Grammar Transformations in Speech Recognition1
M. Pannuri, W. Holland, J. Baca, G. Lazarou and J. Picone
Center for Advanced Vehicular Systems
Mississippi State University
{pannuri, wholland, baca, glaz, picone}@cavs.msstate.edu
Abstract‍‍‍
The widespread adoption of speech recognition has lead to the development of several language model grammar formats. We propose a unified language model architecture to support transparent conversion between various language model formats. This architecture requires the conversion of higher-level grammar specifications such as the Java Speech Grammar Format and the Speech Recognition Grammar Specification into lower-level theoretical structures such as Augmented Backus-Naur form and Standard Backus-Naur form, providing a common format for conversion and determination of equivalence. It additionally simplifies the construction of an accepting finite state machine for speech recognition purposes. The public domain implementation of this architecture provides a framework for future advancements in language model conversion and web-based speech recognition applications.
1. Introduction
[image: image1.jpg]BNF ABNF
=S <S>::=(ab)+c
<A>:=aB
::=bA
::=bc

JSGF XML-SRGS
<S>=(ab)+c; <item repeat="1-">

a
b

</item>
c

Accurate speech recognition requires a model for the spoken language being recognized. While a language model often includes various parameters for optimizing recognition, the bulk of any language model are the grammars describing the syntactic rules for accepted utterances. The focus of this paper is two industry standard grammar specifications, the Java Speech Grammar Format [1] (JSGF) and the W3C Speech Recognition Grammar Specification [2] (SRGS). To support these grammar specifications, we redesigned the language model conversion interface to our speech recognition toolkit [3].

[image: image2.jpg]Type
Value

Weight

TERMINAL

NONTERMINAL

KLEENE_STAR

[Tt

d

«g»

The complexity of a grammar increases as one traverses the Chomsky hierarchy. Initially we tried to convert XML and JSGF directly to finite state machine (IHD), which resulted in errors due to the syntactic complexity of these formats. Since JSGF and XML are very similar in syntax, intermediate steps that convert XML or JSGF to ABNF (Context-free grammars), and then to Standard BNF (Context-free Grammars) were added. The resultant regular grammars can then be easily mapped to finite state machine.
2. Grammar Specifications

We first provide a brief overview of various grammar specifications in use in the community. We then examine how these are used in a speech recognition system, and analyze the impact on storage and processing formats.
2.1 BNF/ABNF

Backus-Naur notation (commonly known as Backus-Naur Form or BNF) was developed by John Backus in 1959 to describe the syntax of the Algol 60 programming language and has since become the standard textbook grammar specification [1]. A BNF grammar consists of production rules of the form:
symbol := alternative | alternative
(1)
A production rule signifies that the symbol on the left-hand side (LHS) of the equation may be expanded into the string of symbols on the right-hand side (RHS). An alternative may consist of a combination of symbols, which may require expansion, and terminals. This uncomplicated structure allows for easy mapping to an accepting finite state machine, a trait useful in speech recognition applications.
Simple BNF did not easily support expression of many common structures needed to parse programming languages and was thus eventually expanded into other variants referred to as Extended Backus-Naur Forms (EBNF). While many of these EBNF specifications are similar in syntax, we have chosen a particular EBNF for illustrative purposes: Augmented Backus-Naur Form (ABNF). ABNF is a combination of BNF and regular expressions, allowing recursive BNF productions to be expressed iteratively using meta symbols such as the Kleene star and plus. ABNF balances compactness and simplicity with good representational power. ABNF uses iteration to express relations while BNF uses recursion.
2.2 JSGF

While BNF and ABNF proved to be rigorous theoretical specifications, implementation was difficult due to a lack of standardized specification for many concepts essential for speech recognition. Thus, the first industrial grammar specification, JSGF, was created. While JSGF is similar in form and expressive power to ABNF, it was designed with ease of implementation for speech recognition applications. In addition to programmatic constructs such as scope resolution, JSGF also includes a method for specifying weights, an essential feature for practical speech recognition. Additionally, the structure of JSGF production rules allows for easy mapping to and from an accepting finite state machine. These features characterize JSGF as a creature of speech recognition developers.

2.3 SRGS

[image: image3.jpg]XML-SRGS item repeat="1-2’

a
b
item
ABNF S>::=(ab)|(abab)

FSM
® 0,
05000

[image: image4.jpg]oYoYoYoYo

The W3C SRGS, a relatively new grammar specification from the W3C Voice Browser Working Group, is based on JSGF. It has two forms: an ABNF form (ABNF-SRGS) and an XML form (XML-SRGS). It is the XML form with which we are most concerned, as this form easily integrates with existing XML data and allows for the construction of web voice recognition applications. Although the ABNF-SRGS form is similar in syntax to JSGF and ABNF, the XML-SRGS form is dramatically different. As a markup language, XML-SRGS is far more human readable than either ABNF or JSGF. A consequence of this increased readability is that XML-SRGS has the shortfall of being difficult to map directly into an accepting finite state machine. Due, however, to the equivalence between the XML and ABNF forms of the SRGS, XML-SRGS may be converted to ABNF-SRGS which, in turn, may be mapped into a finite state machine.

2.4 Equivalence
While an in-depth examination of the syntax of these various grammar specification formats is beyond the scope of our discussion, we present the equivalent grammars for the regular expression (ab)+c in Figure 1 for the purpose of illustration. It can be observed from Figure 1 that the JSGF grammar format is very much similar to ABNF. Single ABNF production is equivalent to multiple BNF productions. As observed, in order to convert ABNF productions to BNF, new non–terminal symbols are to be introduced. These symbols are introduced such that the names of the newly introduced non-terminals do not conflict with the already existing names. Thus, iteration in ABNF productions is converted to recursion.
2.5 IHD

The Institute for Signal and Information Processing (ISIP) public domain speech recognition toolkit natively processes a language model consisting of layered or nested finite state machines, conceptualized in Figure 2. Such a structure is also called a recursive transition network. This native format is called ISIP Hierarchical Digraph (IHD).
It is important to stress that in our internal language model format, grammars are not defined by any grammar specification, above or otherwise, but by the finite state machines that accept languages their languages. Thus our goal was an efficient method of compiling all of the preceding grammar specifications into the finite state machines that accept them. For example, the finite state machine equivalent to the grammars illustrated in Figure 1 is shown in Figure 3 .
3. [image: image5.jpg]W

. Break apart rule at top-level nesting ‘OR’ operators into

multiple rules.
Recurse on any expressions within parenthesis.
Handle ‘** and ‘+” operators:
1. Replace occurrences of ‘symbol *
appropriately.
2. Replace occurrences of ‘symbol +”
appropriately.
For occurrences of ‘non-terminal, symbol’, replace all
epsilon transitions in the non-terminal expansion with
symbol.

Software Tools

The goal of our language model conversion software is to provide transparent conversion from JSGF and XML-SRGS language models to our internal IHD language model format and vice versa. Our early attempts towards this goal performed conversion from JSGF/XML-SRGS to IHD directly with no intermediary steps; this approach was highly heuristic and lacked rigor. Consequently, we redesigned our conversion process with a stronger grounding in theory.
This new design decomposes the conversion process into three steps. First, a JSGF or XML-SRGS language model is converted to a common ABNF format. Next, the ABNF language model is converted to BNF using formal language techniques. Lastly, the finite state machines of the end IHD are created from these BNF productions.
3.1 Data Structures

Data structures allowing for efficient storage and manipulation of the various grammar specifications are an integral part of our conversion software. Both JSGF and XML-SRGS grammars are stored as arrays of either JSGFToken or XMLToken objects, depending on type. Both token classes have storage for token type and token value. Additionally, the XMLToken structure contains the necessary members and methods to store and operate upon a token’s possible attributes. This necessary requirement is due to the nature of XML as a markup language.

[image: image6.emf]Both ABNF and BNF production rules are stored with the same aptly named structure: ProductionRule. The ProductionRule class is structured as a double linked list of production rule operator and symbol tokens. Each token has a type value, an optional string value, and an optional floating point value. The string value is for the specification of names of terminal and nonterminal symbols names. The floating point value is for the specification of weights, a feature not inherent in BNF or ABNF syntax. This structure is illustrated in Figure 4 for the regular expression aB* with a weight of .73 on the Kleene closure. It is important to observe that our method for the specification of weights in the ProductionRule class associates weights with transitions, rather than symbols. The production rules representing an entire grammar are stored as an array of ProductionRule objects.

3.2 JSGF/XML-SRGS to ABNF conversion
The most obvious difficulty in converting from JSGF or XML-SRGS to ABNF is the transformation of syntax. The JSGF syntax is very similar to ABNF. The XML-SRGS syntax, however, requires some explanation. The basic XML-SRGS tokens and rule references map easily to ABNF terminals and non-terminals. XML-SRGS <item/> tags are used to denote grouping; as such, they map well to ABNF parentheses.
The XML-SRGS markup attributes, however, do not map so clearly to ABNF. While the repeat=’0-‘ and repeat=’1-‘ item attributes can be converted into the Kleene star and plus, respectively, XML-SRGS also allows for repeat attributes such as repeat=’m-n’. Such detail is impossible in ABNF. Thus, conversion from XML-SRGS includes the duplication of such repeats into enumerated alternatives, as illustrated in Figure 5.
While JSGF and XML-SRGS are markedly different in syntax, they share some underlying aspects. The most important of these from the point of view of conversion to IHD is the weight specification. In both JSGF and XML-SRGS, weights are attached to symbols rather than transitions. This corresponds to a Moore finite state machine. However, the finite state machines used in IHD are of the Mealy variety, with weights on arcs. Hence, a conversion is necessary.
We chose to implement this Moore machine to Mealy machine transformation during the conversion to ABNF due to the differences in weight specification techniques between JSGF and XML-SRGS. While JSGF is an exclusively Moore specification, XML-SRGS additionally allows for the attachment of probabilities to the conceptual equivalent of Kleene closures, repeat attributes. This added complexity requires that the JSGF and XML-SRGS Mealy to Moore conversions be executed in separate modules.

3.3 ABNF to BNF conversion
ABNF uses regular expression operators to avoid the recursion inherent in most BNF grammars. Thus, the conversion from ABNF to BNF will increase the number of productions. This conversion is primarily concerned with the simplification of ABNF rules containing regular expression operators into combinations of BNF productions. Textbook algorithms exist for such simplification [4], and consist of systematically replacing ABNF rule patterns with BNF productions.
The first and easiest operator to remove is the ‘OR’ operator, signified by a ‘|’. As BNF allows multiple expansions of a given non-terminal, an ABNF ‘OR’ may be broken by replacement with multiple rules, each containing one alternative.
After removal of the ‘OR’ operators from a set of ABNF productions, all rules will consist of a series of symbols with star ‘*’ and plus ‘+’ meta symbols interspersed. Removal of these operators consists of replacing each occurrence with three BNF productions. These replacements are summarized in Table 1.

The final step in conversion is to handle concatenation and replace trailing epsilon transitions with proceeding terminal symbols.
Of course, only meta symbols in the top level of nesting may be handled in this manner. Complexities are introduced if parentheses are used to nest expressions. There are two obvious methods for evaluation of such nested expressions. The first is conversion to Reverse Polish notation and evaluation with a stack. The second is a multi-pass algorithm handling the inner-most level of nesting first. Our system uses the latter of these two. Such a multi-pass algorithm is far simpler than the alternative, although there are efficiency losses.
An additional consideration is the naming convention of the created rules. Our software uses a shared naming counter for this task to ensure unambiguous naming. For reference, the algorithm for the above process may be found in Figure 6.
3.4 BNF to IHD conversion
Once a grammar is in BNF, it becomes a straightforward process to create the corresponding finite state machine. BNF terminals correspond to finite state machine nodes, and BNF non-terminal symbols correspond to arcs from the first terminal in the rule in which they appear to the first terminal in the rule to which they refer. Such conversion is easily accomplished with a two-pass algorithm, with the first pass creating nodes and the second pass drawing arcs.
4. Conclusions

Our public domain toolkit is one of the few that processes industry-standard grammar formats. Our redesigned conversion suite will not only extend the language model compatibility of our system, but will also allow for easy conversion between popular grammar formats using BNF as an intermediary. Additionally, support for XML-SRGS paves the way for future web applications of our speech recognition software.

Future work on these issues will include the development of public domain tools to verify and support these conversion operations. One such improvement will allow for finite state machines constructed in our graphical network builder program to be saved in any grammar specification. Another will allow for the testing of all language model formats by generation and verification of valid strings.
5. References
[1] Java Speech Grammar Format Specification, Version 1, Sun Microsystems Developer Network, October 26, 1998 (see http://java.sun.com/products/java/media/speech/forDevelopers/JSGF/JSGF).

[2] A. Hunt and S. McGlashan, Eds., W3C Speech Recognition Grammar Specification Version 1.0, March 16, 2004 (see http://www.w3.org/TR/speech-grammar/).

[3] J. Picone, et al., “A Public Domain C++ Speech Recognition Toolkit,” Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS, USA, January 2006.

[4] J.E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison Wesley, Boston, MA, 2001.

[5] D. Jurafsky and J. H. Martin, Speech and Language Processing, Pearson, Singapore, 2000.

Table � SEQ Table * ARABIC �1�. ABNF-BNF equivalence

ABNF�
BNF�
�
S::= A | B�
S::=A

S::=B�
�
S::=(A)+�
S::=A1

A1::=A, A1

A1::=A�
�
S::=(A)*�
S::=A1

A1::=A, A1

A1::= ε�
�

�

Figure � SEQ Figure * ARABIC �1�. Equivalent grammars

�

Figure � SEQ Figure * ARABIC �4�. ProductionRule structure

�

Figure � SEQ Figure * ARABIC �5�. Enumerated alternatives

�

 Figure � SEQ Figure * ARABIC �3�. Accepting finite state machine

1. This material is based upon work supported by the National Science Foundation (NSF) under Grant No. IIS-0414450. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF.

�

Figure � SEQ Figure * ARABIC �6�. Algorithm for ABNF to BNF conversion

�

Figure � SEQ Figure * ARABIC �2�. IHD structure

