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This paper presents a novel method for automatically recognizing symptom severity by using natural lan-
guage processing of psychiatric evaluation records to extract features that are processed by machine
learning techniques to assign a severity score to each record evaluated in the 2016 RDoC for
Psychiatry Challenge from CEGS/N-GRID. The natural language processing techniques focused on (a) dis-
cerning the discourse information expressed in questions and answers; (b) identifying medical concepts
that relate to mental disorders; and (c) accounting for the role of negation. The machine learning tech-
niques rely on the assumptions that (1) the severity of a patient’s positive valence symptoms exists on
a latent continuous spectrum and (2) all the patient’s answers and narratives documented in the psycho-
logical evaluation records are informed by the patient’s latent severity score along this spectrum. These
assumptions motivated our two-step machine learning framework for automatically recognizing psycho-
logical symptom severity. In the first step, the latent continuous severity score is inferred from each
record; in the second step, the severity score is mapped to one of the four discrete severity levels used
in the CEGS/N-GRID challenge. We evaluated three methods for inferring the latent severity score asso-
ciated with each record: (i) pointwise ridge regression; (ii) pairwise comparison-based classification; and
(iii) a hybrid approach combining pointwise regression and the pairwise classifier. The second step was
implemented using a tree of cascading support vector machine (SVM) classifiers. While the official eval-
uation results indicate that all three methods are promising, the hybrid approach not only outperformed
the pairwise and pointwise methods, but also produced the second highest performance of all submis-
sions to the CEGS/N-GRID challenge with a normalized MAE score of 84:093% (where higher numbers
indicate better performance). These evaluation results enabled us to observe that, for this task, consider-
ing pairwise information can produce more accurate severity scores than pointwise regression – an
approach widely used in other systems for assigning severity scores. Moreover, our analysis indicates that
using a cascading SVM tree outperforms traditional SVM classification methods for the purpose of deter-
mining discrete severity levels.

� 2017 Published by Elsevier Inc.
1. Introduction

In 2008, the National Institute of Mental Health (NIMH)
included an aim to ‘‘[d]evelop, for research purposes, new ways
of classifying mental disorders based on dimensions of observable
behavior and neurobiological measures” in its new strategic plan.
The framework that implements this aim was named the Research
Domain Criteria project, or RDoC. RDoC fostered research that inte-
grates multiple forms of information to better understand all the
dimensions of functioning underlying the full range of patient
behavior, from normal to abnormal. As reported in Cuthbert [1],
an NIMH workgroup was convened in early 2009 to devise an
approach for RDoC. The workgroup determined five major domains
of functioning: (1) negative valence systems (i.e., those that
respond to aversive situations); (2) positive valence systems; (3)
cognitive systems; (4) systems for social processes; and (5)
arousal/regulatory systems.

While the recognition, profiling, and treatment of mental disor-
ders benefit from the RDoC framework, the decision of whether a
patient requires medical attention or hospitalization is informed
by the severity of his or her symptoms. Symptoms of mental illness
can vary, depending on the disorder, circumstances, and other
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factors. Psychological evaluation records provide insights into the
severity of a patient’s symptoms based on the information docu-
mented by the psychiatrist during interviews with the patient.
However, this information is documented through natural lan-
guage; thus, is not readily available for automatic processing.

In this paper, we present a new method for identifying the
degree of severity associated with a patient’s positive valence
symptoms by processing the natural language from a set of psy-
chological evaluation records. Natural language processing enables
the extraction of features characterizing the patients’ past experi-
ences, diagnoses, and social history, as well as behavioral interven-
tions and mental health treatments. These features inform
machine learning techniques. The machine learning techniques
rely on two assumptions; namely, that (1) the severity of a
patient’s positive valence symptoms exists on a latent continuous
spectrum and (2) all the patient’s answers and narratives docu-
mented in his or her psychological evaluation record(s) are
informed by the patient’s latent severity score along this spectrum.
These assumptions allowed us to design a two-step machine learn-
ing framework for automatically recognizing the severity of a
patient’s positive valence symptoms. In the first step, we infer
the latent continuous severity score which was mostly likely to
have produced each psychiatric evaluation record. In the second
step, we map each inferred latent severity score to a discrete sever-
ity level. We considered and evaluated three machine learning
approaches for inferring the latent continuous severity score for
each psychiatric evaluation record: (i) pointwise ridge regression;
(ii) pairwise comparison-based classification; and (iii) a hybrid
approach combining pointwise regression and the pairwise classi-
fier. The second step of the machine learning framework was
implemented using a tree of three cascading support vector
machine (SVM) classifiers.

We believe that the two-step framework presented in this
paper could facilitate efforts to stratify risk for adverse outcomes
among psychiatric disorders as well as efforts to identify optimal
treatments for patient subgroups.
2. Background

The notion of severity was considered previously when qualify-
ing the severity of a disease, e.g. Medsger et al. [2] describes dis-
ease severity as the total effect of disease on the body while
Chen et al. [3] reports that disease severity is assigned by direct
observation of a patient and by pathological examination after
symptoms have appeared. Severity was viewed as a ‘‘degree of ill-
ness” in Joshi and Szolovits [4], who learned a severity graph by
applying the Radial Domain Folding (RDF) algorithm. The RDF algo-
rithm is a novel multivariate clustering approach operating on the
MIMIC II clinical dataset [5] without processing the language from
the clinical narratives.

Disease severity was historically quantified by scores which
were defined and derived in two ways: (1) by using medical expert
knowledge; or (2) by predicting a score associated with the risk of
experiencing an adverse event. Specifically, when a panel of
experts identifies factors that are most indicative of severity of
the target disease after reviewing the existing clinical literature,
the severity score is produced by a weighted sum of the relative
contribution of the factors to the disease severity. For example,
the Acute Physiology And Chronic Health conditions score
(APACHE II) [6] assesses the overall health state in an inpatient set-
ting by using factors that are most predictive of mortality. The
APACHE II disease severity classification system uses basic physio-
logic principles to stratify acutely ill patients by risk of death. It
uses a point score based on the values of 12 routine physiologic
measurements, age and previous health status to provide a general
measure of severity of disease. In computing the severity score,
APACHE II adds different points based on the abnormal range of
the measures. Several other widely used severity scoring systems
have been designed in the same way as APACHE II, including the
Multiple Organ Dysfunction Score (MODS) [7] and the Medsgers
scoring system [2]. More recently, the Rothman Index [8] was
developed by data analysts to provide a summary score of a
patient’s clinical condition based on 26 variables, including vital
signs, laboratory profile data, and nursing assessments.

Alternatively, supervised machine learning methods have been
used to predict disease severity scores. In Pirracchio et al. [9], the
Super Learner selected the optimal regression algorithm via
cross-validation to produce a severity score used to predict mortal-
ity of patients in intensive care units (ICU) on the Multiparameter
Intelligent Monitoring in Intensive Care II (MIMIC-II) database
including all patients admitted to an ICU at Boston Beth Israel Dea-
coness Medical Center from 2001 to 2008.

While no previous clinical natural language processing task has
focused on discerning the symptom severity from psychiatric eval-
uation records, we found that we could benefit from the automatic
identification of medical concepts related to mental disorders to
capture the semantics of the language used in the psychological
evaluation records. Nevertheless, in addition to semantics, we dis-
covered that we also needed to uncover the discourse structure pro-
vided by the sequences of questions and answers. Thus, we
developed natural language processing methods capturing seman-
tic and discourse features, which could be used to learn the degree
of psychological symptom severity. To do so, we (i) explored several
machine learning techniques; and (ii) used the insight that compar-
isons between psychiatric evaluation records labeled with different
symptom severity classes could produce better discriminators.
3. Task description

In 2016 the Centers of Excellence in Genomic Science (CEGS)
Neuropsychiatric Genome-Scale and RDoC Individualized Domains
(N-GRID) organized a new challenge which aimed to extract symp-
tom severity from neuropsychiatric clinical records [10]. The RDoC
for Psychiatry Challenge of the CEGS/N-GRID focused on just one
domain of functioning, namely: positive valence. The positive
valence domain pertains to events or situations that signal mental
disorders but are attractive to the patients, to the point that they
actively engage them, e.g. alcohol or drug consumption, gambling,
abuse, drinking, repetitive and/or compulsive behavior, craving,
and counting. The goal of the RDoC for Psychiatry Challenge was
to evaluate automatic approaches to determining symptom sever-
ity in an RDoC domain for a patient, based on information included
in their initial psychiatric evaluation record. The symptom severity
was measured using an ordinal scale from 0 (ABSENT) to 3 (SEVERE).
Specifically:

� Severity Level = 0, or ABSENT, indicating no positive valence symp-
toms are observed;

� Severity Level = 1, or MILD, indicating while some symptoms may
be present, they are not a focus of treatment;

� Severity Level = 2, or MODERATE, indicating that symptoms are pre-
sent and a focus of treatment;

� Severity Level = 3, or SEVERE, indicating that symptoms are present
and require hospitalization, an ER visit, or otherwise have a
major consequence.

The participants in the RDoC for Psychiatry Challenge were pro-
vided with a training set of records in which each record was asso-
ciated with the gold standard severity level for the patient’s
positive valence symptoms. It should be noted that each record
is associated with exactly one patient and has exactly one severity
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level. Systems developed for the challenge had to identify the life-
time maximum severity a patient’s symptoms in the positive
valence domain, with the assumption that symptoms not docu-
mented in the record are not present. Moreover, the severity level
did not need to be related to a current or recent diagnosis. As a
result, even past experiences and diagnoses were considered rele-
vant. In addition, it was assumed that predicting the severity level
of the positive valence domain does not need to rely on any textual
clues related to any of the other functional domains.
3.1. The corpus

In the research reported in this paper, we considered the set of
1000 psychiatric evaluation records provided to participants dur-
ing the CEGS/N-GRID evaluation. The psychiatric evaluation
records were provided by the Centers of Excellence in Genomic
Science (CEGS) Neuropsychiatric Genome-Scale and RDoC Individ-
ualized Domains (N-GRID) project of Harvard Medical School, and
constitute the first set of mental health records available for
research. The corpus has been de-identified, and the original pro-
tected health information (PHI) has been replaced by synthetic sur-
rogate information.

Fig. 1 includes an excerpt of an initial psychiatric evaluation
record. As can be seen, there are a number of typographical and
punctuation anomalies. Moreover, many lines are structured as
question and answer pairs where the answer may be very short
(YES, NO) or may have a verbose elaboration. It should be noted that
the order of questions is arbitrary and changes between records.

A total of three expert psychiatristswere selected by the organiz-
ers of the CEGS/N-Grid evaluation task to annotate the psychiatric
evaluation records used in the challenge. The corpus contained
433 human-annotated records in the training set and 216 human-
annotated records in the testing set (there was no official develop-
ment set). In the training set, 325 recordswere annotated by at least
twopsychiatrists, and the remaining 108were annotated by a single
psychiatrist. In the test set, all 216 annotated records were anno-
tated by at least two psychiatrists. Records evaluated by a single
psychiatrist were evaluated by the most experienced psychiatrist.
In records evaluated by two psychiatrists, if there was a disagree-
ment between the psychiatrists, the gold-standard severity level
was determined by the most experienced psychiatrist. The average
agreement between all pairs of psychiatrists was j ¼ 65:713%
(computed as the weighted average of Cohen’s j agreements).

Fig. 2 illustrates the distribution of each severity level within
the training and testing sets. As can be the seen, the levels are rea-
sonably balanced, with slightly more MILD than ABSENT records.
Moreover, it can be seen that the distribution of severity levels is
effectively the same between the training and testing sets.
Fig. 1. Example psychiatric evaluation record (abridged).
4. Automatically recognizing symptom severity levels

Our three approaches for the automatic recognition of symptom
severity have been implemented in the system illustrated in Fig. 3.
First, text preprocessing was applied to each psychiatric evaluation
record with methods that we detail in Section 4.1. Then, we per-
formed natural language processing, detailed in Section 4.2, on
the preprocessed records enabling us to extract a variety of fea-
tures, as detailed in Section 4.3. These features were used in three
different machine learning approaches described in Sections 4.4.2–
4.4.5: (1) pointwise ridge regression, (2) pairwise Random Forest
classification, and (3) a hybrid method which combines both
approaches. Each of these machine learning approaches produced
a continuous severity score which was mapped to one of the four
discrete severity levels using a cascading SVM tree, as described
in Section 4.4.5.
4.1. Text preprocessing

Clinical data is known to suffer from a myriad of idiosyncrasies
[11–13]. The psychiatric evaluation records used in this challenge
were no exception. For example, consider the following excerpts:

Example 1. Current living situation:
Lives with boyfriend in rented apartmentFirearms: None.
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Example 2. Name/Phone # of Probation/Parole Officer:
REDACTEDMilitary Service History: Hx of Military Service: No.
Example 3. If Yes, comment on Timing, Lethality, Impulsivity,
Weapon Use, Comorbid Intoxication or Psychosis:

Denied-Psychiatric History Hx of Inpatient Treatment: Yes.

Pt says she has been hospitalized three times.

These three examples highlight the erroneous usage of line-
breaks found throughout this corpus. In addition, it should be
noted that sentence boundaries are not only obfuscated by out-
of-place line-breaks but also by the omission of spaces. Moreover,
most documents in the corpus contain bulleted lists which use
hyphens as bullets, with no space between the hyphen and the
start of the sentence; e.g. ‘‘-Psychiatric History” from Example 3.
As shown in Examples 2 and 3, abbreviations such as ‘‘Hx” and
‘‘Pt” – indicating ‘‘history” and ‘‘patient”, respectively – are preva-
lent in the data. These types of idiosyncrasies can cause automatic
tokenization tools to incorrectly conclude that ‘‘-Psychiatric” is a
single token and can confound other downstream NLP tools. We
address these types of errors and idiosyncrasies with four text pre-
processing steps:

4.1.1. Line-break correction
To address the erroneous use of line-breaks, three regular

expressions were used to detect when the end of one line is
concatenated to the beginning of the next line, e.g. ‘‘. . .apartment
Firearms . . .” from Example 1. Each regular expression was
designed to identify conjoined words that indicate the omission
Fig. 3. Architecture of our three approaches for identifying positive v
of a line-break, e.g. ‘‘43Sex:”. The pattern ‘‘.⁄[a�z0�9]+[A�Z]

+.+” detects conjoined words by finding cases of a lowercase word
conjoined with a capitalized word, such as ‘‘apartmentFirearms” in
Example 1. Likewise the pattern ‘‘[A�Z]2,[a�z]+” identifies
uppercase words conjoined with a capitalized word, such as ‘‘RE
DACTEDMilitary” in Example 2. Finally, the pattern ‘‘[a�z]

+�[A�Z].+” discovers conjoined words in which the second word
starts with a hyphen, such as ‘‘Denied-Psychiatric” in Example 3.
This pattern was designed to account for the predominance of bul-
leted lines which begin with hyphens. When any of these patterns
are detected, the line-break is removed between the line in which
the pattern was detected and the previous line and a new line-
break is inserted between the two conjoined words discovered
by the pattern.

4.1.2. Sentence boundary normalization
In addition to the irregular use of line-breaks, another type of

grammatical error present in the corpus is the omission of spaces
between sentences. We used the pattern ‘‘[a�zA�Z]+nn.
[a�zA�Z]+.⁄” to find words containing a period between letters
and inserted a space after the period.

4.1.3. Hyphen regularization
To address the use of hyphens to denote bullets in the psychi-

atric evaluation records, we used the pattern ‘‘�nnS+” to find
words with leading hyphens (indicating bullets) and inserted a
space after the hyphen.

4.1.4. Abbreviation expansion
The last type of syntactic/grammatical errors we addressed con-

cerned the use of abbreviations in the corpus. The text preprocess-
ing system expands the following abbreviations into their full
forms: ‘‘pt”, ‘‘hx”, ‘‘nml”, are expanded to ‘‘patient”, ‘‘history”, and
‘‘normal” while both ‘‘sxs” and ‘‘syx’s” and expanded to
‘‘symptoms”.

4.2. Natural language processing

After text preprocessing, we performed seven automatic natural
language processing (NLP) steps: (1) sentence splitting, (2) tok-
enization, lemmatization, and part-of-speech tagging, (3) negation
span detection, (4) UMLS concept identification, (5) ICD-9 code
alence symptom severity levels in psychiatric evaluation records.
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recognition, (6) question and answer identification, and (7) AXIS-V
normalization. Each of these steps is detailed below.

4.2.1. Sentence splitting
Despite the linebreak and sentence boundary corrections made

during text preprocessing, the performance of general domain sen-
tence splitters such as those provided by Stanford’s CoreNLP toolkit
[14], and OpenNLP1 were unable to correctly process psychiatric
evaluation records. For example, both of these general domain sen-
tence splitters group the two lines from Example 1 into a single sen-
tence along with more than 50 additional lines of text. We found
that general-domain sentence splitters were unable to account for
the prevalent semi-structured question-and-answer lines (as these
lines do not include traditional sentence boundaries). Consequently,
we relied on the GENIA sentence splitter [15], which is a maximum
entropy sentence boundary detection tool trained on biomedical
texts. We observed that, in most cases, the GENIA sentence splitter
was able to correctly split semi-structured question-and-answer
lines into individual sentences.

4.2.2. Tokenization, lemmatization, & part of speech tagging
After sentence splitting, we performed tokenization, lemmati-

zation, and part of speech tagging using the GENIA tagger [16].
As with sentence splitting, we found that the GENIA tagger was
more effective at processing psychiatric text than general purpose
NLP toolkits.

4.2.3. Negation span detection
In the records, the psychiatrists document both the symptoms

and disorders exhibited by the patient as well as any important
symptoms and disorders that the patient does not currently exhibit
but which may inform the patient’s psychological state. For
example:

Example 4. Currently not drinking at all and no drugs.

Although the words ‘‘drinking” and ‘‘drugs” are present, the fact
that the patient does not currently drink or use drugs may have a
significant impact on the patient’s psychological state as both alco-
hol and drug use are strong indicators of positive valence symptom
severity. To detect when a relevant text mention is negated, we use
LingScope [17] which is a system that uses a Conditional Random
Field trained to detect spans of text (not just individual words)
which are negated based on syntactic information. In Example 4,
LingScope is able to recognize that the entire span ‘‘drinking at
all and no drugs” is negated.

4.2.4. UMLS concept identification
The psychiatric evaluation records in the corpus are rich with

medical concept mentions, many of which are direct indicators of
positive valence symptom severity. Consider the following
example:

Example 5. Patient is a 29 y/o woman with prior diagnoses of
opioid/cocaine/benzo dependence, dysthymic disorder, and PTSD
who is referred for a psychopharm evaluation.

The relevant medical concepts in this excerpt are (1) ‘‘opioid
. . .dependence”, (2) ‘‘cocaine . . .dependence”, (3) ‘‘benzo depen-
dence”, (4) ‘‘dysthymic disorder”, and (5) ‘‘PTSD”. All of these med-
ical concepts are documented within the Unified Medical Language
System (UMLS) Metathesaurus [18]. In UMLS, each medical con-
cept is associated with (1) a Concept Unique Identifier (CUI) and
(2) a number of atoms, corresponding to natural language realiza-
tions of the concept (e.g. the concept Post-Traumatic Stress Disorder
1 https://opennlp.apache.org/.
has the CUI C0038436 and an atom containing the text ‘‘PTSD”).
UMLS also encodes hierarchical relationships between medical
concepts.

We initially used MetaMap [19] to automatically identify UMLS
concepts in the corpus. MetaMap was able to successfully identify
four of the five relevant medical concepts in Example 5: Opiate
Addiction, Cocaine Dependence, Dysthymic Disorder, and Post-
Traumatic Stress Disorder (PTSD). However, it also identifies seven
irrelevant concepts (Patients, 29+, Woman, Prior diagnosis, Cocaine,
Referring, and Evaluation procedure) and two concepts which are
not present in the source text at all (Degenerative polyarthritis
and Yotta). To account for these problems, rather than using the
concepts detected by MetaMap, we implemented a more focused
medical concept detection approach which only considers UMLS
concepts which descend from Mental Health (C0025353), Mental
Disorder (C0004936), or Behavior Disorder (C0004930) in the UMLS
hierarchy. Specifically, for each concept in each hierarchy, we rec-
ognized instances of that concept in each psychiatric evaluation
record by detecting mentions of any of the atoms associated with
that concept. Using this method, we discovered a total of 82,634
medical concepts in the training set as opposed to the 280,494
detected by MetaMap.

4.2.5. ICD-9 code recognition
Some of the psychiatric evaluation records contain references to

diseases, symptoms, or health problems using ICD-9 (International
Statistical Classification of Diseases and Related Health Problems,
9th revision) codes. Clearly, ICD-9 codes can be informative for
determining positive valence symptom severity as they can indi-
cate MILD, MODERATE, or SEVERE symptoms (or their causes). ICD-9
codes are comprised of three digits indicating a specific disease
type, a decimal point, and one to three more digits indicating more
specific details about the disease (e.g. a subtype or means of dis-
ease contraction). For example, the code 304:00 indicates heroin
dependence, where 304 refers to drug dependence and :00 indicates
that the drug is heroin. Likewise the code for cocaine dependence is
304:20. There are 19 broad categories of ICD-9 codes and the code
classification is organized such that similar diseases will have sim-
ilar codes. By far the most common ICD-9 code class in the records
was Mental Disorders which accounted for more than 63% of the
ICD-9 codes detected in the training set. We detected ICD-9 codes
with the following pattern: ^(Vnd2(n.nd1,2)?|nd3(n.nd1,2)?|
End3(n.nd)?)/

4.2.6. Question & answer identification
The text in the psychiatric evaluations are largely made up of

question/answer pairs that contain important information about
the patient’s current and past mental state. For example:

Example 6. History of Inpatient Treatment: Yes Patient says she
has been hospitalized three times

. . .History of Brain Injury: No. history of falls and head strikes.
denies post-concussive symptoms.
Example 7. PSYCHOSIS: Has the patient had unusual experiences
that are hard to explain: No

. . .This visit for a one-time consultation only? No.
Example 8. Behavior: Cooperative.
In the corpus, the majority of questions have a YES/NO answer

(e.g. Examples 6 and 7) which may be accompanied with natural
language elaboration (e.g. Example 6). While most of the questions
are repeated between records, the elaborations contain informa-
tion specific to the individual patient described in the record.

https://opennlp.apache.org/
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Moreover, the elaborations accompanying NO answers can contain
information that would not fit under any other question in the
questionnaire but which is still important. In Example 6, the infor-
mation regarding ‘‘falls” and ‘‘head strikes” is included as a part of
the answer to a question about brain injury.

4.2.7. Axis V (GAF) normalization
The Axis V Global Assessment of Functioning (GAF) [20] is a

numeric scale used by mental health clinicians to rate patients’
psychological ability to function on a scale from 100 (no symp-
toms) to 1 (persistent danger to self or others). This metric mea-
sures the severity of overall mental health symptoms, not just
positive valence symptoms. The records can contain up to three
types of Axis V scores: (1) the patient’s current score, (2) the
patient’s lowest recorded score to date, and (3) the patient’s high-
est recorded score to date. Over 90% of records in the training set
contain a ‘‘current” Axis V score and over 50% of records have low-
est and highest Axis V scores as well. We detected Axis V scores by
taking the first contiguous string of numbers from lines that con-
tained ‘‘axis v” or ‘‘axisv”. The type of the Axis V score was deter-
mined by searching for the strings ‘‘current”, ‘‘highest”, and
‘‘lowest” in the line containing the score. If no type was detected,
we defaulted to the ‘‘current” Axis V score type. It should be noted
that each Axis V score falls into one of ten ranges. Consequently,
we normalize each detected score into one of these ranges. Most
of the scores in the records fall into either the Mild range from
61 to 70 (26.4%), the Moderate range from 51 to 60 (44.0%), or
the Serious range from 41 to 50 (13.5%), however at least one score
from each of the other seven ranges was present in at least one
record.

4.3. Feature extraction

After text preprocessing and natural language processing, we
encoded each psychiatric evaluation record as a 568-dimension
feature vector. It should be noted, however, that the psychiatric
evaluation records used in the CEGS/N-GRID evaluation contain a
large amount of natural language content which is not directly
related to positive valence symptoms (e.g. general medical history,
or unrelated psychological problems) or which is negated (e.g.
Example 4). Consequently, in order to ensure that the features
we extract from each record are statistically meaningful, we only
extracted features from the relevant portions of each record. We
defined the relevant portions of a psychiatric evaluation record
as (a) pseudo-structured questions answered YES as well as any
elaboration, (b) non-negated narrative content, and (c) the elabora-
tion of any question answered NO.

The features extracted from relevant portions of each psychi-
atric evaluation record are illustrated in Table 1. Table 1 also indi-
cates the type or domain of each feature: (1) Boolean features,
denoted by B, are assigned the value ‘1’ to encode TRUE, and the
value of ‘0’ to encode FALSE; (2) numeric features, denoted by N,
are associated with positive integers; and (3) multivalued features,
denoted by M, are associated with one or more discrete values (for
example, a bag-of-words feature would be classified as multival-
ued).2 It is important to note that the same feature vectors were pro-
cessed by all three learning methods. We extract six types of
features, which are described below.

4.3.1. Question & answer features
Thirty-two features are extracted to represent the questions

and their answers that were automatically identified in each
2 Technically, each multivalued feature actually corresponds to a set of binary
features, one for each possible discrete value.
psychiatric evaluation record. The features F1–F4 correspond to
individual questions concerning severe psychological symptoms,
F5–F7 correspond to individual questions about social risk factors,
and F8–F13 correspond to individual questions regarding the use
of drugs and other substances. Eeach feature F14–F22 corresponds
to a group of questions and takes the value TRUE when any question
in the group is answered as TRUE, and FALSE, otherwise. Finally, fea-
tures F23–F32 capture the coverage of positive answers in each psy-
chiatric note: indicating whether at least one question in each
category was answered in the affirmative, and the number of ques-
tions in each category answered as TRUE.

4.3.2. Lexical & pattern features
While the semi-structured YES/NO questions in each psychiatric

evaluation record provided an abundance of high-level information
for recognizing the severity of a patient’s psychiatric symptoms,
we found that the elaborations as well as unstructured narratives
contained an abundance of important cues. However, unlike the
semi-structured YES/NO questions, the elaborations and narrative
content in each psychiatric evaluation record varied substantially
between patients. In order to extract information from the elabora-
tions and narrative content, we manually created a number of lex-
ica containing textual patterns by reviewing psychiatric evaluation
records in the training set. A total of 7 lexica were created, contain-
ing lexical patterns associated with ALCOHOL, DRUGS, EATING_DISORDERS,
patient HISTORY, previous INPATIENT psychiatric treatment, LEGAL conse-
quences, and previous OUTPATIENT psychiatric treatment. Table 2 pro-
vides examples from each lexicon (the full lexica are provided in
Online Supplementary Appendix A).

4.3.3. UMLS hierarchy features
When analyzing the content of psychiatric evaluation records,

we found that although many patients had different individual
symptoms, most patients within each severity level shared a num-
ber of general traits. For example, although individual drug or alco-
hol dependency disorders were not frequently mentioned in SEVERE

psychiatric evaluation records (for example, only 7:98% contained
a non-negated mention of heroin), nearly all records had at least
one mention of some kind of drug-or-alcohol dependency disorder.
Thus, we wanted to extract features which capture more general
common behavior or mental disorders than might be explicitly sta-
ted in the content of the psychiatric evaluation records. To do this,
we extracted UMLS hierarchy features. We considered the three
separate UMLS hierarchies rooted at the UMLS concepts corre-
sponding to Mental Health (C0025353), Mental Disorder
(C0004936), and Behavior Disorder (C0004930) described in Sec-
tion 4.2. Each hierarchy was constructed by traversing UMLS fol-
lowing outgoing RB relations (an outgoing RB relation in UMLS
indicates ‘‘has a broader relationship”) in which any concept that
would introduce a cycle into the hierarchy was ignored. Fig. 4 illus-
trates an excerpt of the UMLS hierarchy we constructed for the
concept Mental Disorder. For each UMLS hierarchy, we extracted
two features from a psychiatric record encoding: (1) whether any
concept in the hierarchy was mentioned within the relevant con-
tent of the record and (2) the path between every mentioned con-
cept in the hierarchy and the root of the hierarchy. Each path was
encoded as a multivalued bag-of-CUIs feature where each CUI in
the hierarchy was assigned a value of ‘1’ if the CUI occurred in
the path from any mentioned concept in the hierarchy to the root
of the hierarchy, and a value of ‘0’, otherwise. These features corre-
spond to F47–F52.

4.3.4. Patient age features
When analyzing the content of psychiatric evaluation records,

we noted that the age of a patient played a significant role. Specif-
ically, we found that as the age of the patient increased so, too, did



Table 1
Features used for identifying symptom severity levels.

Name Definition Type

Question & answer features
Severe questions
F1 Has the patient had inpatient treatment? B

F2 Does the patient have a history of suicidal behavior? B

F3 Does the patient have a history of violent behavior? B

F4 Does the patient have a history of self-injurious behavior? B

Risk assessment questions
F5 Has the patient experienced loss of housing? B

F6 Has the patient had thoughts of harm to self? B

F7 Is the patient prone to worrying excessively? B

Drug & substance questions
F8 Does the patient have a history of drug use? B

F9 Does the patient have a history of marijuana use? B

F10 Does the patient have a history of cocaine use? B

F11 Does the patient have a history of sedative/hypnotic use? B

F12 Does the patient have a history of opiate use? B

F13 Does the patient have a history of hallucinogens use? B

Psychological symptom questions
F14 Does the patient have symptoms of depression (MDD)? B

F15 Does the patient have symptoms of bipolar disorder (BP)? B

F16 Does the patient have symptoms of general anxiety disorder (GAD)? B

F17 Does the patient have symptoms of obsessive compulsive spectrum disorders? B

F18 Does the patient have symptoms of attention deficit hyperactive disorder (ADHD)? B

F19 Does the patient have symptoms of eating disorders? B

F20 Does the patient have symptoms of complicated grief? B

F21 Does the patient have symptoms of post-traumatic stress disorder (PTSD)? B

F22 Does the patient have symptoms of dementia? B

Question coverage features
F23 Were any severe questions answered yes? B

F24 Number of severe questions answered yes N

F25 Were any risk assessment questions answered yes? B

F26 Number of risk assessment questions answered yes N

F27 Were any drug & substance questions answered yes? B

F28 Number of drug & substance questions answered yes N

F29 Were any psychological symptom questions answered yes? B

F30 Number of psychological symptom questions answered yes N

F31 Were any questions answered yes? B

F32 Number of questions answered yes N

Lexical & pattern features
F33 Were any patterns in the ALCOHOL lexicon found? B

F34 Number of patterns in the ALCOHOL lexicon that were found N

F35 Were any patterns in the DRUG lexicon found? B

F36 Number of patterns in the DRUG lexicon that were found N

F37 Were any patterns in the EATING_DISORDER lexicon found? B

F38 Number of patterns in the EATING_DISORDER lexicon that were found N

F39 Were any patterns in the HISTORY lexicon found? B

F40 Number of patterns in the HISTORY lexicon that were found N

F41 Were any patterns in the INPATIENT lexicon found? B

F42 Number of patterns in the INPATIENT lexicon that were found N

F43 Were any patterns in the LEGAL lexicon found? B

F44 Number of patterns in the LEGAL lexicon that were found N

F45 Were any patterns in the OUTPATIENT lexicon found? B

F46 Number of patterns in the OUTPATIENT lexicon that were found N

UMLS hierarchy features
F47 Were any medical concepts descendants of Mental Health in UMLS? B

F48 All paths from each descendant of Mental Health and Mental Health itself in UMLS M

F49 Were any medical concepts descendants of Mental Disorder in UMLS? B

F50 All paths from each descendant of Mental Disorder and Mental Disorder itself in UMLS M

F51 Were any medical concepts descendants of Behavior Disorder in UMLS? B

F52 All paths from each descendant of Behavior Disorder and Behavior Disorder itself in UMLS M

Patient age features
F53 Was the patient at least 80 years old? B

F54 Was the patient at least 70 years old? B

F55 Was the patient at least 60 years old? B

F56 Was the patient younger than 40 years old? B

F57 The age of the patient N

Axis V GAF features
F58 The patient’s lowest AXIS V GAF category N

F59 The patient’s current AXIS V GAF category N

(continued on next page)
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Fig. 4. Excerpts of the UMLS hierarchy for two Mental Disorders: (1) Post Traumatic
Stress Disorder (PTSD) and (2) Dysthymic Disorder.

Table 2
Examples of lexical patterns from seven manually crafted lexica.

Lexicon Examples

ALCOHOL vodka daily, liter per day, whiskey daily, . . .
DRUG benzo, benzos, heroin, . . .

EATING_DISORDER bulimia, anorexia, purging, . . .

HISTORY medical leave, raped, suicide attempt, . . .
INPATIENT psychiatric inpatient, resident program, inpatient

detox, . . .
LEGAL incarceration, custody, arrested, . . .
OUTPATIENT regular psychiatric, regular psychopharm, group

therapy, . . .

Table 1 (continued)

Name Definition Type

ICD-9 Code features
F60 All ICD-9 codes (truncated as an integer) M

F61 All ICD-9 codes (truncated to the tenths decimal place) M

F62 All ICD-9 codes (truncated to the hundredths decimal place) M

F63 All ICD-9 codes (truncated to as the ICD-9 code class) M
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the number of behavioral and mental symptoms required to ele-
vate the patient’s psychological symptoms to a more severe level.
Features F53–F56 capture this phenomenon for older patients, while
F56 captures this phenomenon for younger patients. F57 encodes
the age of the patient directly.
4.3.5. Axis V GAF features
We extracted F58 and F59 which encode the lowest, and current

Axis V GAF categories as determined by the Axis V GAF normaliza-
tion process described in Section 4.2.
4.3.6. ICD-9 features
We considered four multivalued features to encode the ICD-9

diagnostic codes associated with each psychiatric evaluation
record. As with the UMLS hierarchy features, our features were
designed to capture specific ICD-9 codes as well as more general
information. To do this, we took advantage of the fact that ICD-9
codes are organized in a hierarchy with each digit indicating a fur-
ther level of granularity. Thus, we considered four bag-of-ICD-9-
code features: (1) all ICD-9 codes truncated to integers (i.e., no dec-
imal places), (2) all ICD-9 codes truncated to a single decimal place
(i.e., the tenths digit), (3) all ICD-9 codes truncated to two decimal
places (i.e., the hundredths digit), and (4) the ICD-9 code classes of
all ICD-9 codes (as described in Section 4.2).

It should be noted that, with the exception of Lexical features
(F33–F46), all the features we extracted capture general psychologi-
cal information with no specific emphasis on positive valence
symptoms. Consequently, it is the role of the learning methods to
discover which individual features – e.g., which questions or UMLS
concepts – are the most indicative of positive valence symptom
severity.

4.4. Learning methods

Our approach for automatically recognizing the severity of a
patient’s positive valance symptoms from psychiatric evaluation
records relies on two assumptions: (1) that the severity of a
patient’s positive valence symptoms exists within a latent contin-
uous spectrum and (2) that all of the patient’s answers and narra-
tives documented in his or her psychological evaluation records
are informed or influenced by the patient’s latent severity score
along this spectrum. These two assumptions allow us to consider
a two-step approach for automatically recognizing symptom
severity from psychiatric evaluation record:

Step 1: Infer the latent continuous severity score that was most
likely to produce a given psychiatric evaluation record; and
Step 2: Map the severity score into one of the four discrete
severity levels used in the CEGS/N-GRID challenge.

We considered three methods for inferring the latent severity
score from a given psychiatric evaluation record (i.e., Step 1): (1)
pointwise ridge regression, (2) a pairwise random forest, and (3)
a hybrid model combining pointwise ridge regression with the
pairwise random forest. Step 2, associating the severity score with
one of four discrete severity classes, is accomplished by a cascading
SVM tree. In the remainder of this section, we present (1) a formal
definition of the problem, (2) pointwise ridge regression, (3) the
pairwise random forest, and (4) the hybrid model as well as (5)
the cascading SVM tree used to implement Step 2.

4.4.1. Problem definition
Formally, let T represent the training data. Each training sam-

ple ðx; yÞ 2 T corresponds to a psychiatric evaluation record where
x is the feature vector representation of the record (as described in
Section 4.3) and y is the gold-standard positive valence symptom
severity level y 2 0;1;2;3f g (corresponding to ABSENT, MILD, MODERATE,
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and SEVERE, respectively). For a given training sample ðx; yÞ, our
approach operates by (1) inferring the most likely latent severity
score s (within the latent continuous positive valence symptom
severity spectrum) to have produced x and then (2) mapping s to
the severity label ŷ which is closest to y.

4.4.2. Pointwise ridge regression
Our first approach casts the problem of inferring latent severity

score s from a given psychiatric evaluation record x as a pointwise
linear regression problem. Specifically, we use ridge regression
[21] (also known as Tikhonov regularization) in which we learn
the set of feature weights h which produces the severity score s
with the lowest least-square error from y after L2-normalization.
Formally,

h ¼ min
h0

X
x;yð Þ2T

kh0 � xk2 þ kkhk22 ð1Þ

where k is a regularization term (in our experiments we set k ¼ 1).
After training, we can infer the most likely severity score s for a
given x as s ¼ P

ihi � xi.

4.4.3. Pairwise random forest
When analyzing the behavior of the pointwise ridge regression

model described above, we found that it was often easier to under-
stand why psychiatric evaluation records were given a particular
label by comparing the record to another record with a different
severity level. We observed that it was often much easier for us
– as non-experts without any background psychiatric knowledge
– to determine which of the two records was more severe, than
it was to directly determine the severity of each record indepen-
dently. In light of this observation, we wondered whether it would
also be easier for the machine as well. Like us, a machine-learned
model does not have access to the background psychiatric knowl-
edge used by psychiatrists when manually assessing the severity
level of a patient’s positive valence symptoms. Inspired by these
observations, we considered a second model in which, rather than
directly producing a severity score s from the feature vector x, we
transformed the problem of recognizing patients’ symptom sever-
ity levels to a binary classification problem. To do this, we used the
pairwise transform [22] which forms unique pairwise training sam-
ples by taking the difference between all pairs of feature vectors
extracted from records with different gold-standard severity levels.
Specifically, we created a new pairwise training sample,

xpk; y
p
k

� � ¼ xi � xj; sign yi � yj
� �� �

; ð2Þ
from every pair of pointwise training samples ðxi; yiÞ; ðxj; yjÞ 2 T

where yi – yj. In this way, each feature in the pairwise feature vec-
tor xp encodes the difference between the value of that feature in xi

and its value in xj while the pairwise label yp has two possible val-
ues: þ1 if yi is more severe than yj, and �1 if yi is less severe than yj.
Consequently, yp indicates the ordering between xi and xj by their
psychological symptom severity. Moreover, a useful property of
the pairwise transform is that pairwise training data can be bal-
anced by multiplying pointwise training samples in the minority
class with �1 until both classes are balanced, improving classifica-
tion performance. By applying the pairwise transform, we were able
to train a binary classifier to predict yp 2 þ1;�1f g given xp. More-
over, as opposed to the pointwise regressor (described in Sec-
tion 4.4.2) which weights features based on the feature’s
contribution to the overall severity score, the pairwise representa-
tion allows a binary classifier to learns weights based on how well
each feature can be used to discriminate between yp ¼ þ1 and
yp ¼ �1. For example, consider Feature F32 from Table 1, which indi-
cates the number of questions in the psychological questionnaire
which were answered YES. The regression model learns the weight
of this feature by measuring how well the severity score can be
directly computed from the value of the feature (which may not
be possible). By contrast, the pairwise transform allows the model
to instead learn how the difference in the number of YES-answered
questions can be used to infer which of a pair of records indicates
the most severe positive valence symptoms – i.e., the binary classi-
fier can capture the intuition that if record xi has more YES-answered
questions than record xj, then record xi is likely to have a higher
severity score than record xj. In our approach, we considered a ran-
dom forest (RF) classifier [23] for this purpose.

An RF is a meta or ensemble classifier which relies on perturb-
and-combine techniques [24] to fit a diverse set of independent
decision tree classifiers on various sub-samples of the training
set. Formally, each tree in the ensemble or forest is built by ran-
domly selecting (with replacement) a pairwise training sample.
Unlike traditional decisions trees [25], when each decision tree in
the random forest is constructed, each branch is determined using
a random subset of features. By combining random samples of
training data with random subsets of features, the RF has substan-
tially reduced variance compared to many other classifiers. Unlike
Breiman [23], in which the class predicted by the RF is chosen by
voting, we average the probabilistic predictions across each tree.
The RF was trained using Gini impurity [25] as the splitting crite-
rion,

ffiffiffiffiffiffijxjp
as the number of sampled features, and 500 individual

decision trees.
Given a trained RF, we inferred the latent severity score s for the

feature vector x associated with a given psychiatric evaluation
record by directly classifying x with the RF – that is, without apply-
ing the pairwise transform – and determined s as the average prob-
ability of assigning the class label yp ¼ þ1 (as opposed to yp ¼ �1)
from each tree in the forest. Conceptually, this corresponds to pro-
ducing the score for a psychiatric evaluation record by measuring
the likelihood that the record would have a higher severity level
than a ‘‘blank” psychiatric evaluation record.

4.4.4. Hybrid model
Pointwise ridge regression and pairwise random forest classifi-

cation both approach the problem of inferring the severity score s
from x very differently: the pointwise approach learns to infer s
from a single psychiatric evaluation record directly, while the RF
learns to infer s based on information learned by ordering pairs
of psychiatric evaluation records. Consequently, each model learns
a very different set of feature weights for determining s from x. We
were interested in discovering if combining these two alternate
approaches would result in more robust and accurate severity
scores. Thus, our third and final method for inferring s from x uses
a linear combination of the inferred severity scores predicted by
both models. Formally, let s1 be the severity score inferred by ridge
regression and let s2 be the severity score inferred by the random
forest classifier. The hybrid model infers a new severity score s as
a weighted combination of s1 and s2:

s ¼ as1 þ bs2 ð3Þ
where a and b are weights learned by minimizing the least squares
error between s and y in the training data.

4.4.5. Cascading SVM tree
After inferring the latent continuous severity score s associated

with a record, it is necessary to map s to a discrete severity level
y 2 0;1;2;3f g (corresponding to ABSENT, MILD, MODERATE, and SEVERE,
respectively). However, it should be noted that the severity levels
are not independent (i.e. severity level 1 is closer to severity level
2 than it is to severity level 3). Consequently, standard classifica-
tion techniques – which treat each class label independently –
are not ideal. Specifically, there are two methods typically used
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to convert a binary classifier (e.g. a support vector machine, or
logistic regression classifier) into a multi-class classifier: (1) one-
vs-one in which, for each severity level y, three binary classifiers
are learned where each classifier discriminates between y and each
of the other three severity levels y0 using only the subset of the
training data with severity levels y and y0 and (2) one-vs-rest in
which, for each severity level y, a single binary classifier is trained
to discriminate between y and the other three severity levels.
While these two methods are the most commonly applied (e.g.,
they are used by SVM-Light [26] and scikit-learn [27]), they cannot
account for the relationships between severity levels. For example,
consider the severity level MILD. In the one-vs-one approach, the
classifier used to distinguish between MILD and SEVERE is unable to
consider any of the information from psychiatric evaluation
records associated with ABSENT severity levels, despite that fact that
the training examples used to distinguish between ABSENT and SEVERE

may also help distinguish between MILD and SEVERE. In the one-vs-
rest approach, the binary classifier for MILD would have to learn a
single decision boundary (i.e., the latent continuous severity score
threshold) to distinguish between MILD and SEVERE as well as
between MILD and ABSENT, despite the fact that SEVERE and ABSENT cor-
respond to opposite ends of the latent continuous severity
spectrum.

To account for these problems, we used a hierarchical approach
to multi-class classification inspired by Kumar et al. [28]. Specifi-
cally, we trained a tree of three cascading binary support vector
machine (SVM) classifiers, as illustrated in Fig. 3. This hierarchical
approach allows us to (1) consider all of the training data to deter-
mine the boundaries between the severity scores associated with
each discrete severity level and (2) captures the implicit relation-
ships between severity levels. In general, each SVM is a binary clas-
sifier which is trained on pairs of severity scores and gold-standard
severity levels, s; yð Þ and learns the optimal decision boundary to
separate new, unlabeled severity scores into two buckets. The deci-
sion boundaries learned by each SVM correspond to thresholds on
the latent continuous severity spectrum which classify severity
scores into the four discrete severity levels. The first classifier,
SVM1, learns the optimal decision boundary which separates
severity scores into two buckets, one containing all the severity
scores associated with y 2 0;1f g and the second bucket containing
all severity scores associated with y 2 2;3f g. SVM2 learns to further
separate the severity scores associated with y 2 0;1f g as either
y ¼ 0 or y ¼ 1. Likewise, SVM3 learns to further separate the sever-
ity scores associated with y 2 2;3f g as either y ¼ 2 or y ¼ 3.

After training, we determine the severity level of an unlabeled
psychiatric evaluation record (with severity score s) using the cas-
cading SVM tree in two stages: (a) we use SVM1 to determine
whether s is associated with a severity level ŷ 2 0;1f g or with
ŷ 2 2;3f g and (b) depending on the result of stage (a), we use
either SVM2 or SVM3 to determine the individual severity level.
Specifically, if SVM1 predicts that ŷ is in 0;1f g, we determine the
final severity level as either 0 or 1 using SVM2. Likewise, if SVM1

predicts that ŷ is in 2;3f g, we determine the final severity level
as either 2 or 3 using SVM3. It should be noted that the cascading
approach does not require an SVM and could be implemented
using any binary classifier.
Table 3
Official performance results for each configuration of our system.

Method

Average ABSENT

1. Pointwise ridge regression 0.791169 0.928571
2. Pairwise random forest 0.824262 0.884615
3. Hybrid model 0.840963 0.920635
5. Results

We evaluated our approach using the official results provided
by the organizers of the CEGS/N-GRID workshop [29]. A total of
65 runs were submitted by 24 teams. The official evaluation metric
used by the organizers was the normalized mean absolute error
(MAE):

MAEðhÞ ¼ 1
Yj j

X3

j¼0

1
Dj

�� ��
X

xj ;yhð Þ2Dj

hðxjÞ � yj
�� ��

2
64

3
75 ð4Þ

where h is a system for recognizing symptom severity such that hðxÞ
is the predicted severity level, Y is the set of severity levels (with 0
indicating ABSENT, 1 indicating MILD, 2 indicating MODERATE, and 3 indi-
cating SEVERE), Dj is the set of test documents with gold-standard
score j; xi is a psychiatric evaluation record and yi is its gold-
standard score. Note that in the official evaluation, the MAE was
normalized and reported as a percentage where the system with
the highest normalized MAE percentage obtained the highest per-
formance. The normalized MAE evaluation has the important prop-
erty that the every severity level is given the same importance,
regardless of its frequency in the test collection. Table 4 presents
the official evaluation results for the top ten submitted runs across
all teams. As shown, our team placed second over-all, performing
just below the system developed by SentiMetrix, Inc. We submitted
three runs: run 1 corresponds to method 1, pointwise ridge regres-
sion; run 2 corresponds to method 2, the pairwise random forest;
and run 3 corresponds to method 3, the hybrid model. From Table 4,
it can be seen that run 3, our hybrid model, was the second-best
performing run over all submitted runs. Moreover, it can be seen
that run 2, which corresponds to the pairwise random forest classi-
fier (method 2), was the ninth-best performing system. Table 4 also
presents the median, mean, and minimum MAE scores aggregated
across all runs.

In addition to the official rankings, we were interested in com-
paring the performance of our three methods as well as comparing
the performance between each severity level. The macro-average
normalized MAE for each of our three methods are shown in
Table 3 as well as the normalized MAE for each of the four individ-
ual severity levels. As shown by Tables 3 and 4, all three of our
methods significantly outperformed the official median and mean
MAE scores reported by the organizers. Moreover, it is also clear
that the hybrid approach achieved the best performance of our
three methods, while the pairwise random forest classifier
obtained lower but still high performance. The pointwise ridge
regressor, however, obtained the lowest performance of our three
methods. We can also see that the severity labels on the extremes
– ABSENT and SEVERE – were the easiest for our methods to classify,
while distinguishing between MILD and MODERATE was more difficult.
Moreover, the increase in performance of the hybrid model com-
pared to the pointwise and pairwise models it combines suggests
that the pointwise and pairwise models learn significantly differ-
ent information from the psychiatric evaluation records. In order
to determine how differently the two methods predicted severity
scores, we calculated the weighted agreement between all three
Mean absolute error (MAE)

MILD MODERATE SEVERE

0.778761 0.659091 0.896296
0.831579 0.692982 0.912281
0.868750 0.698276 0.912281



Table 4
Top performing runs across all teams.

Rank Team Run MAE score

1 SentiMetrix Inc. 3 0.863019
2 University of Texas at Dallas 3 0.840963
3 University of Kentucky 3 0.838615
4 University of Kentucky 1 0.837284
5 Med Data Quest Inc. 1 0.836503
6 University of Kentucky 2 0.835138
7 SentiMetrix 2 0.833281
8 University of Pittsburgh 3 0.825594
9 University of Texas at Dallas 2 0.824262

10 University of Pittsburgh 2 0.821807

– Median – 0.775880
– Mean – 0.771492
– Minimum – 0.524597

Fig. 6. Number of records with predicted severity level versus gold-standard
severity level.
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methods (using Cohen’s j). Fig. 5 presents j between all pairs of
methods for inferring the severity score of a psychiatric evaluation
record.

As shown in Fig. 5, the pointwise and pairwise methods had a j
agreement of only 62:3% which clearly indicates that both meth-
ods often produced different severity scores for the same record.
Moreover, we can see that the hybrid model has a higher j agree-
ment with the pairwise method than with the pointwise method,
suggesting that, while the hybrid model often prefers the severity
scores produced by the pairwise method, it is able to successfully
recognize when the scores inferred by the pointwise method are
more reliable.

6. Discussion

6.1. Error analysis

The majority of errors in predictions by our model are between
adjacent severity levels, i.e. between ABSENT and MILD, MILD and MOD-

ERATE, and MODERATE and SEVERE. Fig. 6 illustrates the number of
records with each severity level predicted by our hybrid model
against the number of records with each gold-standard severity
level. Clearly, the most common misclassification errors were
between the MILD and MODERATE severity levels. Recall from Section 3,
that the difference between the MILD and MODERATE severity levels are
that MODERATE symptoms have to be the focus of outpatient treat-
ment, while MILD symptoms are never the focus of treatment. In
the psychiatric evaluation records used for this evaluation, the
focus of treatment is not explicitly stated. Moreover, the focus of
treatment is difficult to infer without psychiatric expertise – for
example, knowledge about what behavioral or psychological phe-
nomena each treatment is designed to address. Future work may
benefit from inferring relations between treatments and their
focus in psychiatric evaluation records.
Pointwise
Ridge Regression

Hybr
Mod

0.622

0.72242

Fig. 5. Cohen’s j between all pairs of met
Errors between MODERATE and SEVERE severity levels were less
common, and were often due to errors in distinguishing between
inpatient treatment/hospitalization for general medical conditions
or for psychiatric symptoms, specifically. Consider the following
two examples that indicate inpatient treatment in the past:

Example 9. History of Inpatient Treatment: Yes, Counseling center
5/15/2069–5/0021.
Example 10. . . .Comanche Hospital 2066, complete hysterectomy.
Example 9 is an excerpt from a SEVERE record our systemmisclas-

sifies as MODERATE. Clearly, this patient has a history of inpatient
treatment for psychological reasons since the treatment was
administered in a counseling center. Example 10 is from a MODERATE

record our system classifies as SEVERE and describes a history of
inpatient treatment for non-psychiatric reasons. Our system is
unable to reliably distinguish mentions of inpatient treatment
based on the reason for hospitalization, but the inclusion of such
information could benefit future work.

Finally, we observed that errors between MILD and ABSENT were
often due to (1) patients recalling significantly distant (e.g. child-
hood) events or (2) patients describing actions of their friends or
family. For example, the following excerpt is from a narrative por-
tion of a record:

Example 11. . . .with psychiatric history notable for alcohol abuse
in sustained remission.

In Example 11, the psychiatrist notes that the patient’s past his-
tory of alcoholism is ‘‘in sustained remission” and therefore not
likely to influence current positive valence symptom severity. We
Pairwise Random
Forest Classifier

id
el

93

0.8217

hods for inferring the severity score.



Table 5
Feature ablation analysis.

Feature(s) Mean absolute error (MAE)

Training Testing
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believe that future work may benefit from incorporating informa-
tion about whether medical concepts are associated with the
patient, or with someone else, i.e., incorporating the assertions
investigated in the 2010 i2b2/Veterans Affairs challenge on con-
cepts, assertions, and relations [30].
+ Bag-of-words �0.1517 �0.0611
+ Bag-of-bigrams �0.7748 +4.2203
+ Doc2Vec �0.5167 �5.8393
+ Bag-of-concepts �2.6129 �2.9746

Hybrid Model 80.4026 84.0963

� ICD-9 �0.6078 �0.1435
� Axis V �0.4892 �0.0190
� Age �0.6793 �0.4390
� Lexical �0.9280 �1.0341
� UMLS Hierarchy �1.9248 �0.9224
6.2. System design

Feature extraction was implemented in Java 8 and relied on the
natural language processing systems described in Section 4.2.
Ridge regression and the cascading SVM trees were implemented
in Python 2.7 using scikit-learn [27]. The pairwise random forest
approach relied on the random forest implementation offered in
RankLib,3 part of the Lemur4 search engine project.

When designing our system, we considered a much larger set of
features than those described in Section 4.3, however many of
these features degraded performance on the training set (perfor-
mance decreases are described in Section 6.3). In this section, we
describe various natural language processing and feature sets that
we ultimately removed based on cross validation performance dur-
ing training. Note: all of these features were extracted after apply-
ing all of the text preprocessing steps described in Section 4.1.
6.2.1. Bag-of-words
Given that the psychiatric evaluation records used in our exper-

iments are text documents, a natural feature would be using a bag-
of-words representation. We found that this significantly hurt per-
formance during training. We additionally considered a bag-of-
nonnegated-words features, as well as a ternary bag-of-words fea-
ture in which each word would be associated with the value 1 if it
was mentioned and not negated, 0 if it was not mentioned and �1
if it was negated. None of these features improved performance.
6.2.2. Bag-of-bigrams
After analyzing the failure of bag-of-words features to improve

performance, we considered a bag-of-bigrams alternative. Bigrams
are commonly used in language modeling and other natural lan-
guage processing tasks and correspond to pairs of consecutive
words in a document. As with bag-of-words, we also considered
a bag-of-nonnegated-bigrams and ternary bag-of-bigrams feature.
None of these three features improved performance.
6.2.3. Bag-of-concepts
We experimented with a bag-of-concepts feature which was

akin to bag-of-words but relied on concepts identified by MetaMap
rather than individual words. As with bag-of-words, we also con-
sidered a bag-of-nonnegated-concepts and ternary bag-of-
concepts feature. We observed, as with bag-of-bigrams and bag-
of-words, the performance was not improved.
6.2.4. Doc2Vec
After observing that bag-of-words, bag-of-bigrams, and bag-of-

concepts features all degraded performance, we considered mod-
ern distributional approaches to representing the content of psy-
chiatric evaluation records. Specifically, we learned vector
representations of each psychiatric evaluation record using Doc2-
Vec [31]. Doc2Vec relies on deep neural learning to learn an
embedded representation of words, sentences, and documents.
We experimented with Doc2Vec embeddings of dimensions 50,
100, and 200, and found that including the embeddings learned
by Doc2Vec degraded performance.
3 https://sourceforge.net/p/lemur/wiki/RankLib/.
4 http://www.lemurproject.org/.
6.3. Feature ablation analysis

In order to facilitate future work, we performed a feature abla-
tion study using both the training and testing sets. Table 5 presents
these results. The top half of Table 5 illustrates the loss in perfor-
mance when the rejected feature sets described in Section 6.2 were
incrementally incorporated. In the table, we report only the best
performing representations of the bag-of-words, bag-of-bigrams,
and bag-of-concepts features – namely, the ternary representation;
likewise, the Doc2Vec performance was reported when using 200-
dimensional embeddings. The second half of Table 5 illustrates the
loss in performance when each feature sets described in Section 4.3
was incrementally removed. Interestingly, the bag-of-bigrams fea-
ture degraded performance while cross validating against the
training set but improved performance on the testing set. This sug-
gests that future work may benefit from incorporating bigram fea-
tures and that bigrams features can capture information not
available from UMLS concepts, ICD9 codes, or any of the lexical fea-
tures. In terms of the features described in Section 4.3, the largest
performance decrease in the training set (and second largest in the
testing set) was observed when removing the UMLS Hierarchy fea-
tures, highlighting the importance of considering relevant medical
concepts especially when compared against the decrease in perfor-
mance observed when all MetaMap-detected concepts were con-
sidered. Likewise, the decrease in performance after lexical
features were removed, although less significant than UMLS Hier-
archy features in the training set, indicates the importance of
incorporating hand-tuned information characterizing positive
valence symptoms. It can be seen that, overall, the importance of
features was similar between the training and testing sets which
suggests that the features reported in this paper are able to gener-
alize to new psychiatric records.

6.4. Cascading SVM tree analysis

In addition to the individual feature analyses performed above,
we compared the performance when using three different methods
for mapping the latent continuous severity score associated with
each record to the discrete severity levels used in the CEGS/N-
GRID evaluation: (1) the cascading SVM tree reported in this paper,
(2) a one-vs-one SVM approach, and (3) a one-vs-rest SVM
approach. For an explanation of these methods, please refer to Sec-
tion 4.4.5. We report the performance of the hybrid approach when
using each method (though the observations hold for the pointwise
and pairwise models as well). We found that the cascading SVM
tree performed 7:5142% better than the one-vs-one approach
(which obtained an MAE of 78:2188) and 11:6464% better than
the one-vs-rest approach (which obtained an MAE of 75:3237). This
shows the importance of considering the implicit relationship
between severity levels and indicates that out-of-the-box classifi-
cation approaches may not be ideal.

https://sourceforge.net/p/lemur/wiki/RankLib/
http://www.lemurproject.org/
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6.5. Severity score analysis

While the official evaluation results allowed us to measure the
performance of our approach for recognizing discrete severity
levels, we were also interested in analyzing the latent continuous
severity scores inferred by our methods. Fig. 7 illustrates the
inferred severity scores produced by the hybrid model along with
the predicted severity levels. It is interesting to note that thresh-
olds learned by the cascading SVM tree are significantly different
than what one might expect – ABSENT was associated with severity
scores s 2 ½0;0:81279Þ, MILD was associated with severity scores
s 2 ½0:81279;1:5721065Þ, MODERATE was associated with severity
scores s 2 ½1:5721065;2:1700965Þ and SEVERE was associated with
severity scores s 2 ½2:1700965;1Þ. Moreover, it can be seen that
the severity score inferred from one psychiatric evaluation record
was actually greater than 3 – the value associated with SEVERE.
We analyzed the content of that record as well as the feature vec-
tor extracted from it. We found that this record had 11 active Ques-
tion & Answer features, compared to an average of 6:1 active
Question & Answer features for all SEVERE records (the average num-
ber of active Question & Answer features for the records associated
with MODERATE, MILD, ABSENT severity levels was 4:22;2:93 and 0:26
respectively). Moreover, we observed that the patient suffered
from a substantial number of separate behavioral andmental prob-
lems. This patient’s record had 11 active Behavior Disorder UMLS
Hierarchy features compared to an average of 6:5 for all SEVERE

records and 30 active Mental Disorder UMLS Hierarchy features ver-
sus 26:8 on average for SEVERE records. This suggests that the symp-
tom severity of this patient is indeed more severe than that of
other patients within the SEVERE severity level. Thus, we believe that
the severity scores inferred by our approach are able to provide
finer grained information than the four discrete severity labels.
Moreover, we also observed that the hybrid model actually per-
formed better on the test set (0:841) than on the training set
(0:804 in cross validation). The increase in performance obtained
between the training and test set indicates that the features we
extract (described in Section 4.3) are not only effective but robust.

6.6. Future work

Based on the above analyses, we believe possible avenues for
future work include: (1) incorporating features capturing fine-
grained information about the degree of belief associated with
medical concepts such as assertions, modality and speculation;
(2) considering the experiencer of a medical concept (e.g. patient,
family member); and (3) modeling temporal information to differ-
entiate between medical concepts from the patient’s present,
recent past, and history. Moreover, future work may benefit from
considering alternative pairwise ordering classifiers or by design-
ing new machine learning approaches capable of jointly modeling
pointwise and pairwise information.
7. Conclusion

This article has described our submissions to the 2016 CEGS/N-
GRID shared tasks and workshop on Challenges in Natural Language
Processing for Clinical Data. Our submissions relied on a rich set of
features characterizing the patient’s answers to questions in the
psychiatric evaluation report, as well as relevant medical concepts
and established psychiatric metrics. We submitted three methods
for recognizing positive valence symptom severity: (1) a pointwise
model based on ridge regression, a (2) a pairwise model using a
random forest classifier, and (3) a hybrid model combining both.
Our key contributions to the task are (1) the performance compar-
ison between pairwise and pointwise methods for predicting
symptom severity as well as (2) the generation of a hybrid model
which combines the strengths of both methods, and (3) the discov-
ery of robust features which actually performed better on the test
set than on the training set. Two of our submissions placed within
the top ten submissions out of all participants, with the hybrid
model ranking second over-all in the official evaluations. The
official results of this task, as well as the post hoc analysis we per-
formed, demonstrate the importance of incorporating comparative
(e.g. pairwise) information to recognize symptom severity.
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