set to report 𝑹. We measured 

the “distance” between reports using Levenshtein distance (with equal costs for insertion, deletion, and substitution 

operations). 

Neural Bag-of-Words (NBOW). In order to compare the importance of considering high-level feature information, 

we implemented a simple perceptron baseline which considers the content of the report 𝑹 (represented as a bag-of-

words vector) to produce the conclusion without automatically inferring any high-level features. 

Doc2Vec (D2V). Finally, we considered a baseline relying on Doc2Vec (D2V), a document-level extension of 

Google’s Word2Vec model12. Like our model, D2V learns a high-level semantic representation of a document. 

However, unlike our model, the high-level features learned by D2V are agnostic of any particular task and do not 

capture any interaction between the content of the report and the over-all impression. We considered D2V vector 

dimensionality ∈ {𝟏𝟎𝟎, 𝟐𝟎𝟎, 𝟓𝟎𝟎, 𝟏𝟎𝟎𝟎} and found the optimal number of dimensions was 𝟐𝟎𝟎. 

The performance of our model for generating the over-all impression of an EEG report was measured by casting it as 

a binary classification problem. This allowed us to compute the Accuracy, Precision, Recall, and 𝐹1-measure, as shown 

in Table 1. We also report the time taken to train each model. We found that our deep neural network (DNN, denoted 

with a ‘★’) significantly outperformed the four baseline systems. The low performance of the NBOW and SVM 

systems highlights the need to account for high-level contextual information in EEG reports, rather than individual 
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words. Interestingly, the ANN approach obtained very low performance, despite being the most common technique 

reported in the literature. The low performance of Doc2Vec shows that capturing general report-level information is 

not sufficient for recovering the over-all impression. By contrast, both the RNN and DAN were able to learn 

meaningful high-level features from EEG reports. While the high performance of the RNN suggests that RNNs are 

capable of inferring sequential information from the EEG descriptions, the time taken to train the RNN was 

significantly longer than that taken to learn the DAN, mirroring the suspicions reported by Iyyer et al. (2015)14. 

Table 1. Performance when determining the over-all impression for EEG reports in the test set. 

Discussion 

Our experimental results show the clear and significant promise of our model. By taking advantage of textual data 

through deep neural learning, our model was able to recover the over-all impression with 91% accuracy. The poor 

performance of all baseline systems, when compared against the performance of our model, suggests that both deep 

neural architectures were able to successfully extract high-level features automatically from EEG reports. However, 

despite outperforming all baseline systems, there were still instances in which the over-all impressions automatically 

recovered by our model differed from those of the neurologist. To investigate the causes of these errors, we manually 

inspected 100 randomly-selected misclassified EEG reports. We found that the majority of errors (51%) produced by 

our model occurred when the impression section referred to EEG characteristics not mentioned elsewhere in the report, 

or which had only negated mentions. For example, report (b) from Figure 1 indicates that the EEG was abnormal due 

to “excess theta” and “excess beta”, however neither of these characteristics are described in the EEG description. 

This suggests that the performance may be improved by jointly considering the EEG report and the associated EEG 

signal. However, it should be noted that processing the EEG signal directly is highly computationally expensive and 

is an open-problem for which there are no clear preferred methodologies32. Thus, the added value of incorporating 

EEG signal information largely depends on the nature of the application.  

The second most-common source of errors (24%) was EEG reports in which the over-all impression relied on the 

patient’s age or pre-existing conditions. For example, impressions indicating “normal EEG for a patient of this age” 

or “normal activity given recent trauma.” We believe these errors resulted from a lack of sufficient training data for 

specific ages and pre-existing conditions, and that overcoming these errors could be accomplished by providing the 

model with additional context from the patient’s EHRs (such as notes from the referring physician). Unfortunately, 

the TUH EEG corpus provides no additional EHR information beyond individual EEG reports. Nevertheless, we 

believe that incorporating additional context could be a valuable step towards improving future performance.  

The last major source of errors (9%) we observed were due to typographical mistakes and grammatical inconsistencies. 

For example, we observed “$een in” rather than “seen in”; “eta rhythm” rather than “beta rhythm”; and “& Hz” rather 

than “7 Hz”. While most of these mistakes had little impact on the performance of the model, we believe that future 

work may benefit from pre-processing EEG reports to remove typos and grammatical inconsistencies. There was no 

common source of errors for the remaining 16% of misclassified documents. 

Conclusion 

We have presented a deep learning approach for inferring missing or underspecified information from electronic health 

records (EHRs) by taking advantage of textual data. Our approach was evaluated based on its performance when 

recovering over-all EEG impressions from EEG reports after the impression section had been removed. While 

traditional machine learning approaches would require explicitly enumerating features characterizing the over-all 

impression, our model relies on deep neural learning to automatically identify high-level features from EEG reports 

while learning to predict the correct over-all impression. Our evaluation of over 3,000 EEG reports showed promising 

results, with an 𝐹1-measure of 93% (a 40% improvement over Doc2Vec). Moreover, because our approach does not 

rely on any manual feature extraction nor representation specific to EEG reports, we believe these results show the 

System Accuracy Precision Recall 𝑭𝟏-measure Time 

SVM:BOW 0.8349 0.8503 0.8814 0.8656 4min 44s 

SVM:LDA 0.6331 0.6245 0.9947 0.7673 9min 56s 

ANN:Lev 0.7457 0.8069 0.7601 0.7829 38s 

NBOW 0.7491 0.8300 0.7346 0.7794 3min 37s 

D2V 0.6587 0.7645 0.6275 0.6892 6min 12s 

★ DNN: DAN 0.9143 0.9443 0.9117 0.9277 8min 14s 

★ DNN: RNN 0.8941 0.9234 0.8991 0.9111 20min 46s 
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promise of our model for automatically recovering underspecified information from EHRs in general. In future work, 

we plan to explore the role of individual sections and words on determining the over-all impression as well as the use 

of neural learning to not only infer the over-all impression, but also to generate explanation(s) for the impression based 

on the report- and word- level features. 
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