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A Nonlinear Mixture Autoregressive Model for Speaker Verification (November 2010)

Sundararajan Srinivasan, Tao Ma, Georgios Lazarou, Joseph Picone
Abstract— Gaussian Mixture Modeling (GMM) has been the most popular approach in speaker verification for over two decades. The inefficiencies of this model for nonlinear dynamics are well-documented. In this work, we applied a nonlinear mixture autoregressive model (MixAR) to the problem of speaker verification. Experiments with synthetic data as well as with standard speech databases - TIMIT, NTIMIT, and NIST-2001 - demonstrate that MixAR, using only half the number of parameters and only static features, can achieve lower or comparable equal error rate when compared to GMM. Improvement in MixAR performance was always noted in noisy conditions simulated using various kinds of noise and at various levels added to clean speech. Also performance as a function of training and evaluation utterance duration is studied.
Index Terms—Gaussian mixture model, mixture autoregressive model, nonlinear speech model, speaker verification.
I. INTRODUCTION
T
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 he goal in speaker verification is to accept or reject the identity claim made by a speaker. This is widely used in a variety of applications ranging from secured access and surveillance to multimodal verification. A challenge for statistical modeling in speaker verification is to accurately and efficiently represent the probability distribution of speaker features so that even similar sounding speakers can be distinguished. The majority of speaker recognition systems today utilize Gaussian Mixture Models (GMMs) either entirely or as part of a hybrid model [1]

 REF _Ref262809466 \r \h 
[2]. 

There are two well-known drawbacks of the GMM model. The first involves redundancy – there is obviously statistical dependence between absolute, static, and acceleration feature coefficients, but building GMMs over the complete concatenated vector does not take this redundancy into account. Hence, we tend to use more parameters than might be necessary. The second more serious drawback, which is the focus of this work, is the implicit assumption of linearity in the MFCC dynamics. The derivatives of the cepstral features are only a linear approximation of the actual dynamics of the static features. However, a survey of studies on the subject shows that the speech signal contains significant nonlinear information, and using only derivative features to represent speech MFCC dynamics with GMM modeling is tantamount to discarding any nonlinear information present in the signal [2]

 REF _Ref277744447 \r \h 
[3]

 REF _Ref277744449 \r \h 
[4].
An obvious fix to this problem is to add features that can represent the nonlinear dynamic information. However, adding nonlinear invariants as features has not improved the robustness of speech and speaker recognition technologies in harsh or mismatched environments. Three reasons can be attributed to this failure. First, it is difficult to estimate invariants reliably from speech, resulting in parameter estimation algorithms that need to be extensively tuned. Second, these estimation algorithms typically require an acoustic event to have a long duration [5]. This gravely undermines the applicability of invariant features for a short-term stationary signal like speech. Even if it was somehow possible to estimate the invariants accurately, there is a third and more fundamental problem that invariants only quantify the degree of nonlinearity and do not characterize the nature of the dynamics completely.

The primary goal of this work is to approach the information representation problem at the modeling level using a nonlinear mixture autoregressive model (MixAR) [7], thereby accounting for the nonlinear dynamics of speech in the base model and minimizing the dimensionality of the feature space. To our knowledge, this is the first attempt at using this model for speaker verification. Previous work on mixture autoregressive modeling for speech has been in the context of hidden Markov models for speech recognition [8]. A more recent investigation of AR-HMMs [9] used a switching autoregressive process to capture signal correlations during state transitions. Results on speech recognition showed that at best the model was only comparable to an MFCC-based HMM using a GMM observation model. Another model considered speech features as a GMM white noise process filtered through an autoregressive signal for speaker identification [10].

A more sophisticated model introduced in [11] considers a mixture of autoregressive filters (MAR) for the observation model. Our earlier work [12] considered this model for phone classification. MixAR is a generalization of MAR, where the mixture weights are allowed to be time-varying and data-dependent. In this work, we apply the MixAR model to feature vectors in a speaker recognition task.

The rest of the paper is organized as follows: Section 2 defines the MixAR model and explains some of the relevant properties. Results of experiments using synthetic data are included in Section 3 and our speaker verification experiments with real speech data are in Section 4. Experiments documenting variation in performance with differing training and evaluation durations are discussed in Section 5. Finally, in Section 6 we present our conclusions and discuss future work.
II. MixAR Model Overview
A. Definition
A mixture autoregressive process (MixAR) of order p with m components, X={x[n]}, is defined as [7].
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where εi is a zero-mean Gaussian random process with a variance of σj2, “w.p.” denotes “with probability” and the gating weights, Wi sum to 1. The linear prediction coefficients, {ai}, represent the dynamic model, where ai,0 are the 
component means, while wi and gi are called gating coefficients. It is apparent that an m-mixture MixAR process is the weighted sum of m Gaussian autoregressive processes, with the time-dependent weights depending on previous data and the gating coefficients.

B. Properties of MixAR Model
One insightful way of viewing this model is as a process in which each data sample at any one point in time is generated from one of the component AR mixture processes chosen randomly according to its weight Wi (see Fig. 1). One property of MixAR that is of particular relevance here is the ability of MixAR to model nonlinear time series [7]

 REF _Ref277744683 \r \h 
[11]. Though the individual component AR processes are linear, the probabilistic mixing of these AR processes constitutes a nonlinear model. Even when the mixture weights are fixed, the model reduces to MAR, which is still nonlinear. The addition of a gating system layer for weight generation increases the flexibility of the model even further, allowing us to model distributions as a function of past data.

Several other properties of MixAR, including a mathematically rigorous proof of the asymptotic performance of a MixAR model for stochastic processes are derived in [7]. The same work also discusses the problem of parameter estimation; however some practical implementation issues remain and we discuss them in the next sub-section. Note that in the original formulation, both the gate and prediction orders were constrained to be equal. In this paper, we restrict ourselves to MixAR models of order one to avoid difficulties during parameter estimation. We used the ISIP public domain speech recognition software [13] to implement the MixAR model as well as integrate it into an existing speaker verification system.

C. MixAR Parameter Estiamtion

Similar to the well-known training procedure for GMM, maximum likelihood estimates for MixAR prediction and variance parameters can be calculated using the Expectation-Maximization (EM) algorithm [14]. Given the order, p, the parameter set for each of the m components of a MAR model consists of p+1 predictor coefficients (including the mean), the error variance, and mixing weight:
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To estimate these parameters, we first need an initial guess for these parameters and then we iterate with EM to successively refine the estimates. An initialization strategy that we found to work reasonably well was to first train a GMM with the same number of mixtures and then set each component of the MixAR to have the same mean, variance, and weight as the GMM model. We initialize the predictor coefficients and the data-dependency gating coefficients, {Ai} of MixAR to zero. These initial parameters can be then refined recursively using an E-step [7]:
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where
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is the probability a sample was generated from component l at time instant n. The corresponding M-step is given by:
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where
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and
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Refer to comments on estimation of predictor coefficients and variances for MixAR and MAR in [7]

 REF _Ref277744683 \r \h 
[11] for further details.

However, a complication arises with respect to the estimation of gating coefficients for MixAR. There is no closed-form solution for these, and hence a Newton gradient-ascent approach must be used:
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where Q denotes the log-likelihood of the MixAR model for the training data. β and Δ are design parameters to be chosen empirically. The expression for computing Q is:
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Due to this complication in the updates for the gate coefficients, the training procedure outlined above is not in the realm of strict EM algorithm but falls under a calss of algorithms called as generalized EM algorithms (GEM) [15]. For both EM and GEM algorithms, the E- step is similar. However, while an EM algorithm actually maximizes the expectation during each M-step, a GEM algorithm only guarantees that parameters that increase the model likelihood for the data is increased but does not guarantee that his is maximized at each M-step. This could mean that a GEM algorithm could take more number of iterations for training than an EM algorithm for the same or a comparable problem.

Drawing parallels with the choice of adaptation factor μ in adaptive filter theory, we can envisage that quick and smooth convergence of the GEM algorithm can be achieved by starting with a relatively high value for β and then reducing this value with successive iterations. In our experiments, we found that fixing Δ = 0.01 and running 10 iterations each with β = 0.9, β = 0.5, and β = 0.2 in succession provided a reasonably smooth and quick convergence. However, such convergence is not guaranteed in general and this poses a problem to the application of this model for real-life signals.

Fortunately, we can do better than guessing an appropriate value for β. We can use the secant method for root-finding and maximization [16]. In general, to find the maxima using Newton’s method, the iteration is:
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In the secant method, the double derivative in the denominator is estimated numerically using the secant at the point. Thus, we estimate the scaling factor β as the inverse of double derivative of the log-likelihood w.r.t. the gate parameters:
	
[image: image14.wmf]l

w

Q

2

2

/

1

D

D

=

b


	(14) 


[image: image19.emf] 

       

   

1/A 1 (z)  

1/A 2 (z)  

During implementation, this scheme amounts to finding for each gate coefficient wl, the value of Q at three different points, Q(wl), Q(wl +Δ), Q(wl - Δ), and then using the following update equation:
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	Similarly, the update equation for gate coefficients gl is:
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Using this method, we obtain convergence curve as in Fig. 2 for the same data from speaker 4516 of NIST-2001 database [17] used for the previous method. We find that that this method is more reliable and quick - three GEM iterations were sufficient. We use this method in future experiments.
III. Synthetic Data Experiments

A. Two-way Classification with Speech-Like Data
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In order to evaluate how well MixAR does as compared to GMM for speech-like signals, two speakers from the 2001 NIST SRE Corpus [17] were selected. A 3-state HMM with 4 Gaussian mixtures per state and a MixAR model with 4 mixtures were trained over 12 static MFCC coefficients for each speaker. For each class (e.g., a speaker), two speech-like signals of 40,000 vectors were generated – a linear speech-like signal (X1) was synthesized from the HMM model, and a nonlinear speech-like signal (X2) was generated from the MixAR model. To simulate a range of signals with varying degrees of nonlinearity, the two signals were mixed with a mixing coefficient α:
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The first 20,000 vectors from each Xα were used as a training set while the remaining vectors were split into 200 segments of 100 vectors each for evaluation. 
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The results of the classification experiments with this data are shown in Table I. We can see that when the amount of nonlinearity is insignificant, GMM performs as well as MixAR. However, as the amount of nonlinearity in the signal increases, MixAR performs significantly better with just static features as compared to GMM with static+∆ features. These results validated the basic model and provided motivation to do further testing on more realistic data.
B. Speaker Verification with Synthetic Data

Since our goal is to study speaker verification, we usedvthe development database in the 1-speaker detection task of the 2001 NIST SRE Corpus [17] for our next set of experiments. This development database is small enough to make it manageable and yet large enough to provide a reliable estimate of the performance. All 60 speakers in the training set were used. Each training utterance was about 2 minutes long. Static (13 MFCCs), delta (26 MFCCs) and delta-delta (39 MFCCs) features were extracted.

Two types of clean data were synthesized. For the first type, a 10-state HMM with 4-Gaussians per state was trained for each utterance for each MFCC. For the second type, a 32-mixture MixAR model of prediction order 1 was trained for each utterance and for each MFCC. For each of the models trained, new training data of about 30,000 frames per speaker and evaluation data of 20 utterances with about 200 frames for each utterance per speaker were generated according to that model.
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Similarly, two types of noisy data were generated. First, the clean training utterances from the development data were corrupted with car noise to achieve an SNR of 5 dB. This approach followed a methodology previously used to generate the AURORA database [19]. The remainder of the steps to yield the two types of noisy data were the same as those for the clean case. The goal of creating data in this way was to simulate 4 different test conditions: clean/linear, clean/nonlinear, noisy/linear and noisy/nonlinear.

Using the synthesized training data, both GMMs and prediction order-1 MixARs were trained for each speaker under each condition. Then the corresponding synthesized evaluation data were used for evaluating speaker verification performance. For the clean case, there was little difference in performance between GMM and MixAR. For noisy evaluation data at 5 dB SNR, there was not much variation in performance between GMM and MixAR for HMM-generated data. 
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However, for the data generated from the nonlinear MixAR model and with the addition of noise, the MixAR model showed a significant improvement in performance using far fewer parameters. This is evident from the DET plot in Fig. 3. These results provide support to the hypothesis that when there are significant nonlinearities in the signal, using this information makes the nonlinear model much more robust to the presence of noise.

IV. Speaker Verification Experiments
A. Evaluation Using NIST-2001 Development Database
We applied the MixAR model to the 1-speaker detection task in the 2001 NIST SRE Corpus [17] . Only the development database was used. All 60 speakers were used for training and all 78 utterances were used for evaluation. Each training utterance was about 2 minutes long, while the test utterances were of varying length not exceeding 60 seconds. Static (13 MFCCs), velocity (13 ∆-MFCCs), and acceleration (13 ∆∆-MFCCs) features were extracted. 

First performance is evaluated with and without delta features and energy for a fixed number of mixtures. The results are tabulated in Table II. For GMM, substantial improvement is obtained using the delta features and marginal improvements were obtained using delta-delta features. For MixAR, the use of any delta features provides no measurable improvements. This clearly indicates that MixAR can extract all necessary information from only the static features. 

MixAR and GMM performance was then evaluated as a function of the number mixtures. The detection error trade-off (DET) curves are shown in Fig. 4. The EER results are shown in Table II. Also indicated in parenthesis is the number of parameters for each case. From this table it is clear that MixAR can achieve about the same performance using almost 2x fewer parameters than GMM. This reduction in the number of parameters points to the efficiency of MixAR in capturing the dynamic information.

Moreover, even when considering the best case scenario for GMM with a large number of parameters (8 mixtures with static as well as velocity and acceleration coefficients), there is a 10.6% relative reduction in EER with MixAR. These results appear to strongly indicate that there is nonlinear evolution information in speech features that the GMM model cannot capture using linear derivatives alone and that MixAR can effectively employ this information for achieving better speaker recognition.
B. Evaluation using TIMIT database under Noisy Conditions

[image: image25.emf]  0.1   0.2  0.5    1     2      5     10     20     40     60  

  0.1 

  0.2 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

  60  

False Alarm probability (in %)

Miss probability (in %)

Speaker Detection Performance for Additive Car Noise

 

 

MixAR8, car 0dB

MixAR8, car 5dB

MixAR8, car 10dB

GMM16, car 10 dB

GMM16, car 5 dB

GMM16, car 0 dB

To evaluate the robustness of MixAR compared to GMM on unseen noise conditions, several noise conditions were simulated with the TIMIT database [18] by adding synthesized noise from three different noise sources: white, car, and babble. Three SNR levels were used: 10, 5 and 0 dB (in addition to the clean set). The core test partition of the database containing 168 speakers was used. The three types of noise sources were chosen to represent commonly occurring types of noise.

The matrix of experimental results is shown in Table IV. From this table, it is clear that while unseen noise conditions degrades performance for both models, MixAR performs relatively better than GMM and also uses 2.5 times fewer parameters. The DET curves shown for the different noise conditions in Fig. 5 also support the conclusion that MixAR performs better than GMM.
C. Studying Channel Variation Effects using TIMIT-NTIMIT Databases
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Channel variation is another problem that degrades the performance of speech processing systems. NTIMIT is a database that was created by transmitting TIMIT utterances over different telephone channels [20]. We studied speaker verification performance on NTIMIT using the core test set of 168 speakers by splitting the data for each speaker into 8 utterances for training and the remaining 2 utterances for evaluation. The DET performance curves for the 8-mixture MixAR using only static MFCCs (with 480 parameters) and for the 16-mixture GMM (with 1168 parameters) using both static and delta features is shown in Fig. 6. The corresponding EERs are shown in Table V. From this it is clear that MixAR using 2.5 times fewer parameters achieves the same or higher level of performance as a GMM.

D. Effect of Training Data Duration on Speaker Verification Performance

Even if MixAR could do better under the conditions we have tested so far, it is possible that MixAR requires more training data than GMM for reliable parameter estimation. This could be a particular concern considering that MixAR attempts to learn nonlinear dynamic information, and nonlinear dynamics are notoriously difficult to characterize from short lengths of data. For example, it is known that estimates of Lyapunov exponents can be unreliable when the length of data is short [21]. One particular concern with insufficient training data is the problem of over-fitting. It is therefore necessary to study performance as a function of the amount of training data.

Towards this end, we conducted experiments with varying training utterance durations keeping the evaluation utterance duration a constant. Utterances corresponding to five durations – 120, 90, 60, 30 and 15s - were extracted from training data for each of the 60 speakers from the training part of NIST 2001 development database. All evaluation data for the 78 speakers with durations ranging mostly between 20 and 40 s were used. NIST-2001 database is particularly suited here because the training data is clean and the evaluation data is corrupted by different kinds of noise. This means that models that are over-trained will perform especially poor on the evaluation utterances. 

Number of mixtures for MixAR model was fixed to 8. The number of mixtures for GMM was also fixed at 8 to alleviate the problem of over-fitting. The results of the experiment are reported in Table VI. From the table, it is clear that MixAR suffers less from over-fitting than a comparable GMM.

There is a 43.9% increase in EER for GMM when the training utterance duration reduces from about 120s to 15 s. On the other hand, the corresponding increase in EER for MixAR is only 26.56%. Thus, this experiment leads us to conclude that MixAR can handle shorter training data durations better than GMM.

E. Effect of Evaluation Data Duration on Speaker Verification Performance

It is reasonable to expect that increasing evaluation utterance durations improves speaker verification performance at least up to an extent. For short evaluation utterances, the speaker identity becomes more ambiguous. Thus, it is vital to evaluate the performance of models as a function of evaluation utterance durations.

For this purpose, evaluation utterances of five different durations – about 30, 15, 10, 5, and 3 s – were extracted from each of the 78 test utterances in NIST-2001 development database. All training data from all 60 speakers were used. The results of this experiment are reported in Table VII. From this table, it is clear that performance mostly degrades as evaluation duration is reduced.

For GMM, there is an increase in EER of 31.2% as the evaluation duration reduces from about 30s to 3s. The corresponding reduction for MixAR is 33.3%. Thus MixAR appears to get slightly more sensitive than GMM as the evaluation data duration is reduced. This indicates that for very short utterances, GMM outperforms MixAR.
V. Conclusion
In this work, we applied a nonlinear mixture autoregressive model to several speaker verification tasks. Our experiments with synthetic as well as real speech data show that MixAR model outperforms GMM especially under unseen noisy conditions. Moreover, in all cases we tested, MixAR did not require delta features and used 2.5x fewer parameters to achieve comparable or better performance as that of GMM. The dynamic modeling capability of MixAR is effective at capturing and exploiting speech dynamics better than GMM. However, experiments point to a lower limit for evaluation utterance duration below which GMM outperforms MixAR.

Future work will focus on deriving an adaptation framework for MixAR to demonstrate that it is more effective than conventional adaptation approaches on unseen channel conditions. We are also integrating the MixAR approach into a large vocabulary speech recognition system.
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Fig. 1.  An overview of the (a) GMM and (b) MixAR approaches
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Fig. 2: Performance of (Generalized) EM using secant method as a function of iterations for a 8-mixture MixAR model of speaker data from “4516” of NIST-2001 database.











Table I


Classification Error Rate (%) with 12 speech MFCC-like synthetic features for GMM and MixAR (Number of parameters in each case is in parenthesis)


α�
GMM-8mix. Static+∆�
MixAR 4-mix.


Static�
�
0.0*�
1.5 (288)�
1.5 (240)�
�
0.25�
3.25 (576)�
3.5 (240)�
�
0.50�
10.25 (576)�
6.25 (240)�
�
0.75�
24.75 (576)�
9.75 (240)�
�
1.0�
26.75 (576)�
13.75 (240)�
�
*: For this case, GMM performed better with only static features,


and this value is stated here
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Fig. 3.  Speaker Verification DET curves for MixAR-generated nonlinear data with 5B car noise.











Table II


Speaker recognition EER with NIST for MixAR and GMM with different feature combinations


Features�
GMM 16-mix.�
MixAR 8-mix.�
�
Static(12)�
22.1�
19.1�
�
Static+E(13)�
33.1�
41.1�
�
Static+Δ(24)�
20.6�
20.4�
�
Static+Δ+ΔΔ(36)�
20.5�
20.5�
�






Table III


 Speaker recognition EER with NIST for MixAR and GMM as a function of #mix. (the numbers of parameters are shown in parentheses


#mixs�
GMM


Static∆+∆∆+.�
MixAR


Static Only�
�
2�
23.1(216)�
24.1(120)�
�
4�
21.7(432)�
19.2(240)�
�
8�
20.5(864)�
19.1(480)�
�
16�
20.5(1728)�
19.2(960)�
�






�





Fig. 4: Speaker verification DET curves with NIST-2001 development database.











TABLE IV


Speaker Verification Performance (EER) for different noise conditions











GMM* (1168)�
SNR (dB)�
Car Noise�
White Noise�
Babble Noise�
�
�
Clean�
2.4�
�
�
10 dB�
19.7�
48.7�
40.6�
�
�
5 dB�
31.2�
50.0�
44.7�
�
�
0 dB�
39.3�
49.8�
48.2�
�



MixAR (480)�
Clean�
1.8�
�
�
10 dB�
13.7�
47.0�
36.9�
�
�
5 dB�
23.2�
47.6�
42.8�
�
�
0dB�
33.9�
48.5�
47.6�
�
* Number of parameters in each case is in parenthesis.
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    b)�


      c)�
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Fig. 5: DET curves for GMM and MixAR models on noisy TIMIT test with additive a) white b) babble and c) car noise at different SNRs











Table  V:


Speaker Verification Performance EER with TIMIT and NTIMIT


Database�
GMM (1728)�Static+∆+∆∆ MFCCs�
MixAR (480)�Static MFCCs Only�
�
TIMIT�
2.4�
1.8�
�
NTIMIT�
21.0�
20.9�
�






�


Fig. 6: DET curves for GMM and MixAR models on TIMIT and NTIMIT databases.





Table  VI


Speaker Verification Performance (EER) as a function of training data duration. Evaluation utterance durations varied mostly between 20-40s.

















GMM


(864)�
Training Utterance Duration�
EER�
�
�
120*�
20.5�
�
�
90�
20.4�
�
�
60�
20.4�
�
�
30�
24.4�
�
�
15�
29.5�
�






MixAR


(480)�
120*�
19.2�
�
�
90�
21.5�
�
�
60�
21.8�
�
�
30�
21.8�
�
�
15�
24.3�
�
*Training data varied around 120s.








Table VII


: Speaker Verification Performance (EER) as a function of evaluation data duration. Training utterance durations varied mostly around 120s.

















GMM


(864)�
Evaluation Utterance Duration�
EER�
�
�
30*�
20.5�
�
�
15�
21.8�
�
�
10�
21.5�
�
�
5�
24.4�
�
�
3�
26.9�
�






MixAR


(480)�
30*�
19.2�
�
�
15�
23.4�
�
�
10�
23.1�
�
�
5�
25.6�
�
�
3�
25.6�
�
*Evaluation data varied between 20-40s.











Manuscript received November 19, 2010. This material is based upon work supported by the National Science Foundation under Grant No. IIS-0414450. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. 


S. Srinivasan (ss754@msstate.edu) and T. Ma (� HYPERLINK "mailto:tm334@msstate.edu" ��tm334@msstate.edu�) are with Mississippi State University, Missippi State, USA. 


G. Lazarou was with Mississippi State University, Mississippi State, USA. He is with New York Transit Authority, New York, USA. (georgios.lazarou@gmail.com).


J. Picone was with Mississippi State University, Mississippi State, USA. He is currently with Temple University, Philadelphia, USA (joseph.picone@gmail.com).





_1351447163.unknown

_1351447595.unknown

_1351448784.unknown

_1351497369.unknown

_1351447697.unknown

_1351447961.unknown

_1351447649.unknown

_1351447274.unknown

_1351447344.unknown

_1351447210.unknown

_1351446722.unknown

_1351446902.unknown

_1351447089.unknown

_1351446847.unknown

_1351446151.unknown

_1351446217.unknown

_1351446013.unknown

