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The prominent modeling technique for speech recognition today is the hid

Markov model with Gaussian emission densities. However, they suffer from an inabili

learn discriminative information. Artificial neural networks have been proposed

replacement for the Gaussian emission probabilities under the belief that the ANN m

provide better discrimination capabilities. However, the use of ANNs often result

over-parameterized models which are prone to overfitting. Techniques suc

cross-validation have been suggested as remedies to the overfitting problem

employing these is wasteful of both resources and computation. Further, cross-valid

does not address the issue of model structure and over-parameterization.

Recent work on machine learning has moved toward automatic method

controlling generalization and parameterization. A model that has gained much popu

recently is the support vector machine (SVM). SVMs use the principle of structural

minimization to simultaneously control generalization and performance on the trai

set. A recent dissertation from this university has employed the SVM in a hyb
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framework for speech recognition. While the HMM/SVM hybrid produced a decreas

the error rate, the implementation had some significant shortfalls which we hop

address in this work. First, the SVMs are not probabilistic in nature and, thus, are no

to adequately express the posterior uncertainty in predictions. This is particu

important in speech where there is significant overlap in the feature space. The SVM

make unnecessarily liberal use of parameters to define the decision region.

In this dissertation, we study a Bayesian model which takes the same form a

SVM model. This model, termed the relevance vector machine (RVM), provides a f

probabilistic alternative to the SVMs. The RVMs have been found to prov

generalization performance on par with SVMs while typically using nearly an orde

magnitude fewer parameters. Sparseness of the model is automatic using Mac

automatic relevance determination methods. In this work we propose to develop the

speech recognition system using RVMs. Similar to hybrid HMM/ANN systems, the R

model will replace the Gaussian density in the HMM models. To accomplish this, we m

develop closed-loop training routines which insure convergence and optima

Computational issues make this an impossibility currently and must be addressed be

scalable system is feasible.
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CHAPTER 1

INTRODUCTION

Spoken communication is the most natural form of information exchan

employed by humans. The communication process requires a speaker to en

information into a set of signals (speech production) and a listener to receive those s

(speech perception), recognize (or decode) the components of the signal (often wo

in speech recognition) and infer the implied meaning of the components and take a

(speech understanding) [1,2]. The process of human speech recognition often u

combination of sensory sources including facial gestures, body language, auditory in

well as feedback from the speech understanding facilities to produce an acc

transcription of the speaker’s message. However, for our limited purpose of comp

speech recognition, we will consider only the problem of converting an acoustic si

(i.e. the speaker’s voice) into a stream of words. This problem is akin to communica

over the telephone where the other sensory side-information is not available. Hence

we will consider this as thespeech recognition problem(see [3] for examples of

multimodal recognition technology).

general speech problem

typical modeling approach

discriminative information
1111
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CHAPTER 2

STATISTICAL APPROACH TO SPEECH RECOGNITION

In this chapter, we describe the predominant approach to speech recognition.

statistical approach and is framed in a maximum likelihood paradigm using hid

Markov models (HMMs) with Gaussian mixture model (GMM) emission distributions

learn the long-range and local phenomena associated with speech patterns.

tremendously successful, a criticism of these systems is that they are not ab

adequately model the discriminative information present in the speech signal. Hy

systems are described which combine the discriminative-modeling power of artif

neural networks and the temporal modeling power of the HMM. The training techniq

for these hybrid systems will serve as inspiration for the techniques developed in

dissertation.

2.1. The Speech Recognition Problem

At the heart of computer speech recognition is a pattern recognition problem

can be stated thusly: given a set of acoustic observations, , and a s

models describing acoustic and linguistic patterns, we must determine which pat

were observed and, in doing so, determine which word sequence,

was spoken. Four questions quickly arise from this problem statement:

O o1 o2 … oT, , ,=

W w1 w2 … wM, , ,=
3333
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1. How do we obtain the acoustic observations?

2. What model do we use for the acoustic and linguistic patterns?

3. How do we train these models?

4. How do we find the best word sequence when given a new set of observation

The first of these questions embodies the problem of finding a suita

transformation of the sampled speech signal into a compact feature space whic

properties amenable to pattern recognition techniques. The component of a speech

that implements the transformation is the acoustic front-end. Volumes have been w

on front-end processing (for example see [4,5]), however, a fairly generic frame-ba

cepstral front-end is at the core of most acoustic front-ends for speech recognition a
Sampled Speech Signal

Spectral
Compensation
and Smoothing

Framing
and

Windowing

Acoustic
Frames

Acoustic
Frames

Energy
Measurement

Derivative
Analysis

Cepstral
Analysis

Energy

Mel
Cepstrum

Observation
Vectors
Figure 1. Typical Mel-Cepstral acoustic front-end.
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used in this work [6] and is depicted in Figure 1. While this front-end is not the o

possibility (see, for example [7]), it has been widely used in speech recogni

applications.

At the core of the cepstral front-end is a frame-based analysis which giv

short-time analysis of the sampled speech signal [4]. Under the assumption that the s

signal is stationary over short periods, a frame duration on the order of 10 millisecon

commonly used. The frame-based approach allows us to analyze the signal in terms

short-term frequency content. Mel-scale cepstral analysis (MFC) [6] is performe

provide a compact representation of the vocal tract impulse response. The mea

cepstral response is correlated with the shape of the vocal tract and position o

articulators at the time at which the frame of speech was uttered. While the frame-b

analysis assumes stationarity, it is an unrealistic assumption. Articulators do

instantaneously switch position at frame boundaries, nor are they completely motio

during the frame’s duration [8]. To account for some of the transitory behavior, first

second derivative features are typically appended to the feature vector.

With the acoustic observations in place, we can address the second question

above: what model of the acoustic and linguistic patterns do we use? Speech c

loosely seen as a concatenation of units embedded in a hierarchy as shown in Figure

example, we might say that speech is a concatenation of sentences which are, in

concatenation of words which are a concatenation of syllables which, finally, a

concatenation of phones. The phone is often considered to be the smallest, non-div

unit of sound. In describing the concatenative model, however, we made a f
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0.50.50.5
Figure 2. Speech is roughly modeled as a hierarchical constraint system. At each level of the hi-
erarchy, a different knowledge source is applied. The job of a speech recognition sys-
tem is to combine these knowledge sources in an optimal manner. Often the lowest
level in the hierarchy is modeled by hidden Markov models and is responsible for the
acoustic match (i.e. modeling the observations sequences generated by the acoustic
front-end).
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assumption. In conversational speech it is rarely possible to perceptually isolate a s

phone. Rather, our perception of a phone is formed from the surrounding phon

context [9]. For example the ‘a’ sound in the words “am” and “apple” differ — th

proximity of the nasal sound, ‘m’ causes the ‘a’ in “am” to be nasalized. This type

effect is particularly prevalent in conversational speech where the speakers are s

cautious in their articulation [10].

To model these coarticulation effects, we use a context-dependent model in w

the model for a base sound is dependent upon the surrounding context. In our ex

above, the ‘a’ in “am” and the ‘a’ in “apple” would be modeled separately. In most spe

applications, a single left context phone and a single right context phone modify the p

in question. This unit is known as a triphone and tends to lead to large increas

performance [11]. Larger contexts have also been applied with some smaller increa

performance [12]. Coarticulation at word boundaries is also a major problem

conversational speech. These effects are modeled by cross-word, context-depe

models.

Speech recognition requires choosing amongst many different poss

transcriptions. This requires that we have some principled manner for directly comp

candidate transcriptions so that the “best” one may be chosen. Probabilistic modelin

natural and very common comparison paradigm and provides our answer to the f

question above as well: how do we find the best word sequence given a new s

observations. We can reformulate the speech recognition problem as a probabilist
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where we want to find the word sequence, , that is most probable given the aco

observations, :

. (1)

This a posteriori formulation gives us no way to apply information about thea priori

probability of a word string. Thus, we use Bayes’ rule to rewrite (1) as

(2)

where is the probability that the acoustic observations would be seen wh

particular word sequence was spoken, is thea priori probability of the word string

being spoken, and is thea priori probability of the acoustic observation

sequence occurring. can be safely eliminated from (2) because the observ

sequence, , is constant during the maximization. This yields

. (3)

The terms in (3) are usually modeled separately. is determined b

statisticallanguage modelwhich might take the form of a stochastic grammar or

N-gram language model [13,14]. is given by anacoustic model. This acoustic

modeling component of the recognition system is explored in this dissertation. In m

state-of-the-art recognition systems, the hidden Markov model (HMM) is used as

statistical acoustic model [15,16,17,18]. The HMM (an example of which is shown

Figure 3) is a doubly-stochastic state machine that can be fully described by the

Ŵ

O

Ŵ
argmax

W
P W O( )=

Ŵ
argmax

W

P O W( )P W( )
P O( )

------------------------------------=

P O W( )

P W( )

W P O( )

P O( )

O

Ŵ
argmax

W
P O W( )P W( )=

P W( )

P O W( )
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1 2 3 4 5

a11 a22 a33 a44 a55

a13 a24 a35

a12 a23 a34 a45

b1(ot) b2(ot) b3(ot) b4(ot) b5(ot)

S=5
A={a11,a12,...}

B={b1,b2,b3,b4,b5}
. Here, is the number of states in the machine, is th

state-transition probability set, and is the emission probability distributi

The popularity of HMMs as a model of speech phenomena is owed to the HM

ability to simultaneously model the temporal progression of speech (speech is usually

as a “left-to-right” process) and the acoustic variability of the speech observations.

temporal variation is modeled via an underlying Markov process while the emis

distribution models the acoustic variability. This acoustic variability may come as a re

of differing speakers, channel conditions, stress levels, dialect, accent, etc. in the s

training corpus. The most commonly used emission distribution is the Gaussian mi

model (GMM) described by

, where (4)

S A B, ,{ } S A aij{ }=

B bj ot( ){ }=

bj ot( ) Cij N ot µij Σij,( )
i 1=

K

∑ Cij∑, 1= =
Figure 3. A simple HMM featuring a five state topology with skip transitions. Each state has a sto-
chastic emission distribution.
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In (4) and (5), the are the mixture weights and define the contribution of ea

distribution to the total emission score and is the dimension of the acoustic observ

vector.

Finally, when building the acoustic models with HMMs, one must decide exa

which acoustic unit (e.g. word, syllable or phone) to use. Most state-of-the-art system

based on the cross-word context-dependent phones described earlier. In these sy

each context-dependent phone (usually a triphone) is modeled by an HMM. Figu

shows how the HMM fits into the hierarchical model described previously.

2.2. Closed-loop, Supervised Parameter Estimation

The answer to the third question above (how do we train these models?) co

from taking an account of the tunable parameters in the hierarchical HMM sys

described previously. These are the language model probabilities, pronunciation m

probabilities and the HMM state transitions ( ), mixture weights ( ), means (

and covariances ( ). We ignore the first two of these in this dissertation and poin

reader to [13] regarding training procedures for language models and pronunci

models. Instead, we concentrate on the HMM parameters which are directly related

acoustic model. Typically, this approach involves finding the HMM parameter set

N ot µij Σij,( ) 1

2π( )n Σij

---------------------------- 1
2
--- ot µij–( )TΣij

1– ot µij–( )– 
 exp=

Ci

n

aij{ } Cij µij

Σij
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maximizes the likelihood of the data given the model, i.e. the maximum likelihood (M

approach.

As with most machine learning tasks, training acoustic models begins with s

labeled training data set. This training set consists of speech data and corresponding

transcriptions (sometimes phonetic transcriptions are available as well). Howeve

speech, there is a complicating factor: the time alignment of the labels to the spee

usually unknown. For instance, we may be given a five-second segment of speech an

that the transcription is “the boy ate candy”, but we do not know in which time inter

each word occurred. Therefore, we can not immediately determine which aco

observations should be used to train the individual emission probabilities. This is kn

as thesegmentation problem.

A simple two-step approach can be taken to overcome the segmentation pro

First, we hypothesize the sequence of HMM states which were most likely to h

generated the sequence of acoustic observations given the current parameter set.

known as astate-frame alignment. Second, we update the parameter set according to

state-labeled alignment. This is known as Viterbi training [15] because the first step

Viterbi alignment of the data to the current model. With this procedure, updating of

HMM/GMM parameters is a straightforward computation of the means and covaria

for each GMM given the observations [2].

In the Viterbi training paradigm, a binary decision is made as to whether a s

occurred. In other words, thea posterioriprobability that a particular state generated

particular observation is either 0 or 1. While simple to implement, it is questiona
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whether the current model is sufficiently accurate to warrant a hard binary decision o

the iterative procedure will converge. Baum and colleagues [19] addressed these pro

by defining a soft-decision training paradigm which is a special case of

expectation-maximization (EM) algorithm [20]. The EM formulation has the desira

property of guaranteed convergence to a local maximum.

Baum [19] defined an EM-type auxiliary function as

(6)

where are the new estimates of the system parameters, are the current s

parameters, and is a given state sequence (i.e. a given state-frame alignm

Maximizing  with respect to  insures that

(7)

which implies that

. (8)

Thus, maximizing the auxiliary function monotonically increases the likelihood of

data given the model [2,19,20] until a critical point is reached. Note that the sum

all in (6) implies a soft decision as to which is the "correct" state-frame alignme

Contrast this to the Viterbi training algorithm where a single alignment was assumed

the true alignment.

In practice, the Baum-Welch training algorithm is implemented in

forward-backward framework [2,16,17]. We define the forward probability, , as

Q λ λ',( ) P O q λ',( ) P O q λ,( )log
q
∑=

λ λ'

q

Q λ λ',( ) λ

Q λ λ',( ) Q λ' λ',( )≥

P O λ( ) P O λ'( )≥

q

α j t( )



13131313

ate

rd

ial

ve

.

he

ng

tion
probability of having observed the partial observation sequence, and st

at time :

. (9)

We can inductively define as a function of . The backwa

probability, , is likewise defined as the probability of observing the part

observation sequence, , and state  at time :

. (10)

It can be defined inductively as a function of . These inducti

representations provide an extremely efficient method for estimating and

Note that, in Viterbi training, the and were all unity for the states in t

assumed alignment and zero for all other state alignments.

The product of and gives the probability of any alignment containi

state  at time

. (11)

Likewise, the total probability of observing the sequence, , is just the marginaliza

across all states at any time

. (12)

o1 o2 … ot, , , j

t

α j t( ) P o1 o2 … ot qt j=, , , , λ'( )=

α j t( ) α1 t 1–( ) … αS t 1–( ), ,

β j t( )

ot 1+ ot 2+ … oT, , , j t

β j t( ) P ot 1+ ot 2+ … oT qt j λ'=, , , ,( )=

β1 t 1+( ) … βS t 1+( ), ,

α j t( ) β j t( )

α j t( ) β j t( )

α j t( ) β j t( )

j t

P O q, t j λ'=( ) α j t( )β j t( )=

O

P O λ'( ) α j t( )β j t( )
j 1=

S

∑=



14141414

to

EM

ary

fines

ions.

)

re not

the

ty of

past

ing

l of

tion

the

ing
Finally, we can define the probability of any alignment making a transition from state

state  while observing  in state  and  in state  as

. (13)

The above three probabilistic equations amount to the expectation step of the

algorithm. With (11), (12) and (13) in place, we can substitute them into the auxili

function, (6), and maximize with respect to each model parameter. This process de

the maximization step of the EM algorithm which yields the parameter update equat

These are fully derived in [2,13].

While the combination of HMMs and Gaussian mixture models (HMM/GMM

has been extremely successful, there are some key assumptions made that a

appropriate for modeling of speech symbols.

1. The assumption of conditional independence (i.e. that all probabilities in

system are conditioned only on the current state) is clearly false. The probabili

an acoustic observation given a particular state is highly correlated with both

and future observations. Most HMM systems account for this by includ

derivative features in the observation vector [5], thus breaking the mode

conditional independence. Ideally, one would want to condition the distribu

itself on the acoustic context, but that is impractical in conventional systems.

2. The HMM/GMM system makes assumptions about the parametric form of

underlying distribution which may lead to a poor match with the true underly

i

j ot 1– i ot j

P O qt 1– i= qt j λ'=, ,( ) αi t 1–( )aij bj ot( )β j t( )=
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distribution. To some extent, this can be mitigated by increasing the numbe

mixtures in the GMM, however.

3. Maximum likelihood approaches do not improve the discriminative abilities of

model. In other words, the ML approach maximizes the probability of the cor

model while implicitly ignoring the probability of the incorrect model. Ideally, th

training approach should force the model toward in-class training examples w

simultaneously driving the model away from out-of-class training examp

Methods such as maximum mutual information [21,22] and minimu

classification error [23] have been developed to incorporate discriminative trai

directly into the standard HMM/GMM framework. However, their success h

been limited due primarily to their considerable computational costs [22].

2.3. Connectionist Speech Recognition

The weaknesses of the HMM/GMM system have led researchers to seek m

which mitigate some or all of them [24,25,26,27]. Hybrid connectionist systems wh

merge the power of artificial neural networks (ANNs) and HMMs have receive

particularly large amount of attention from the research community in the past deca

an alternative to HMM/GMM systems [24,25,26,28,29,30]. The primary advantage

using the hybrid HMM/ANN systems in speech are:

1. ANNs are trained discriminatively to learn how to not only accept the correct c

assignments but to reject the incorrect class assignments.
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2. ANN classifiers are able to learn complex probability functions

high-dimensional feature spaces. GMM systems are usually restricted to sm

dimensional vectors (on the order of 30-50) due to amount of training data

would be necessary in estimating the parameters of the GMM distribution. HM

ANN system designers have put this to good use by using a longer feature v

consisting of a concatenation of the acoustic observations used in the HMM/G

system; i.e. [24,26]. Note that this

also circumvents the independence assumption since consecutive observatio

the ANN system are highly correlated.

While some systems have used ANNs to model both the temporal and aco

properties of speech [31,32], most of the ANN speech systems have used the ANN

replacement for the GMM probability distribution and have maintained the HMM a

model of the temporal properties. The outputs of a 1-of-N classifier trained unde

mean-squared error criteria are known to approximate the posterior class proba

, where the approximation accuracy is asymptotic in the size of the train

set [33]. Recall from the discussion of acoustic modeling earlier that the our goal

model which maximizes (2). In HMM/GMM systems, we directly build a model

, but with the ANN systems, we effectively have the posterior phone cl

probability, . Thus, the posterior class probabilities need to be converte

likelihoods using Bayes’ rule

ot
ANN ot k– … o, t 1– ot ot 1+ … ot k+, , , , ,[ ]=

P c o( )

Ŵ

P O W( )

P C O( )
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In practice, thea priori class probabilities are estimated from the training data [24,29]

Using (14), the ANN can be used as a direct substitute for the GMM in the HM

framework. Thus, it makes sense that they could/should be trained in the same m

Initially the hybrid systems were trained using a Viterbi (hard decision) training parad

as described for HMM/GMM systems above [24,29]. The HMM/ANN system with t

current ANN probability estimators was used to create a single alignment of the aco

observations to the HMM states. The ANN posterior estimators were then trained on

observation that aligned to the HMM state using a typical ANN training algorithm suc

back propagation. Parallel training methods were pursued due to the resource-inte

nature of ANN training [34]. Because ANNs are prone to overfitting, a held-o

cross-validation set is necessary to test for convergence of the models to a local ma

It is well known that, with infinite training data and sufficient model complexity

neural network trained on binary (0/1) targets will learn the posterior probabi

distribution perfectly [33]. However, it is less clear how the same ANN will perform wh

the training data is limited and the model topology is not matched to the true post

distribution. Yan, et al. [35] claim that, when given unseen data, an ANN trained un

such circumstances will produce unreasonable output. An appropriate response wo

to make a probability estimate which displays a lack of posterior knowledge abou

correct classification (a uniform probability for all classes, for instance). Instead,

ANNs often make extremely confident predictions despite the lack of any prior train

P c o( )
P c( )

----------------
P o c( )
P o( )

----------------=
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which supports the prediction. To address this issue, researchers have recently be

explore the use of the Baum-Welch framework as a method for training HMM/A

hybrids [35,36]. The goal of this method of training the HMM/ANN system is to train t

ANN to learn the posterior emission probability distribution from the targets that

readily available from the Baum-Welch procedure:

. (15)

The ANN is then directly trained on these  values.

The HMM/ANN hybrids have shown promise in terms of performance but h

not yet found widespread use due to some serious problems. ANNs are prone to over

the training data if allowed. To avoid overfitting, a cross-validation set must be use

define a stopping point for the training set. This is wasteful of data and resources

serious consideration in speech where the amount of labeled training data is very lim

ANNs also typically converge much slower than HMMs. Most importantly, the HM

ANN hybrid systems have not shown substantial improvements in recognition accu

over HMM/GMM systems.

2.4. Summary

This chapter has reviewed the most common acoustic modeling framewor

speech recognition systems — HMMs with GMM emission probability distributions. T

use of ANNs as replacements for the GMM distributions has also been discusse

particular importance in this chapter are the training techniques used in the HMM/G

γ j t( ) P qt j O λ,=( )
α j t( )β j t( )

αk T( )
k S∈
∑

-------------------------= =

γ j t( )
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systems and the hybrid HMM/ANN systems. The relevance vector machines explor

this dissertation will act in a fashion similar to the ANNs as posterior estimators. Thus

approaches developed in this dissertation will draw significantly from the HMM/AN

work. However, we will seek methods which are automatically immune to overfitt

without the artificial imposition of a cross-validation set as well as methods which

automatically learn the appropriate model structure. The next two chapters define

methods, the support vector machine and relevance vector machine, which both de

principled methods for avoiding overfitting — structural risk minimization for the supp

vector machine and Bayesian automatic relevance determination for the relevance

machine.
19191919
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CHAPTER 3

SUPPORT VECTOR MACHINES FOR SPEECH

RECOGNITION

Given a training corpus, where is the i’th inpu

observation and is the corresponding target (e.g. class assignment or class proba

the goal of a learning machine is to learn the mapping under some approp

optimization scheme. One flexible and popular class of functions are those which

linear combinations of basis functions on the input observations

. (16)

A special form of (16) is one in which there is a basis function prescribed for each trai

vector. These models are generally referred to asvector machines. The following chapters

d iscuss and compares two such mode ls : the Suppor t Vec to r Mach

(SVM) [37,38,39,40,41,42,43] and Relevance Vector Machine (RVM) [44,45,46].

3.1. Support Vector Machines

Learning is a process by which a learning machine is optimized under a give

of constraints. We can pose this process as one of optimizing somerisk function, ,

where the optimal machine is the one whose free parameters, , are set such that t

is minimized. This minimization is written as

O o1 t1,( ) o2 t2,( ) …, ,{ }= oi

ti

t f o( )=

y o w;( ) wo wiφi o( )
i 1=

M

∑+ wTφ o( )= =

R α( )

α
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where is a loss function which penalizes the mismatch between both the

and the parameterization of the learning machine and the true function, ; and

the joint distribution of the observations and targets. Finding a minimum for (17

usually impossible because can not be founda priori . Thus, we look for a

simplification of (17) that is tractable.

A popular variation of theactual risk, , which can be easily evaluated is th

measured mean risk, orempirical risk, defined as,

. (18)

where is the number (assumed finite) of training observations. is therefore the

computed from a fixed training set under the maximum entropy assumption of unifor

for . Finding the which minimizes (18) gives theempir ical r isk

minimization (ERM)solution and is one of the most commonly used optimizati

procedures in machine learning (e.g. mean-square error optimization). However, the

of the generalization of the learning machine is not specifically addressed when w

ERM. In fact, ERM requires that the training set be representative of the true

distribution to be effective. There could be several settings for the free parameters w

give us the same empirical risk. To determine which settings are optimal, we have to

which one would achieve the least actual risk.

α̂ argmin
α R α( ) argmin

α Q o y α, ,( ) P o t,( )d∫==

Q o t α, ,( )

f P o t,( )

P o t,( )

R α( )

Remp α( ) 1
l
--- Q oi ti α, ,( )

i 1…l=
∑=

l Remp

P o t,( ) α
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Vapnik [37] provides an elegant solution to this problem. Through his analysi

bounds on the actual risk he proved that bounds exist for the actual risk such that,

(19)

where is the Vapnik-Chervonenkis (VC) dimension and is a measure of the capac

a learning machine to learn any training set [37,39] and is the VC confidenc

is small (and we have done our job well of fitting the model to the training set),

machine generalizes well because the actual risk is guaranteed to be close to the em

risk. For binary classifiers where the loss functions are indicator functions,

defined by

(20)

where is the parameter set that defines the learning machine for a particular traini

and is the measure of the difference between the actual risk and the emp

risk [49] which we can use to compare system configurations which achieve equiv

empirical risks.

We can write in terms of the VC dimension, , and the size of the train

set, , as,

. (21)

From (21), we can see that when is large, and are both small which imp

a convergence of the actual risk and the empirical risk [39]. This result matches

R α( ) Remp α( ) f h( )+≤

h

f h( )

f h( )

f h( )

ε l( )
2

--------- 1 1
4Remp αl( )

ε l( )
-------------------------++ 

 

αl

ε l( )

ε l( ) h

l

ε l( ) 4
h 2l h⁄ 1+( )log( ) η 4⁄log–

l
-------------------------------------------------------------------=

l h⁄ ε f h( )
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intuition that a less complex machine (i.e. one where the capacity is much smaller tha

number of training samples) will generalize better than an overly complex machine g

that they achieve the same empirical risk. With this result, we can guarantee both a

empirical risk (training error) and good generalization — an ideal situation for a lear

machine. The converse property of (21) is also true — when is small, both

 are large and good generalization can not be guaranteed.

The principle ofstructural risk minimization(SRM) [37,49] is formulated to find

the minimum point on the curve describing the bound on the expected risk. It provid

principled method to trade-off the accuracy of the trained machine and the complex

the machine. For a fixed training set size, the VC dimension, , becomes the contro

parameter in . The joint optimization of and is not tractable in practi

problems. Thus, the principle of SRM is implemented in one of two distinct ways:

1. Fix the VC confidence to an appropriately low value and optimize the empir

risk.

2. Fix the empirical risk to an appropriately low value and optimize t

VC confidence.

The support vector methodology [38,39,41,42,43] implements SRM using the la

approach where the empirical risk is fixed at a minimum (typically zero for separable

sets) and the SVM learning process optimizes for a minimum confidence interval.

SRM principle thus orders the solutions which are optimal in the ERM sense. In the

l h⁄ ε

f h( )

h

l h⁄ REMP f h( )
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section, the support vector classifiers will be ordered according to the margin betwee

class boundaries and the separating hyperplane.

Support Vector Classifiers - Margin Maximization

Figure 1 shows a 2-class classification example where the training sample

linearly separable. and define two hyperplanes on which the closest in-clas

out-of-class examples lie. The distance separating these hyperplanes is defined

margin between the two classes. SVMs use the SRM principle to impose an order o

H1 H2
Figure 1. Difference between empirical risk minimization and structural risk minimization for a
simple example involving a hyperplane classifier. Each hyperplane ( , and )
achieves perfect classification and, hence, zero empirical risk. However, is the op-
timal hyperplane because it maximizes the margin — the distance between the hyper-
planes and . Maximizing the margin indirectly results in better generalization.

C0 C1 C2
C0

H1 H2
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optimization process by ranking candidate separating hyperplanes based on the m

For separable data, the optimal hyperplane is the one that maximizes the margin

existence of a unique hyperplane that maximizes the margin of separation betwee

classes is guaranteed [37]. The learning procedure is, thus, tasked with finding the lo

of the optimal hyperplane.

Following [39], let be a vector that is normal to the separating hyperplane

let be the training set of length where indicates cla

membership (note that this is a binary classification problem with two class indicators

and ). Since is a normal (not necessarily a unit normal though) to the separ

hyperplane, any point, , lying on the separating hyperplane satisfies

(22)

where is the perpendicular distance of the hyperplane from the origin. We

require that all of the training samples follow the relations

(23)

. (24)

These can be combined into a single set of inequalities,

. (25)

Vectors for which the equality condition in (25) holds are known assupport vectors.

We can require that all points satisfying the equality condition in (23) lie on

hyperplane with normal vector and distance from the origin

w

oi ti,{ } i, 1 …l,= l t i 1±=

+1

1– w

o

w o⋅ b+ 0=

b w⁄

oi w⋅ b+ +1≥ for ti +1=

oi w⋅ b+ 1–≤ for ti 1–=

ti oi w⋅ b+( ) 1– 0≥ i∀

H1: oi w⋅ b+ 1= w
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. Similarly, all points satisfying the equality condition in (24) lie

on and distance from the origin of . Relating th

distance from the origin of each hyperplane, one can see that the distance between t

hyperplanes (which we defined as the margin earlier) is equal to . Since we

currently only concerned with completely separable data, the margin can be maximiz

minimizing subject to the constraints of (25). Note that only the support vec

contribute to the SVM solution because it is only those that define the margin. This

become an important property which leads to sparseness in the solution space.

Techniques exist to optimize convex functions with constraints using the theo

Lagrange multipliers [50]. Using these techniques we can pose the functional

(26)

which is called theprimal formulation of the convex optimization problem. Setting th

gradient of  with respect to  and  to zero gives

, and (27)

. (28)

Equations (22) and (27) imply that the decision function can be defined as,

1 b– w⁄

H2 : oi w⋅ b+ 1–= 1– b– w⁄

2 w⁄

w 2

LP
1
2
--- w

2
αi ti oi w⋅ b+( )

i 1=

N

∑ αi
i 1=

N

∑+–≡

LP w b

w α j t j
o j

j
∑=

αi ti
i

∑ 0=
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(29)

where the sign of can be used to classify examples as either in-class or out-of-

This equation defines the SVM classifier. Notice the correspondence between (29

(16): corresponds to , to , to , and . The classifier

completely defined in terms of the training examples and the weights. However only t

training examples that lie on the hyperplanes, i.e. the support vectors, define the clas

In practice, the proportion of the training set that becomes support vectors is small m

the classifier sparse. Interestingly, the data set itself defines how complex the clas

needs to be thereby defining the lower limit for the VC confidence, [39].

Kernel Methods for Nonlinear, Non-separable Decision Problems

The preceding analysis has been only for those problems where the data is lin

separable (i.e. a straight line can be drawn that completely separates the two clas

data). Unfortunately, most real-world data does not conform to this prescription. The

may be nonlinearly separable, or completely inseparable. In either case, we must

method which optimally bounds the risk while minimizing error on the training set. Th

problems are attacked with two clever additions to the linear SVM methodology.

In many modeling paradigms, the problem of optimization for non-separable

is solved through the use of soft decision classifiers that place a probability on corr

classifying each training example. However, the SVM is not posed as a probabi

f o( ) αi ti oi o⋅( ) b+

i 1=

N

∑=

f o( )

b w0 αi wi N M ti oi o⋅( ) φi o( )=

f h( )
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problem, so we instead introduce the concept ofslack variables[38]. The hyperplane

constraint equations, (23) and (24), become

, (30)

, and (31)

, (32)

where ‘s are the slack variables (one per input observation) that account for tra

errors since, for an error to occur, must exceed unity. Thus, gives an upper b

on the number of training errors [38]. A natural way to control the number of train

errors is to assign an extra cost for making an error. This is done through the use

trade-off parameter, , which is the penalty incurred by the optimizer for acceptin

training error. A large value of will tend to reduce the number of training errors - of

at the cost of a more complex model. is a user-defined parameter that requi

cross-validation procedure to estimate.

Providing for a nonlinear decision region is accomplished using thekernel

modeling method [51]. Notice that, in the optimization problem formulated in (26),

only place in which the data appears is in the form of dot products, . If we defin

transformation of the data to a higher dimensional space by the function then w

still construct optimal margin classifiers if we can evaluate the dot product

It would be highly advantageous if we could define akernel function,  such that

oi w⋅ b+ +1 ξi–≥ for ti +1=

oi w⋅ b+ 1– ξi+≤ for ti 1–=

ξi 0≥ i∀

ξ

ξi ξi∑

C

C

C

oi o j⋅

φ o( )

φ oi( ) φ o j( )⋅

K
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With this function, the dot product in the high-dimensional space could be comp

without having to know the explicit form of . The decision function, (29), the

becomes

. (34)

Using this kernel method, the SVM is able to transform the training data

high-dimensional space and construct a linear binary classifier in that space w

maximizes a nonlinear margin in the original space. However, only functions wh

represent a dot product in some space are eligible as kernel functions. Mer

condition [37] describes the requirements for a function to be a dot product kernel

kernel is used which does not satisfy the Mercer conditions, the quadratic optimizati

no longer applicable and may lead to a problem whose solution does not converge.

commonly used kernels include the polynomial and RBF kernels

(35)

. (36)

Kernel-based vector machines have had great success on static classification

(those in which no information can be gleaned from the ordering of the exemplars in

input set) for many years (for example [52,53,54,55]) . However, it is only recently

these techniques have been employed on dynamic classification tasks (those in wh

K oi o j,( ) φ oi( ) φ o j( )⋅=

φ o( )

f x( ) αi tiK x xi,( ) b+

i 1=

N

∑=

K poly x y,( ) x y⋅ 1+( )d
=

KRBF x y,( ) ϒ x y–
2

–{ }exp=
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ordering of exemplars is in some way informative) [27,56,57,58]. In this dissertation

are particularly interested in the application of such machines to the speech recog

problem discussed in Chapter 2. In the remainder of this chapter, we detail the first at

to apply SVMs to the large vocabulary speech recognition problem using a hybrid HM

SVM system [27,59,60,61,62].

3.2. Support Vector Methods

Initial attempts to add discriminative information to HMM/GMM speec

recognition systems used maximum mutual information (MMI) approaches [21,22]

minimum classification error methods [23]. MMI, in particular, has recently been sho

to be qui te effect ive on conversat ional speech [22]. Later, connect ion

systems [e.g. 24,25,26,28,29,30] were employed that used an inherently discrimin

ANN acoustic model. While the connectionist systems have been able to m

state-of-the-art performance, they did not achieve the great performance gains tha

expected on large vocabulary tasks.

New approaches to discriminative modeling for speech recognition have cen

around the powerful SVM paradigm described above. The interest in these mode

speech is due to two important characteristics of the SVM model. First, SVMs

formulated as optimal generalization machines — overfitting of the data is explic

avoided in the modeling. Contrast this to neural network approaches where overfitti

typically controlled using a cross-validation process that is wasteful of resources

whose performance is not quantifiable (though see the next chapter for exampl
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relevance determination methods by MacKay [47,48] which avoid this problem). T

property of SVMs has translated to classification performance that has consist

exceeded neural networks and GMMs [25,53,64]. Second, the SVM (through the u

Mercer kernels) has the ability to build a binary classifier in a high-dimensional sp

Unlike other classifiers, neither the dimensionality nor the sparsity of the data in

transform space is a limiting factor for SVMs.

Initial applications of SVMs to speech came in the form of speaker verificat

systems [65]. Their success was limited, though, due primarily to lack of efficient trai

methods. Phone classification was the next problem to be tackled using SVMs [59

These systems performed on par with state-of-the-art and their performance wa

superior to neural network systems [25] on the same task. With the phone classific

problem, the SVM systems were forced to address the first problem with applying S

to speech - nonuniform segment lengths. Their solution to this problem was to artific

impose a fixed vector length using a segmental modeling approach that will be desc

in detail below.

Steps toward using SVMs for word-level continuous speech recognition cam

the form of isolated word recognition systems. Bazzi and Katabi [57] built a d

recognition system that employed the same techniques as the phone classification sy

Each digit was modeled with a single one-vs-all classifier. A decimation approach

used to solve the nonuniform segment problem which can be described by the follo

algorithm:

1. Compute a distance measure, , for .di f oi oi 1–,( )= 0 i N<≤
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2. Find i for which  is a minimum. Remove  and decrease N by 1.

3. Repeat 1 and 2 until N is the desired size.

Following the decimation stage, a PCA transform was computed to bring the decim

feature vector to its final size. Using a small training set, the SVM system was ab

achieve a 5.1% error rate compared to 9.3% error for a GMM classifier. Howe

state-of-the-art on such tasks is a near-zero error rate.

To move from these simple applications of SVMs as static classifiers to an S

solution for continuous speech requires addressing two primary issues. First, the dy

nature of speech must be modeled. SVMs are inherently static classifiers while spee

dynamically evolving process. The systems described above tried to avoid the probl

dynamics altogether by artificially imposing a fixed vector length. Hybrid connectio

systems address the dynamics of speech by embedding neural networks into an

structure [24,29]. The second problem to address is the need to insert SVMs in

probabilistic framework that is used to combine disparate knowledge sources. SVM

by definition, binary classifiers capable of giving an in-class/out-of-class judgement.

judgement is rendered by finding the distance from the hyperplane boundary. In ge

only the sign of this distance provides useful information, but to apply SVMs i

probabilistic framework one has to map this distance measure to a probability measu

course one could try to learn the probability function directly using SVM regression

then the power of the discriminative classification is lost).

di oi
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3.3. Hybrid HMM/SVM System

Research into addressing these remaining issues has proceeded in two dire

First are the systems which use a Fisher kernel capable of handling variable le

features [66,67,68] to solve the segmentation problem. While promising, this techniq

still in the early stages and has only been applied to relatively simple tasks to date. A

mature method has been defined by Ganapathiraju [27] and colleagues [59,60,61,6

which follows a hybrid approach combining techniques from the connectio

systems [24,25,26,29] and segmental modeling systems [69,70]. It is the firs

comprehensively address the problems associated with applying SVMs to contin

speech recognition (Chakrabartty, et al. [58] also proposed a hybrid system as we

circuit design to implement the system in hardware. However, they have o

demonstrated their system on a relatively trivial task so it is unclear if their approach h

promise).

Posterior Estimation

The first challenge faced in building the HMM/SVM system is the construction

a probabilistic model from the SVM discriminant function. The approach taken in [27

which is drawn from the work of Kwok [71] and Platt [72] is to build a functiona

mapping from the SVM distance function to a number on the range of [0,1] represent

probability function. If we let be the SVM distance function and be the class la

where , then we can write the posterior probability  as

f o( ) t

t 1±= P t 1= f( )
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It remains, then, to define the form of the likelihood functions, an

, and the priors on the in-class and out-of-class data,  and .

Taking the maximum entropy approach, the likelihood functions can be define

Gaussian distributions as

 and (38)

. (39)

Normalizing (37) by its numerator and combining exponential terms yields

, (40)

which, after simplification gives the form

. (41)
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Finally, if we assume that the variances of the discriminant function for in-class

out-of-class data is equal then we can expand the squared terms in the exponent to

the posterior probability in the form of a sigmoid function

. (42)

Here, the parameters and are estimated using any suitable nonlinear optimiz

scheme to optimally map the discriminant function to the probability space. Note tha

ratio of the priors has been incorporated into the exponential.

Recall that in the probabilistic formulation of speech presented in Chapter 2

acoustic model was used to determine the likelihood function; i.e. the probability o

observed data given the assumed model, . However, from (42), we have de

the posterior estimate of the probability of the model given the data, .

generate the likelihood function, Bayes’ rule needs to be applied. The failure to con

this is a potential weakness in the hybrid HMM/SVM system as it indicates a prior be

that each class is equally likely. Connectionist systems such as those in [24,29] est

the class priors as part of the training routine. These systems have consistently s

significant degradations in performance when equal priors are applied.

Segmental modeling

A natural way to apply the new SVM acoustic model in an HMM/SVM hybr

system is to perform the classification directly at the frame level — replacing the Gau
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likelihood score with the SVM posterior described above. In fact, this is exactly

approach used by many hybrid connectionist systems. There are, however, two iss

consider in this regard.

1. Feasibility for large corpora: Large vocabulary training sets often contain on th

order of 10-100 million frames of speech data. Even with the extremely effic

SVM optimizers available today, it is impractical to train the SVM on this quant

of data. Connectionist systems face a similar problem in the iterative methods

for training [29]. However, parallel processing techniques [34] have be

developed that allow them to use large data sets efficiently.

2. Modeling long-term temporal structure: Using frame-level data provides a ver

localized view of the speech signal. It removes the potential for model

long-range dependencies in data such as cross-frame spectral correlations a

modeling long range “features” of the data such as phone duration [73,74,75

few approaches have been tried to alleviate this problem. HMM systems o

include derivative terms in the feature stream to account for changes in the fe

across frame boundaries [4]. Connectionist systems often concatenate a wind

frames around the frame of interest to create a large feature vector [26]. The n

network is then allowed to learn the long-range correlations in the data. HM

GMM systems could not use such an approach because the number of param

grows linearly with the size of the feature vector. However, many systems are

using feature reduction techniques such as LDA and PCA to provide the HM
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GMM systems with a reduced-sized feature vector that still captures the m

important long-range correlations [76].

To address both of these issues, the HMM/SVM system uses a segment-b

approach akin to those in [69,70]. By modeling at a phone-segment level (i.e. e

observation represents a sequence of frames that constitute a single spoken phon

HMM/SVM system is able to greatly reduce the number of training vectors (by as muc

2-3 orders of magnitude) and is able to simultaneously model both the spectra

temporal structure of speech. With this approach, however, there remains the ques

where to get the phone segments in the first place. The HMM/SVM system uses an H

GMM system to produce the segmentation information and then post-processes th

under the assumption that the segmentation is correct. Recent linguistic analysis se

indicate that this is not a good assumption [77] for conversational speech.

Phone segments can have widely varying lengths (e.g. vowels tend to be lo

and consonants tend to be shorter). However, with the conventional SVM mode

contrast to those which use Fisher kernels [66,67,68]) we require a fixed observ

vector length. One way to mitigate this problem which follows the motivation of 3-st

HMM phone models is to divide each segment into a fixed number of disti

subsections [78,79,80]. The frames in each subsection are then averaged and the a

are concatenated to yield a single fixed-length vector. This process is illustrate

Figure 2. While the percentage of the segment that is allocated to each subsection
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manipulated, the performance of the HMM/SVM system is insensitive to changes in

proportions [27,63].

System architecture

The hybrid HMM/SVM system is built using the rescoring paradigm shown

Figure 3. The HMM/GMM system generates a pruned hypothesis space as wel

segmentation (or set of segmentations). The SVM is used to rescore the hypothesis

given the segmentation(s). In [27,63] N-best lists are used to represent the pr

hypothesis space. These give a set of N unique hypotheses which are most h

predicted by the HMM/GMM system.

For experimental purposes, the segment information was generated in two w

First, a single segmentation (1-best segmentation) was used to rescore all of the N

hypotheses. This segmentation was derived from a forced-alignment of a word seq

to the speech data using the HMM/GMM system. For baseline testing, the word sequ
Figure 2. Composition of the segment level feature vector assuming a 3-4-3 proportion for the
three sections.
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is the 1-best hypothesis (hypothesis segmentation). This gives the best-guess segme

of the HMM/GMM decoder. Note, however, that it may not be possible to align som

the N-best hypotheses to the 1-best segmentation, thus the 1-best segmentation

artificially constrain the search space for the SVM. For analysis, an oracle experimen

also be run which uses the reference transcription to find a single segmentation

alternative segmentation method generates a separate segmentation for each entr

N-best list (N-best segmentation) and rescores each one in turn. While m

computationally expensive, this method provides a better comparison with an HM

GMM system where the decoder is allowed to choose any segmentation fo

hypotheses.
Figure 3. Flow graph for hybrid HMM/SVM system [27].
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No.
Information Source HMM Hybrid

Transcription Segmentation AD SWB AD SWB

1 N-best Hypothesis 11.9 41.6 11.0 40.6

2 N-best N-best 12.0 42.3 11.8 42.1

3 N-best + Ref. Reference — — 3.3 5.8

4 N-best + Ref. N-best + Ref. 11.9 38.6 9.1 38.1

Table 1. Summary of recognition experiments for hybrid HMM/SVM system [27]. The experiments
are differentiated by the corpus (Alphadigits or Switchboard), segmentation type (single
segmentation or n-best segmentation) and n-best rescoring type (n-best or oracle n-best
+ ref). All results are word error rates.
Experimental analysis

The HMM/SVM system was run on two different telephone-bandwidth tasks:

OGI Alphadigits [81] and the SWITCHBOARD (SWB) corpus [82]. The Alphadigits ta

is a small vocabulary (~40 words), open grammar (any word sequence is possible

while the SWB task is a large vocabulary (modern lexicons contain as man

100,000 words) open grammar task. The results of these experiments are sho

Table 1 [27].

The most interesting thing to note about these results is the surprisingly large

made by the oracle system (experiment 4) for the Alphadigit system. A nearly 3

reduction in WER is achieved by the HMM/SVM system over the HMM/GMM syste

This shows the potential power of the SVM classifier when it is presented with adequ

rich information from the HMM system. Of course, reducing the n-best list error rat

0% is usually not possible so we need to look for other ways to give the classifier a w



41414141

rch.

g the

hile

s to

n the

nd

the

not

, the

SVM

mple

was

old

the

as

rate

tion

In
variety of hypotheses to choose from — e.g. integrating the SVM directly into the sea

Another key point to note is the performance of the oracle system (experiment 3) usin

reference segmentation. With this system, a 80% reduction in WER was achieved. W

there is no fair comparison to an oracle HMM system given, this performance seem

establish that a good segmentation is the most important issue in applying SVMs i

hybrid framework. Making better use of the HMM framework for temporal modeling a

to drive the SVM models is necessary to approach these levels of performance.

A follow-up experiment run as part of this dissertation also showed that

sigmoid posterior estimate applied by the hybrid HMM/SVM system does

significantly contribute to the performance of the hybrid system. In the experiment

posterior estimate was replaced with a simple thresholding rule that mapped the

distance to the range of [0,1]. If the distance was greater than 0 (indicating a sa

classified on the in-class side of the decision surface) then a probability of 1.0

emitted. Otherwise a probability of 0.0 was emitted. In other words, the thresh

probability mapping assumes perfect confidence in the classification provided by

SVM. With this modification, the total word error rate on the Alphadigits data w

reduced by only 1.8% relative to the HMM/SVM system. If the sigmoid were an accu

model of the posterior, we would expect a more pronounced difference.

3.4. Summary

In this chapter, we have seen how the SVMs use a structural risk minimiza

argument to define anoptimaldecision surface which automatically rejects overfitting.
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this way, the SVM combines the problems of prediction and decision-making. The th

of Mercer kernels are incorporated into the SVM framework to provide for extrem

flexible and highly nonlinear decision surfaces. Further, the chapter has discussed th

of SVMs as classifiers for speech data. The first credible attempt at this is in the form

hybrid HMM/SVM system. This system uses segmental modeling and poste

estimation techniques to address the issues related to interfacing SVMs to the H

framework.

In the next chapter we will discuss the relevance vector machine (RVM) whic

the object of this dissertation. RVMs use a mathematical structure that is similar to

SVM, but the RVM follows a more conventional motivation. RVMs seek to determine

posterior likelihood of a class assignment given the data, thus allowing for an exte

decision process. In this way, the RVM can take into account asymmetric misclassific

costs, and varying class prior probabilities. Overfitting is avoided through the applica

of MacKay’s ARD principle [47,48]. While the generalization capability of the RVM

comparable to that of the SVM, the RVM offers a few very important advantages w

will be explored in this dissertation.
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