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Abstract

Military and civilian experience has shown that long-duration assignments present increased risk of performance failures as the mission progresses.  This is due to interruption of normal sleep cycles and to the psychological pressures of the living and working environment.  There continues to be a need for a non-obtrusive fatigue assessment system to successfully monitor the level of alertness of all personnel during critical missions or dangerous activities. Our experimental data shows that specific phones have a predictable dependence on fatigue and, as such, precise phonetic identification and alignment is important to voice-based fatigue detection. This paper describes the development of an ASR system which provides the phonetic alignment accuracy necessary for the practical application of a voice-based fatigue prediction system. Significant improvement was observed on unseen data when word-posteriors were used as confidence measures to filter out less probable words.
1. Introduction
The unique characteristics of the military and aviation environment make war fighters and civilian pilots particularly susceptible to fatigue.  Environmental factors such as movement restriction, poor air flow, low light levels, background noise, and vibration are known to cause fatigue [1]. In addition, the introduction of advanced automation has changed the nature of the job for these individuals and hence people find it tiring if tasks are performed for long periods of time.
Sleep is often the prescribed remedy for fatigue and its related problems. The benefits of sleep are presently considered to be logarithmic in nature, with initial hours showing significantly greater benefits that diminish as one approaches his or her optimum sleep level.  This accounts for how one can sleep less and still appear to function normally.  However, the Reserve Capacity of Brain Function (RCBF), the brain’s ability to handle situations beyond that of normal and for longer periods, is restored only after a totally recuperative sleep cycle [7]. Thus, an individual with low RCBF may be able to perform routine duties without a problem, but be unable to successfully deal with emergency situations. 
Being able to quickly and non-obtrusively monitor an airman’s or soldier’s level of alertness prior to and during the undertaking of a critical mission activity would provide commanders with critical information regarding personnel assignments and certainly save lives and increase the likelihood of mission success.  Unfortunately, there are no cognitive assessment tests that have been proven to be effective in the field under conditions of high stress and limited testing time per subject. This paper details our approach to the development of a voice-based fatigue prediction system. 

Changes in the articulation of voiced sounds due to fatigue could be considered to be representative of changes in performance related to the control of the body’s voice production mechanisms. It was observed that with fatigue the fundamental frequency decreases and the word duration increases. Certain phonemes showed more variations related to fatigue than others, and this was determined by analyzing the correlation coefficients of speech uttered at two instances, one when the speaker was active and the other when the speaker was fatigued.  An analysis was done on a pilot fatigue database that was built by Greely et.al []. In all, approximately 12,000 individual formant frequencies were analyzed. Nineteen of these sounds showed highly significant correlation between at least one formant and performance across the entire population, the measure of fatigue level was obtained by observing the reaction times. The results confirmed that formant frequency is directly related to the speaker’s level of performance which, in turn, is affected by his or her level of fatigue.
The fatigue analysis system uses an ASR to obtain the time marks of specific phones of interest. The time marks are then used to pull out the corresponding MFCC vectors from the feature set for detecting fatigue. A block diagram of the system is shown in Fig 1. The challenge for this task is that the speaker should not be constrained to any vocabulary set or noise conditions, hence, the ASR has to be robust and should be able to work under any condition. With the current technology it is not possible to achieve the above conditions and to get them working close to real-time. Hence, instead of improving the recognition performance of the ASR, the confidence level of every single hypothesis was provided to the fatigue analysis system so that the fatigue algorithm can filter out phones with less confidence. The word-posteriors computed from word graphs were used as a confidence metric []. Significant improvement in fatigue analysis was observed when confidence measures were used for utterances which had out-of-vocabulary words. And also on speakers not present in the training set. The threshold to filter out less probable words was determined by observing the Region Of Convergence for the word-posteriors.
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Figure 1: Integration of the fatigue detection system with an automatic speech recognition system.
2. using voice to detect fatigue
Whitmore and Fisher [9] have shown that speech data follow the same trend as the data from cognitive tests and subjective measures of alertness. Results were obtained by having the test subjects voice two scripted sentences every three hours and then determine the fundamental frequencies and speech duration.  With fatigue, they demonstrated that the fundamental frequency decreases and the word duration increases.  They also noted a strong circadian trend, because the best voice performances occur during normal waking hours and the worst performances occur during normal sleeping hours. This is also consistent with numerous measures of alertness vs. time cited in the literature [10][11][12]. Satio et al.[14] reported changes in the appearance of sound spectrograms from analysis of specific, repeated utterances (“ro” and “ger” in “roger” for example) as a pilot experienced hypoxia prior to a fatal F-104 accident.

These results support the contention that voice characteristics are directly related to the speaker’s level of performance which, in turn, is affected by his or her level of fatigue. Since assuring high levels of performance in team members is the goal of supervisory personnel, this parameter is more important than an Sleep Latency Test [] score as a monitoring tool.

2.1 Correlation among Features 
Mathematically, the speech signal consists of a convolution of the excitation waveform with the filter description in the time domain or by a multiplication of the transfer functions of the two regions in the frequency domain. There is a reason to believe that fatigue is principally reflected in changes in the filter characteristics. Initial Phase I analysis confirmed a dependence between metrics related to the filter (formants) and fatigue. It therefore becomes necessary to process the recorded speech signal S(t) in a manner that will reveal filtering effects from the excitation signal. Fig. 1 illustrates how this is accomplished using cepstrum analysis techniques [].
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Figure 1: Cepstrum analysis of a speech signal. Using two discrete Fourier transform processes, the voice signal is representated by a set of cepstrum coefficients. Using this managable number of coeffieicents, the excitation ( e(t) ) and filter ( f(t) ) portions of the human speech production system may be analyzed. Here formants F1 through F4 and fundamental frequency, or voice pitch (F0) are indicated.

Therefore, instead of tracking changes in specific vocal metrics, such as formants, changes can be tracked in the entire speech production system using an analysis of these cepstral coefficients. The feature vector is extracted every 10 msec and contains 36 coefficients i.e. 12 static coefficients and 24 dynamic coefficients representing first and second derivatives. This is the standard technique used in any state-of-the-art speech recognition frontend.  Fig.2. is an illustrative example of how the MFCC vector changed over the four-day period of the sleep restriction.
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Figure 2: Changes in the MFCC vector during four days of sleep restriction.  Here we illustrate the MFCC vector (36 MFCC components) generated by a single subject‘s utterance of the sound “t”.  As quantified in the legend, the vector during Trials 1 and 10 match better than the vector at Trial 21.

Here an illustration is given of the feature vector generated by a single subject‘s utterance of the sound “t”. The legend of Fig.2 presents the correlation of the feature vector at each trial with the feature vector at the onset of testing (Trial 1).  This metric, which we call the Voice Correlation metric, is used as a means to quantify the subject’s voice at each trial.
2.2 Prelimnary Fatigue Experiments
As part of a larger study[16] that involved a 34-hour period of sleep deprivation, six non-medicated subjects were asked to recite a list of 31 words at six testing times (10:00 am, 4:00 pm, 10:00 pm, 4:00 am, 10:00 am, and 4:00 pm). These testing times were selected to represent circadian high and low points in performance.  Also measured during these testing times was sleep onset latency (SOL) which is the individual measurement component of the gold standard for sleepiness testing. Briefly, this test involves having the test subject lie on a bed in a quiet, darkened room and telling them to fall asleep. The time, in minutes, that it takes them to fall asleep, as measured by an electroencephalogram (EEG), is the sleep onset latency (SOL). Between tests subjects were allowed low arousal activities such as reading, watching TV and schoolwork.
Figure 3 shows the group average change in both SOL and our Voice Correlation metric for the sounds ‘p’ (as in pea) and ‘t’ (as in tea) over the 34 hour testing period. It can be seen from this figure that change in the voiced ‘p’ sound tracks in a manner similar to sleepiness while ‘t’ does not. The correlation coefficient ( R )  between SOL and time awake is -0.825, between Vc(p) and time is -0.89, and between Vc(t) and time is -0.67. From these numbers we estimate (using the value R2 ) that time awake accounts for 68%, 79 %, and 45 % of the variation of SOL, Vc(p) and Vc(t) respectively.
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Figure 3: Change in the voice vector Vs change in Sleepiness. SOL, sleep onset latency (to stage 2 sleep) trends downward over time for the FAA group average with circadian bumps at 16 and 28 hours awake (10 p.m. and 10 a.m.). Voice correlation (Vc), is the change in the voice vector, as quantified by the correlation with the vector at Trial 1. For the sound ‘p’ we observe a trending similar to SOL. The sound ‘t’ does not appear to be as sensitive to sleepiness as the sound ‘p’.
All three metrics show a circadian peak at 16 hours, however, the SOL peak is significantly greater than the voice peaks. This difference in circadian sensitivity tends to reduce a correlation coefficient-based quantitative comparison however, for purposes of comparison there is a correlation of -0.79 between SOL and Vc(p) and -0.54 between SOL and Vc(t).

2.3 The Need to Adapt Speech Recognizer
Fatigue analysis on voice is done by studying the spectral and temporal characteristics of specific phones extracted from human speech. Specifically, the 36 component MFCC vector for certain key phones is monitored over time. As the speaker becomes fatigued, this vector becomes increasingly dissimilar to the voice vector recorded during the speaker’s rested state. A statistical analysis of these changes provides us with a prediction of the speaker’s level of fatigue. 

The ASR provides output with hypothesized words or phones along with their time marks. The MFCC vector corresponding to the phones of interest are pulled out from the feature file. The general architecture of the fatigue detection system integrated with the automatic speech recognition system is shown in Fig.1.
Because the prediction software relies upon the ASR to provide MFCC vectors sorted according to specific phones, it is critical that the correct phones are identified from the input stream of audio data. Depending upon that nature of the application, achievement of this requirement has different degrees of difficulty.  For a scenario in which the speakers recite from a fixed list of phrases or words, the ASR has a limited list of words to identify, also, in the case of fixed phrases, the system know the order of word utterances. These conditions result in a high confidence level concerning the correctness of the phone and voice vector identification. 

While this scenario is useful for fatigue research and some operational applications, we believe that our system will find significantly more application if can monitor speakers as they go about their jobs, speaking in normal conversation. This significantly increases the load on the ASR in that any word, in any order, can be part of the audio input. Confidence in the resulting phone outputs, and as such the fatigue prediction, will be reduced. This problem is somewhat reduced in the sense that personnel at many operational sites will use key words over and over again. For instance, military aircraft controllers will use the ‘alpha-zulu’ alphabet to identify aircraft or landing sites. As such only a relative few words need to be recognized while the, more frequent, non-key words in the audio input need to be ignored. 

As a result, we of these factors, we have developed a “word-spotting” ASR that provides a level of confidence metric with each identified word. Using this feature, our fatigue prediction can ignore any voice vector data associated with a low confidence metric.
3. conclusion

Our human language technology system consists of four major applications. They are the speech analysis, speech recognition, speaker verification and the dialog systems. We have redesigned and implemented the above mentioned enhancements for all these applications. We have achieved good improvements in the robustness of all the four applications. In future we may come up with some evaluations regarding the improvement in overall robustness of our system.
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