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The prominent modeling technique for speech recognition today is the hid

Markov model with Gaussian emission densities. However, they suffer from an inabili

learn discriminative information. Artificial neural networks have been proposed

replacement the Gaussian emission probabilities under the belief that the ANN m

provide better discrimination capabilities. However, the use of ANNs often result

over-parameterized models which are prone to overfitting. Techniques suc

cross-validation have been suggested as remedies to the overfitting problem

employing these is wasteful of both resources and computation. Further, cross-valid

does not address the issue of model structure and over-parameterization.

Recent work on machine learning has moved toward automatic method

controlling generalization and parameterization. A model that has gained much popu

recently is the support vector machine (SVM). SVMs use the principle of structural

minimization to simultaneously control generalization and performance on the trai

set. A recent dissertation from this university has employed the SVM in a hyb
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framework for speech recognition. While the HMM/SVM hybrid produced a decreas

the error rate, the implementation had some significant shortfalls which we hop

address in this work. First, the SVMs are not probabilistic in nature and, thus, are no

to adequately express the posterior uncertainty in predictions. This is particu

important in speech where there is significant overlap in the feature space. The SVM

make unnecessarily liberal use of parameters to define the decision region.

In this dissertation, we study a Bayesian model which takes the same form a

SVM model. This model, termed the relevance vector machine (RVMs), provides a

probabilistic alternative to the SVMs. The RVMs have been found to prov

generalization performance on par with SVMs while typically using nearly an orde

magnitude fewer parameters. Sparseness of the model is automatic using Mac

automatic relevance determination methods. In this work we propose to develop the

speech recognition system using RVMs. Similar to hybrid HMM/ANN systems, the R

model will replace the Gaussian density in the HMM models. To accomplish this, we m

develop closed-loop training routines which insure convergence and optima

Computational issues make this an impossibility currently and must be addressed be

scalable system is feasible.
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CHAPTER 1

STATISTICAL APPROACH TO SPEECH RECOGNITION

Spoken communication is the most natural form of information exchan

employed by humans. The communication process requires a speaker to en

information into a set of signals (speech production) and a listener to receive those s

(speech perception), recognize (or decode) the components of the signal (often wo

in speech recognition) and infer the implied meaning of the components and take a

(speech understanding) [1,2]. The process of human speech recognition often u

combination of sensory sources including facial gestures, body language, auditory in

well as feedback from the speech understanding facilities to produce an acc

transcription of the speaker’s message. However, for our limited purpose of comp

speech recognition, we will consider only the problem of converting an acoustic si

(i.e. the speaker’s voice) into a stream of words. This problem is akin to communica

over the telephone where the other sensory side-information is not available. Hence

we will consider this as thespeech recognition problem(see [3] for examples of

multimodal recognition technology).

In this chapter, we describe the predominant approach to speech recognition.

statistical approach and is framed in a maximum likelihood paradigm using hid

Markov models (HMMs) with Gaussian mixture model (GMM) emission distributions
1
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learn the long-range and local phenomena associated with speech patterns.

tremendously successful, a criticism of these systems is that they are not ab

adequately model the discriminative information present in the speech signal. Hy

systems are described which combine the discriminative-modeling power of artif

neural networks and the temporal modeling power of the HMM. The training techniq

for these hybrid systems will serve as inspiration for the techniques developed in

thesis.

1.1. The Speech Recognition Problem

At the heart of computer speech recognition is a pattern recognition problem

can be stated thusly: given a set of acoustic observations, , and a s

models describing acoustic and linguistic patterns, we must determine which pat

were observed and, in doing so, determine which word sequence,

was spoken. Four questions quickly arise from this problem statement:

1. How do we obtain the acoustic observations?

2. What model do we use for the acoustic and linguistic patterns?

3. How do we train these models?

4. How do we find the best word sequence when given a new set of observation

The first of these questions embodies the problem of finding a suita

transformation of the sampled speech signal into a compact feature space whic

O o1 o2 … oT, , ,=

W w1 w2 … wM, , ,=
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properties amenable to pattern recognition techniques. The component of a speech

that implements the transformation is the acoustic front-end. Volumes have been w

on front-end processing (for example see [4,5]), however, a fairly generic frame-ba

cepstral front-end is at the core of most acoustic front-ends for speech recognition a

used in this work [6]. This front-end is depicted in Figure 1. While this front-end is not

only possibility (see, for example [7]), it has been widely used in speech recogn

applications.
es a

peech

ds is

of its

Sampled Speech Signal

Spectral
Compensation
and Smoothing

Framing
and

Windowing

Acoustic
Frames

Acoustic
Frames

Energy
Measurement

Derivative
Analysis

Cepstral
Analysis

Energy

Mel
Cepstrum

Observation
Vectors
At the core of the cepstral front-end is a frame-based analysis which giv

short-time analysis of the sampled speech signal [4]. Under the assumption that the s

signal is stationary over short periods, a frame duration on the order of 10 millisecon

commonly used. The frame-based approach allows us to analyze the signal in terms
Figure 1. Typical Mel-Cepstral acoustic front-end.
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short-term frequency content. Mel-scale cepstral analysis (MFC) [6] is performe

provide a compact representation of the vocal tract impulse response. The mea

cepstral response is correlated with the shape of the vocal tract and position o

articulators at the time at which the frame of speech was uttered. While the frame-b

analysis assumes stationarity, it is an unrealistic assumption. Articulators do

instantaneously switch position at frame boundaries, nor are they completely motio

during the frame’s duration [8]. To account for some of the transitory behavior, first

second derivative features are typically appended to the feature vector.

With the acoustic observations in place, we can address the second question

above: what model of the acoustic and linguistic patterns do we use? Speech c

loosely seen as a concatenation of units embedded in a hierarchy as shown in Figure

example, we might say that speech is a concatenation of sentences which are, in

concatenation of words which are a concatenation of syllables which, finally, a

concatenation of phones. The phone is often considered to be the smallest, non-div

unit of sound. In describing the concatenative model, however, we made a f

assumption. In conversational speech it is rarely possible to perceptually isolate a s

phone. Rather, our perception of a phone is formed from the surrounding phon

context [9]. For example the ‘a’ sound in the words “am” and “apple” differ — th

proximity of the nasal sound, ‘m’ causes the ‘a’ in “am” to be nasalized. This type

effect is particularly prevalent in conversational speech where the speakers are s

cautious in their articulation [10].
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Figure 2. Speech is roughly modeled as a hierarchical constraint system. At each level of the hi-
erarchy, a different knowledge source is applied. The job of a speech recognition sys-
tem is to combine these knowledge sources in an optimal manner. Often the lowest
level in the hierarchy is modeled by hidden Markov models and is responsible for the
acoustic match (i.e. modeling the observations sequences generated by the acoustic
front-end).
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To model these coarticulation effect, we use a context-dependent model in w

the model for a base sound is dependent upon the surrounding context. In our ex

above, the ‘a’ in “am” and the ‘a’ in “apple” would be modeled separately. In most spe

applications, a single left context phone and a single right context phone modify the p

in question. This unit is known as a triphone and tends to lead to large increas

performance [11]. Larger contexts have also been applied with some smaller increa

performance [12]. Coarticulation at word boundaries is also a major problem

conversational speech. These effects are modeled by cross-word, context-depe

models.

Speech recognition requires choosing amongst many different poss

transcriptions. This requires that we have some principled manner for directly comp

candidate transcriptions so that the “best” one may be chosen. Probabilistic modelin

natural and very common comparison paradigm and provides our answer to the f

question above as well: how do we find the best word sequence given a new s

observations. We can reformulate the speech recognition problem as a probabilist

where we want to find the word sequence, , that is most probable given the aco

observations, :

. (1)

This a posteriori formulation gives us no way to apply information about thea priori

probability of a word string. Thus, we use Bayes’ rule to rewrite (1) as

Ŵ

O

Ŵ
argmax

W
P W O( )=
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where is the probability that the acoustic observations would be seen wh

particular word sequence was spoken, is thea priori probability of the word string

being spoken, and is thea priori probability of the acoustic observation

sequence occurring. can be safely eliminated from (2) because the observ

sequence, , is constant during the maximization. This yields

. (3)

The terms in (3) are usually modeled separately. is determined b

statisticallanguage modelwhich might take the form of a stochastic grammar or

N-gram language model [13,14]. is given by anacoustic model. This acoustic

modeling component of the recognition system is explored in this dissertation. In m

state-of-the-art recognition systems, the hidden Markov model (HMM) is used as

acoustic model [15,16,17,18]. The HMM (an example of which is shown in Figure 3)

doubly stochastic state machine that can be fully described by the triple . H

is the number of states in the machine, is the state-transition probability

and  is the emission probability distribution.

The popularity of HMMs as a model of speech phenomena is owed to the HM

ability to simultaneously model the temporal progression of speech (speech is usually

as a “left-to-right” process) and the acoustic variability of the speech observations.

Ŵ
argmax

W

P O W( )P W( )
P O( )

------------------------------------=

P O W( )

P W( )

W P O( )

P O( )

O

Ŵ
argmax

W
P O W( )P W( )=

P W( )

P O W( )

S A B, ,{ }

S A aij{ }=

B bj ot( ){ }=
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temporal variation is modeled via an underlying Markov process while the emis

distribution models the acoustic variability. This acoustic variability may come as a re

of differing speakers, channel conditions, stress levels, dialect, accent, etc. in the s

training corpus. The most commonly used emission distribution is the Gaussian mi

model (GMM) described by

, where (4)

. (5)

In (4) and (5), the are the mixture weights and define the contribution of ea

distribution to the total emission score and is the dimension of the acoustic observ

vector.

bj ot( ) Cij N ot µij Σij,( )
i 1=

K

∑ Cij∑, 1= =

N ot µij Σij,( ) 1

2π( )n Σij

---------------------------- 1
2
--- ot µij–( )TΣij

1– ot µij–( )– 
 exp=

Ci

n

Figure 3. A simple HMM featuring a five state topology with skip transitions. Each state has a sto-
chastic emission distribution.
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Finally, when building the acoustic models with HMMs, one must decide exa

which acoustic unit (e.g. word, syllable or phone) to use. Most state-of-the-art system

based on the cross-word context-dependent phones described earlier. In these sy

each context-dependent phone (usually a triphone) is modeled by an HMM. Figu

shows how the HMM fits into the hierarchical model described previously.

1.2. Closed-loop, Supervised Parameter Estimation

The answer to the third question above (how do we train these models?) co

from taking an account of the tunable parameters in the hierarchical HMM sys

described previously. These are the language model probabilities, pronunciation m

probabilities and the HMM state transitions ( ), mixture weights ( ), means (

and covariances ( ). We ignore the first two of these in this dissertation and poin

reader to [13] regarding training procedures for language models and pronunci

models. Instead, we concentrate on the HMM parameters which are directly related

acoustic model. Typically, this approach involves finding the HMM parameter set

maximizes the likelihood of the data given the model — the maximum likelihood (M

approach.

As with most machine learning tasks, training acoustic models begins with s

labeled training data set. This training set consists of speech data and corresponding

transcriptions (sometimes phonetic transcriptions are available as well). Howeve

speech, there is a complicating factor: the alignment of the labels to the speech is u

unknown. For instance, we may be given a five-second segment of speech and told th

aij{ } Cij µij

Σij
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transcription is “the boy ate candy”, but we do not know in which time interval each w

occurred. Therefore, we can not immediately determine which acoustic observ

should be used to train the individual emission probabilities. This is known as

segmentation problem.

A simple two-step approach can be taken to alleviate the segmentation prob

First, hypothesize the sequence of HMM states which were most likely to have gene

the sequence of acoustic observations given the current parameter set; then upd

parameter set according to that state-labeled alignment. This is known as Vi

training [15] because the first step is a Viterbi alignment of the data to the current m

With this procedure, updating of the HMM/GMM parameters is a straightforw

computation of the means and covariances for each GMM [2].

In the Viterbi training paradigm, a binary decision is made as to whether a s

occurred. In other words, thea posterioriprobability that a particular state generated

particular observation is either 0 or 1. While simple to implement, it is questiona

whether the current model is sufficiently accurate to warrant a hard binary decision o

the iterative procedure will converge. Baum and colleagues [19] addressed these pro

by defining a soft-decision training paradigm which is a special case of

expectation-maximization (EM) algorithm [20]. The EM formulation has the desira

property of guaranteed convergence to a local maximum.

Baum [19] defined an EM-type auxiliary function as

(6)Q λ λ',( ) P O q λ',( ) P O q λ,( )log
q
∑=
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where are the new estimates of the system parameters, are the current s

parameters, and is a given state sequence (i.e. a given state-frame alignm

Maximizing  with respect to  insures that

(7)

which implies that

. (8)

Thus, maximizing the auxiliary function monotonically increases the likelihood of

data given the model [19,20,2] until a critical point is reached. Note that the sum

all in (6) implies a soft decision as to which is the true alignment of states. Contras

to the Viterbi training algorithm where a single alignment was assumed to be the

alignment.

In practice, the Baum-Welch training algorithm is implemented in

forward-backward framework [2,16,17]. We define the forward probability, , as

probability of having observed the partial observation sequence, and st

at time :

. (9)

We can inductively define as a function of . The backwa

probability, , is likewise defined as the probability of observing the part

observation sequence, , and state  at time :

. (10)

λ λ'

q

Q λ λ',( ) λ

Q λ λ',( ) Q λ' λ',( )≥

P O λ( ) P O λ'( )≥

q

α j t( )

o1 o2 … ot, , , j

t

α j t( ) P o1 o2 … ot qt j=, , , , λ'( )=

α j t( ) α1 t 1–( ) … αS t 1–( ), ,

β j t( )

ot 1+ ot 2+ … oT, , , j t

β j t( ) P ot 1+ ot 2+ … oT qt j λ'=, , , ,( )=
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It can be defined inductively as a function of . These inducti

representations provide an extremely efficient method for estimating and

Note that, in Viterbi training, the and were all unity for the states in t

assumed alignment and zero for all other state alignments.

The product of and gives the probability of any alignment containi

state  at time

. (11)

Likewise, the total probability of observing the sequence, , is just the marginaliza

across all states at any time

. (12)

Finally, we can define the probability of any alignment making a transition from state

state  while observing  in state  and  in state  as

. (13)

The above three probabilistic equations amount to the expectation step of the

algorithm. With (11), (12) and (13) in place, we can substitute them into the auxili

function, (6), and maximize with respect to each model parameter. This process de

the maximization step of the EM algorithm which yields the parameter update equat

These are fully derived in [2,13].

β1 t 1+( ) … βS t 1+( ), ,

α j t( ) β j t( )

α j t( ) β j t( )

α j t( ) β j t( )

j t

P O q, t j λ'=( ) α j t( )β j t( )=

O

P O λ'( ) α j t( )β j t( )
j 1=

S

∑=

i

j ot 1– i ot j

P O qt 1– i= qt j λ'=, ,( ) αi t 1–( )aij bj ot( )β j t( )=
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While the combination of HMMs and Gaussian mixture models (HMM/GMM

has been extremely successful, there are some key assumptions made that a

appropriate for speech modeling.

1. The assumption of conditional independence (i.e. that all probabilities in

system are conditioned only on the current state) is clearly false. The probabili

an acoustic observation given a particular state is highly correlated with both

and future observations. Most HMM systems account for this by includ

derivative features in the observation vector [5], thus breaking the mode

conditional independence. Ideally, one would want to condition the distribu

itself on the acoustic context, but that is impractical in conventional systems.

2. The HMM/GMM system makes assumptions about the parametric form of

underlying distribution which may lead to a poor match to the true underly

distribution.

3. Maximum likelihood approaches do not improve the discriminative abilities of

model. In other words, the ML approach maximizes the probability of the cor

model while implicitly ignoring the probability of the incorrect model. Ideally, th

training approach should force the model toward in-class training examples w

simultaneously driving the model away from out-of-class training examp

Methods such as maximum mutual information [21,22] and minimu

classification error [23] have been developed to incorporate discriminative trai



14

as

odels

ich

d a

de as

s of

lass

in

aller

that

M/

ector

MM

ns for
directly into the standard HMM/GMM framework. However, their success h

been limited due primarily to their considerable computational costs [22].

1.3. Connectionist Speech Recognition

The weaknesses of the HMM/GMM system have led researchers to seek m

which mitigate some or all of them [24,25,26,27]. Hybrid connectionist systems wh

merge the power of artificial neural networks (ANNs) and HMMs have receive

particularly large amount of attention from the research community in the past deca

an alternative to HMM/GMM systems [24,25,26,28,29,30]. The primary advantage

using the hybrid HMM/ANN systems in speech are:

1. ANNs are trained discriminatively to learn how to not only accept the correct c

assignments but to reject the incorrect class assignments.

2. ANN classifiers are able to learn complex probability functions

high-dimensional feature spaces. GMM systems are usually restricted to sm

dimensional vectors (on the order of 30-50) due to amount of training data

would be necessary in estimating the parameters of the GMM distribution. HM

ANN system designers have put this to good use by using a longer feature v

consisting of a concatenation of the acoustic observations used in the HMM/G

system; i.e. [24,26]. Note that this

also circumvents the independence assumption since consecutive observatio

the ANN system are highly correlated.

ot
ANN ot k– … o, t 1– ot ot 1+ … ot k+, , , , ,[ ]=
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While some systems have used ANNs to model both the temporal and aco

properties of speech [31,32], most of the ANN systems have used the ANN

replacement for the GMM probability distribution and have maintained the HMM a

model of the temporal properties. The outputs of a 1-of-N classifier trained unde

mean-squared error criteria are known to approximate the posterior class proba

, where the approximation accuracy is asymptotic in the size of the train

set [33]. Recall from the discussion of acoustic modeling earlier that the our goal

model which maximizes (2). In HMM/GMM systems, we directly build a model

, but with the ANN systems, we effectively have the posterior, . Th

the posterior class probabilities need to be converted to likelihoods using Bayes’ rule

. (14)

In practice, thea priori class probabilities are estimated from the training data [24,29]

Using (14), the ANN can be used as a direct substitute for the GMM in the HM

framework. Thus, it makes sense that they could/should be trained in the same m

Initially the hybrid systems were trained using a Viterbi (hard decision) training parad

as described for HMM/GMM systems above [24,29]. The HMM/ANN system with t

current ANN probability estimators was used to create a single alignment of the aco

observations to the HMM states. The ANN posterior estimators were then trained on

observation that aligned to the HMM state using a typical ANN training algorithm suc

back propagation. Parallel training methods were pursued due to the resource-inte

P c o( )

Ŵ

P O W( ) P W O( )

P c o( )
P c( )

----------------
P o c( )
P o( )

----------------=
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nature of ANN training [34]. Because ANNs are prone to overfitting, a held-o

cross-validation set is necessary to test for convergence of the models to a local ma

It is well known that, with infinite training data and sufficient model complexity

neural network trained on binary (0/1) targets will learn the posterior probabi

distribution perfectly [33]. However, it is less clear how the same ANN will perform wh

the training data is limited and the model topology is not matched to the true post

distribution. Yan, et al. [35] claim that, when given unseen data, an ANN trained un

such circumstances will produce unreasonable output. An appropriate response wo

to make a probability estimate which displays a lack of posterior knowledge abou

correct classification (a uniform probability for all classes, for instance). Instead,

ANNs often make extremely confident predictions despite the lack of any prior train

which supports the prediction. To address this issue, researchers have recently be

explore the use of the Baum-Welch framework as a method for training A

hybrids [35,36]. The goal of this method of training the HMM/ANN system is to train t

ANN to learn the posterior emission probability distribution from the targets that

readily available from the Baum-Welch procedure:

. (15)

The ANN is then directly trained on these  values.

The HMM/ANN hybrids have shown promise in terms of performance but h

not yet found widespread use due to some serious problems. ANNs are prone to over

the training data if allowed. To avoid overfitting, a cross-validation set must be use

γ j t( ) P qt j O λ,=( )
α j t( )β j t( )

αk T( )
k S∈
∑

-------------------------= =

γ j t( )
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define a stopping point for the training set. This is wasteful of data and resources

serious consideration in speech where the amount of labeled training data is very lim

ANNs also typically converge much slower than HMMs. Most importantly, the HM

ANN hybrid systems have not shown substantial improvements in recognition accu

over HMM/GMM systems.

1.4. Summary

This chapter has reviewed the most common acoustic modeling framewor

speech recognition systems — HMMs with GMM emission probability distributions. T

use of ANNs as replacements for the GMM distributions has also been discusse

particular importance in this chapter are the training techniques used in the HMM/G

systems and the hybrid HMM/ANN systems. The relevance vector machines explor

this dissertation will act in a fashion similar to the ANNs as posterior estimators. Thus

approaches developed in this dissertation will draw significantly from the HMM/AN

work. However, we will seek methods which are automatically immune to overfitt

without the artificial imposition of a cross-validation set as well as methods which

automatically learn the appropriate model structure. The next two chapters define

methods, the support vector machine and relevance vector machine, which both de

principled methods for avoiding overfitting — structural risk minimization for the supp

vector machine and Bayesian automatic relevance determination for the relevance

machine.
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CHAPTER 2

SUPPORT VECTOR MACHINES FOR SPEECH

RECOGNITION

Given a training corpus, where is the i’th inpu

observation and is the corresponding target (e.g. class assignment or class proba

the goal of a learning machine is to learn the mapping under some approp

optimization scheme. One flexible and popular class of functions are those which

linear combinations of basis functions on the input observations

. (16)

A special form of (16) is one in which there is a basis function prescribed for each trai

vector. These models are generally referred to asvector machines. The following chapters

discuss two such models: the Support Vector Machine (SVM) [37,38,39,40,41,42,43

Relevance Vector Machine (RVM) [44,45,46].

2.1. Support Vector Machines

Learning is a process by which a learning machine is optimized under a give

of constraints. We can pose this process as one of optimizing somerisk function, ,

O o1 y1,( ) o2 y2,( ) …, ,{ }= oi

yi

y f o( )=

y o w;( ) wo wiφi o( )
i 1=

M

∑+ wTφ o( )= =

R α( )
18
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where the optimal machine is the one whose free parameters, , are set such that t

is minimized. This minimization is written as

(17)

where is a loss function which penalizes the mismatch between both the

and the parameterization of the learning machine and the true function, ; and

the joint distribution of the observations and targets. Finding a minimum for (17

usually impossible because can not be founda priori . Thus, we look for a

simplification of (17) that is tractable.

A popular variation of theactual risk, , which can be easily evaluated is th

measured mean risk, orempirical risk, defined as,

. (18)

where is the number (assumed finite) of training observations. is therefore the

computed from a fixed training set under the maximum entropy assumption of unifor

for . Finding the which minimizes (18) gives theempir ical r isk

minimization (ERM)solution and is one of the most commonly used optimizati

procedures in machine learning. However, the issue of the generalization of the lea

machine is not specifically addressed when we use ERM — in fact, ERM requires tha

training set be representative of the true data distribution to be effective. There cou

several settings for the free parameters which give us the same empirical ris

α

α̂ argmin
α R α( ) argmin

α Q o y α, ,( ) P o y,( )d∫==

Q o y α, ,( )

f P o y,( )

P o y,( )

R α( )

Remp α( ) 1
l
--- Q oi yi α, ,( )

i 1…l=
∑=

l Remp

P o y,( ) α
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determine which settings are optimal, we have to know which one would achieve the

actual risk.

Vapnik [37] provides an elegant solution to this problem. Through his analysi

bounds on the actual risk he proved that bounds exist for the actual risk such that,

(19)

where is the Vapnik-Chervonenkis (VC) dimension and is a measure of the capac

a learning machine to learn any training set [37,39] and is the VC confidenc

is small (and we have done our job well of fitting the model to the training set),

machine generalizes well because the actual risk is guaranteed to be close to the em

risk. For binary classifiers where the loss functions are indicator functions,

defined by

(20)

where is the parameter set that defines the learning machine for a particular traini

and is the measure of the difference between the actual risk and the emp

risk [49] which we can use to compare system configurations which achieve equiv

empirical risks.

We can write in terms of the VC dimension, , and the size of the train

set, , as,

. (21)

R α( ) Remp α( ) f h( )+≤

h

f h( )

f h( )

f h( )

ε l( )
2

--------- 1 1
4Remp αl( )

ε l( )
-------------------------++ 

 

αl

ε l( )

ε l( ) h

l

ε l( ) 4
h 2l h⁄ 1+( )log( ) η 4⁄log–

l
-------------------------------------------------------------------=



21

lies

our

n the

iven

small

ning

and

es a

ity of

lling

cal

ical

he

tter

data
From (21), we can see that when is large, and are both small which imp

a convergence of the actual risk and the empirical risk [39]. This result matches

intuition that a less complex machine (i.e. one where the capacity is much smaller tha

number of training samples) will generalize better than an overly complex machine g

that they achieve the same empirical risk. With this result, we can guarantee both a

empirical risk (training error) and good generalization — an ideal situation for a lear

machine. The converse property of (21) is also true — when is small, both

 are large and good generalization can not be guaranteed.

The principle ofstructural risk minimization(SRM) [37,49] is formulated to find

the minimum point on the curve describing the bound on the expected risk. It provid

principled method to trade-off the accuracy of the trained machine and the complex

the machine. For a fixed training set size, the VC dimension, , becomes the contro

parameter in . The joint optimization of and is not tractable in practi

problems. Thus, the principle of SRM is implemented in one of two distinct ways:

1. Fix the VC confidence to an appropriately low value and optimize the empir

risk.

2. Fix the empirical risk to an appropriately low value and optimize t

VC confidence.

The support vector methodology [38,39,41,42,43] implements SRM using the la

approach where the empirical risk is fixed at a minimum (typically zero for separable

l h⁄ ε f h( )

l h⁄ ε

f h( )

h

l h⁄ REMP f h( )
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sets) and the SVM learning process optimizes for a minimum confidence interval.

SRM principle thus orders the solutions which are optimal in the ERM sense. In the

section, the support vector classifiers will be ordered according to the margin betwee

class boundaries and the separating hyperplane.

Support Vector Classifiers - Margin Maximization

Figure 4 shows a 2-class classification example where the training sample

linearly separable. and define two hyperplanes on which the closest in-clas

out-of-class examples lie. The distance separating these hyperplanes is defined

margin between the two classes. SVMs use the SRM principle to impose an order o

optimization process by ranking candidate separating hyperplanes based on the m

For separable data, the optimal hyperplane is the one that maximizes the margin

existence of a unique hyperplane that maximizes the margin of separation betwee

classes is guaranteed [37]. The learning procedure is, thus, tasked with finding the lo

of the optimal hyperplane.

Following [39], let be a vector that is normal to the separating hyperplane

let be the training set of length where indicates cla

membership (note that this is a binary classification problem with two class indicators

and ). Since is a normal (not necessarily a unit normal though) to the separ

hyperplane, any point, , lying on the separating hyperplane satisfies

(22)

H1 H2

w

oi yi,{ } i, 1 …l,= l yi 1±=

+1

1– w

o

w o⋅ b+ 0=
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where is the perpendicular distance of the hyperplane from the origin. We

require that all of the training samples follow the relations

(23)

. (24)

These can be combined into a single set of inequalities,

. (25)

Vectors for which the equality condition in (25) holds are known assupport vectors.

b w⁄

oi w⋅ b+ +1≥ for yi +1=

oi w⋅ b+ 1–≤ for yi 1–=

yi oi w⋅ b+( ) 1– 0≥ i∀
Figure 4. Difference between empirical risk minimization and structural risk minimization for a
simple example involving a hyperplane classifier. Each hyperplane ( , and )
achieves perfect classification and, hence, zero empirical risk. However, is the op-
timal hyperplane because it maximizes the margin — the distance between the hyper-
planes and . Maximizing the margin indirectly results in better generalization.

C0 C1 C2
C0

H1 H2
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We can require that all points satisfying the equality condition in (23) lie on

hyperplane with normal vector and distance from the origin

. Similarly, all points satisfying the equality condition in (24) lie

on and distance from the origin of . Relating th

distance from the origin of each hyperplane, one can see that the distance between t

hyperplanes (which we defined as the margin earlier) is equal to . Since we

currently only concerned with completely separable data, the margin can be maximiz

minimizing subject to the constraints of (25). Note that only the support vec

contribute to the SVM solution because it is only those that define the margin. This

become an important property which leads to sparseness in the solution space.

Techniques exist to optimize convex functions with constraints using the theo

Lagrange multipliers [50]. Using these techniques we can pose the functional

(26)

which is called theprimal formulation of the convex optimization problem. Setting th

gradient of  with respect to  and  to zero gives

, and (27)

. (28)

H1: oi w⋅ b+ 1= w

1 b– w⁄

H2 : oi w⋅ b+ 1–= 1– b– w⁄

2 w⁄

w 2

LP
1
2
--- w

2
αi yi

oi w⋅ b+( )
i 1=

N

∑ αi
i 1=

N

∑+–≡

LP w b

w α j y j
o j

j
∑=

αi yi
i

∑ 0=
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Equations (22) and (27) imply that the decision function can be defined as,

(29)

where the sign of can be used to classify examples as either in-class or out-of-class

equation defines the SVM classifier. Notice the correspondence between (29) and (1

corresponds to , to , to , and . The classifier is complet

defined in terms of the training examples and the weights. However only those tra

examples that lie on the hyperplanes, i.e. the support vectors, define the classifi

practice, the proportion of the training set that becomes support vectors is small, m

the classifier sparse. Interestingly, the data set itself defines how complex the clas

needs to be thereby defining the lower limit for the VC confidence, [39].

Kernel Methods for Nonlinear, Non-separable Decision Problems

The preceding analysis has been only for those problems where the data is lin

separable (i.e. a straight line can be drawn that completely separates the two clas

data). Unfortunately, most real-world data does not conform to this prescription. The

may be nonlinearly separable, or completely inseparable. In either case, we must

method which maximizes the margin while minimizing error on the training set. Th

problems are attacked with two clever additions to the linear SVM methodology.

In many modeling paradigms, the problem of optimization for non-separable

is solved through the use of soft decision classifiers that place a probability of corr

f x( ) αi yi
oi o⋅ b+

i 1=

N

∑=

f

b

w0 αi wi M N φi o( ) yioi o⋅=

f h( )
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classifying each training example. However, the SVM is not posed as a probabi

problem, so we instead introduce the concept ofslack variables[38]. The hyperplane

constraint equations, (23) and (24), become

, (30)

, and (31)

, (32)

where ‘s are the slack variables (one per input observation) that account for tra

errors since, for an error to occur, must exceed unity. Thus, gives an upper b

on the number of training errors [38]. A natural way to control the number of train

errors is to assign an extra cost for making an error. This is done through the use

trade-off parameter, , which is the penalty incurred by the optimizer for acceptin

training error. A large value of will tend to reduce the number of training errors - of

at the cost of a more complex model. is a user-defined parameter that requi

cross-validation procedure to estimate.

Providing for a nonlinear decision region is accomplished using thekernel

trick [51]. Notice that, in the optimization problem formulated in (26), the only place

which the data appears is in the form of dot products, . If we define a transforma

of the data to a higher dimensional space by the function then we can still cons

oi w⋅ b+ +1 ξi–≥ for yi +1=

oi w⋅ b+ 1– ξi+≤ for yi 1–=

ξi 0≥ i∀

ξ

ξi ξi∑

C

C

C

oi o j⋅

φ o( )
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optimal margin classifiers if we can evaluate the dot product . It would

highly advantageous if we could define akernel function,  such that

. (33)

With this function, the dot product in the high-dimensional space could be comp

without having to know the explicit form of . The decision function, (29), the

becomes

. (34)

Using this kernel method, the SVM is able to transform the training data

high-dimensional space and construct a linear binary classifier in that space w

maximizes a nonlinear margin in the original space. However, only functions wh

represent a dot product in some space are eligible as kernel functions. Mer

condition [37] describes the requirements for a function to be a dot product kernel

kernel is used which does not satisfy the Mercer conditions, the quadratic optimizati

no longer applicable and may lead to a problem whose solution does not converge.

commonly used kernels include the polynomial and RBF kernels

(35)

. (36)

Kernel-based vector machines have had great success on static classification

(those in which no information can be gleaned from the ordering of the exemplars in

φ oi( ) φ o j( )⋅

K

K oi o j,( ) φ oi( ) φ o j( )⋅=

φ o( )

f x( ) αi yi
K x xi,( ) b+

i 1=

N

∑=

K poly x y,( ) x y⋅ 1+( )d
=

KRBF x y,( ) ϒ x y–
2

–{ }exp=
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input set) for many years (for example [52,53,54,55]) . However, it is only recently

these techniques have been employed on dynamic classification tasks (those in wh

ordering of exemplars is in some way informative) [27,56,57,58]. In this dissertation

are particularly interested in the application of such machines to the speech recog

problem discussed in Chapter 1. In the remainder of this chapter, we detail the first at

to apply SVMs to the large vocabulary speech recognition problem using a hybrid HM

SVM system [27,59,60,61,62].

2.2. Support Vector Methods

Initial attempts to add discriminative information to speech recognition u

d iscr iminat ive t ra in ing of HMM/GMM systems us ing maximum mutua

information (MMI) approaches [21,22] and minimum classification error methods [2

MMI, in particular, has recently been shown to be quite effective on conversatio

speech [22]. Later, connectionist systems [e.g. 24,25,26,28,29,30] were employed

used an inherently discriminative ANN acoustic model. While the connectionist syst

have been able to match state-of-the-art performance, they did not achieve the

performance gains that were expected on large vocabulary tasks.

New approaches to discriminative modeling for speech recognition have cen

around the powerful SVM paradigm described above. The interest in these mode

speech is due to two important characteristics of the SVM model. First, SVMs

formulated as optimal generalization machines — overfitting of the data is explic

avoided in the modeling. Contrast this to neural network approaches where overfitti
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typically controlled using a cross-validation process that is wasteful of resources

whose performance is not quantifiable (though see the next chapter for exampl

relevance determination methods by MacKay [47,48] which avoid this problem). T

property of SVMs has translated to classification performance that has consist

exceeded neural networks and GMMs [25,53,64]. Second, the SVM (through the u

Mercer kernels) has the ability to build a binary classifier in a high-dimensional sp

Unlike other classifiers, neither the dimensionality nor the sparsity of the data in

transform space is a limiting factor for SVMs.

Initial applications of SVMs to speech came in the form of speaker verificat

systems [65]. Their success was limited though due primarily to lack of efficient train

methods. Phone classification was the next problem to be tackled using SVMs [59

These systems performed on par with the state-of-the-art and their performance w

superior to neural network systems [25] on the same task. With the phone classific

problem, the SVM systems were forced to address the first problem with applying S

to speech - nonuniform segment lengths. Their solution to this problem was to artific

impose a fixed vector length using a segmental modeling approach that will be desc

in detail below.

Steps toward using SVMs for word-level continuous speech recognition cam

the form of isolated word recognition systems. Bazzi and Katabi [57] built a d

recognition system that employed the same techniques as the phone classification sy

Each digit was modeled with a single one-vs-all classifier. A decimation approach
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used to solve the nonuniform segment problem which can be described by the follo

algorithm:

1. Compute a distance measure, , for .

2. Find i for which  is a minimum. Remove  and decrease N by 1.

3. Repeat 1 and 2 until N is the desired size.

Following the decimation stage, a PCA transform was computed to bring the decim

feature vector to its final size. Using a small training set, the SVM system was ab

achieve a 5.1% error rate compared to 9.3% error for a GMM classifier. Howe

state-of-the-art on such tasks is a near-zero error rate.

To move from these simple applications of SVMs as static classifiers to an S

solution for continuous speech requires addressing two primary issues. First, the dy

nature of speech must be modeled. SVMs are inherently static classifiers while spee

dynamically evolving process. The systems described above tried to avoid the probl

dynamics altogether by artificially imposing a fixed vector length. Hybrid connectio

systems address the dynamics of speech by embedding neural networks into an

structure [24,29]. The second problem to address is the need to insert SVMs in

probabilistic framework that is used to combine disparate knowledge sources. SVM

by definition, binary classifiers capable of giving an in-class/out-of-class judgement.

judgement is rendered by finding the distance from the hyperplane boundary. In ge

only the sign of this distance provides useful information, but to apply SVMs i

di f oi oi 1–,( )= 0 i N<≤

di oi
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l

probabilistic framework one has to map this distance measure to a probability measu

course one could try to learn the probability function directly using SVM regression

then the power of the discriminative classification is lost).

2.3. Hybrid HMM/SVM System

Research into addressing these remaining issues has proceeded in two dire

First are the systems which use a Fisher kernel capable of handling variable le

features [66,67,68] to solve the segmentation problem. While promising, this techniq

still in the early stages and has only been applied to relatively simple tasks to date. A

mature method has been defined by Ganapathiraju [27] and colleagues [59,60,61,6

which follows a hybrid approach combining techniques from the connectio

systems [24,25,26,29] and segmental modeling systems [69,70]. It is the firs

comprehensively address the problems associated with applying SVMs to contin

speech recognition (Chakrabartty, et al. [58] also proposed a hybrid system as we

circuit design to implement the system in hardware. However, they have o

demonstrated their system on a relatively trivial task so it is unclear if their approach h

promise).

Posterior Estimation

The first challenge faced in building the HMM/SVM system is the construction

a probabilistic model from the SVM discriminant function. The approach taken in [27

which is drawn from the work of Kwok [71] and Platt [72] is to build a functiona
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mapping from the SVM distance function to a number on the range of [0,1] represent

probability function. If we let be the SVM distance function and be the class la

where , then we can write the posterior probability  as

. (37)

It remains, then, to define the form of the likelihood functions, an

, and the priors on the in-class and out-of-class data,  and .

Taking the maximum entropy approach, the likelihood functions can be define

Gaussian distributions as

 and (38)

. (39)

Normalizing (37) by its numerator and combining exponential terms yields

, (40)

which, after simplification gives the form
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Finally, if we assume that the variances of the discriminant function for in-class

out-of-class data is equal then we can expand the squared terms in the exponent to

the posterior probability in the form of a sigmoid function

. (42)

Here, the parameters and are estimated using any suitable nonlinear optimiz

scheme to optimally map the discriminant function to the probability space. Note tha

ratio of the priors has been incorporated into the exponential.

Recall that in the probabilistic formulation of speech presented in Chapter 1

acoustic model was used to determine the likelihood function; i.e. the probability o

observed data given the assumed model, . However, from (42), we have de

the posterior estimate of the probability of the model given the data, .

generate the likelihood function, Bayes’ rule needs to be applied. The failure to con

this is a potential weakness in the hybrid HMM/SVM system as it indicates a prior be

that each class is equally likely. Connectionist systems such as those in [24,29] est

the class priors as part of the training routine. These systems have consistently s

significant degradations in performance when equal priors are applied.
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A natural way to apply the new SVM acoustic model in an HMM/SVM hybr

system is to perform the classification directly at the frame level — replacing the Gau

likelihood score with the SVM posterior described above. In fact, this is exactly

approach used by many hybrid connectionist systems. There are, however, two iss

consider in this regard.

1. Feasibility for large corpora: Large vocabulary training sets often contain on th

order of 10-100 million frames of speech data. Even with the extremely effic

SVM optimizers available today, it is impractical to train the SVM on this quant

of data. Connectionists systems face a similar problem in the iterative met

used for training [29]. However, parallel processing techniques [34] have b

developed that allow them to use large data sets efficiently.

2. Modeling long-term temporal structure: Using frame-level data provides a ver

localized view of the speech signal. It removes the potential for model

long-range dependencies in data such as cross-frame spectral correlations a

modeling long range “features” of the data such as phone duration [73,74,75

few approaches have been tried to alleviate this problem. HMM systems o

include derivative terms in the feature stream to account for changes in the fe

across frame boundaries [4]. Connectionist systems often concatenate a wind

frames around the frame of interest to create a large feature vector [26]. The n

network is then allowed to learn the long-range correlations in the data. HM
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GMM systems could not use such an approach because the number of param

grows linearly with the size of the feature vector. However, many systems are

using feature reduction techniques such as LDA and PCA to provide the HM

GMM systems with a reduced-sized feature vector that still captures the m

important long-range correlations [76].

To address both of these issues, the HMM/SVM system uses a segment-b

approach akin to those in [69,70]. By modeling at a phone-segment level (i.e. e

observation represents a sequence of frames that constitute a single spoken phon

HMM/SVM system is able to greatly reduce the number of training vectors (by as muc

2-3 orders of magnitude) and is able to simultaneously model both the spectra

temporal structure of speech. With this approach, however, there remains the ques

where to get the phone segments in the first place. The HMM/SVM system uses an H

GMM system to produce the segmentation information and then post-processes th

under the assumption that the segmentation is correct. Recent linguistic analysis se

indicate that this is not a good assumption [77] for conversational speech.

Phone segments can have widely varying lengths (e.g. vowels tend to be lo

and consonants tend to be shorter). However, with the conventional SVM mode

contrast to those which use Fisher kernels [66,67,68]) we still require a fixed observ

vector length. One way to mitigate this problem which follows the motivation of 3-st

HMM phone models is to divide each segment a into fixed number of disti

subsections [78,79,80]. The frames in each subsection are then averaged and the a
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are concatenated to yield a single fixed-length vector. This process is illustrate

Figure 5. While the percentage of the segment that is allocated to each subsection

manipulated, the performance of the HMM/SVM system is invariant to changes in

proportions [27,63].

System architecture

The hybrid HMM/SVM system is built using the rescoring paradigm shown

Figure 6. The HMM/GMM system generates a pruned hypothesis space as wel

segmentation (or set of segmentations). The SVM is used to rescore the hypothesis

given the segmentation(s). In [27,63] N-best lists are used to represent the pr

hypothesis space. These give a set of N unique hypotheses which are most h

predicted by the HMM/GMM system.

For experimental purposes, the segment information was generated in two w

First, a single segmentation (1-best segmentation) was used to rescore all of the N
hh aw aa r y uw

k frames

region 1 region 2 region 3

mean region 1 mean region 2 mean region 3

0.3*k frames 0.4*k frames 0.3*k frames
Figure 5. Composition of the segment level feature vector assuming a 3-4-3 proportion for the
three sections.
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hypotheses. This segmentation was derived from a forced-alignment of a word seq

to the speech data using the HMM/GMM system. For baseline testing, the word sequ

is the 1-best hypothesis (hypothesis segmentation). This gives the best-guess segme

of the HMM/GMM decoder. Note, however, that it may not be possible to align som

the N-best hypotheses to the 1-best segmentation, thus the 1-best segmentation

artificially constrain the search space for the SVM. For analysis, an oracle experimen

also be run which uses the reference transcription to find a single segmentation

alternative segmentation method generates a separate segmentation for each entr

N-best list (N-best segmentation) and rescores each one in turn. While m

computationally expensive, this method provides a better comparison with an HM
Figure 6. Flow graph for hybrid HMM/SVM system [27].
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No.
Information Source HMM Hybrid

Transcription Segmentation AD SWB AD SWB

1 N-best Hypothesis 11.9 41.6 11.0 40.6

2 N-best N-best 12.0 42.3 11.8 42.1

3 N-best + Ref. Reference — — 3.3 5.8

4 N-best + Ref. N-best + Ref. 11.9 38.6 9.1 38.1

Table 1. Summary of recognition experiments for hybrid HMM/SVM system [27]. The experiments
are differentiated by the corpus (Alphadigits or Switchboard), segmentation type (single
segmentation or n-best segmentation) and n-best rescoring type (n-best or oracle n-best
+ ref). All results are word error rates.
GMM system where the decoder is allowed to choose any segmentation fo

hypotheses.

Experimental analysis

The HMM/SVM system was run on two different telephone-bandwidth tasks:

OGI Alphadigits [81] and the SWITCHBOARD (SWB) corpus [82]. The Alphadigits ta

is a small vocabulary (~40 words), open grammar (any word sequence is possible

while the SWB task is a large vocabulary (modern lexicons contain as man

100,000 words) open grammar task. The results of these experiments are sho

Table 1 [27].

The most interesting thing to note about these results is the surprisingly large

made by the oracle system (experiment 4) for the Alphadigit system. A nearly 3

reduction in WER is achieved by the HMM/SVM system over the HMM/GMM syste

This shows the potential power of the SVM classifier when it is presented with adequ
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rich information from the HMM system. Of course, reducing the n-best list error rat

0% is usually not possible so we need to look for other ways to give the classifier a w

variety of hypotheses to choose from — e.g. integrating the SVM directly into the sea

Another key point to note is the performance of the oracle system (experiment 3) usin

reference segmentation. With this system, a 80% reduction in WER was achieved. W

there is no fair comparison to an oracle HMM system given, this performance seem

establish that a good segmentation is the most important issue in applying SVMs i

hybrid framework. Making better use of the HMM framework for temporal modeling a

to drive the SVM models is necessary to approach these levels of performance.

A follow-up experiment (unpublished) run as part of this dissertation also sho

that the sigmoid posterior estimate applied by the hybrid HMM/SVM system does

significantly contribute to the performance of the hybrid system. In the experiment

posterior estimate was replaced with a simple thresholding rule that mapped the

distance to the range of [0,1]. If the distance was greater than 0 (indicating a sa

classified on the in-class side of the decision surface) then a probability of 1.0

emitted. Otherwise a probability of 0.0 was emitted. In other words, the thresh

probability mapping assumes perfect confidence in the classification provided by

SVM. With this modification, the total word error rate on the Alphadigits data w

reduced by only 1.8% relative to the HMM/SVM system. If the sigmoid were an accu

model of the posterior, we would expect a more pronounced difference.
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2.4. Summary

In this chapter, we have seen how the SVMs use a structural risk minimiza

argument to define anoptimaldecision surface which automatically rejects overfitting.

this way, the SVM combines the problems of prediction and decision-making. The th

of Mercer kernels are incorporated into the SVM framework to provide for extrem

flexible and highly nonlinear decision surfaces. Further, the chapter has discussed th

of SVMs as classifiers for speech data. The first credible attempt at this is in the form

hybrid HMM/SVM system. This system uses segmental modeling and poste

estimation techniques to address the issues related to interfacing SVMs to the H

framework.

In the next chapter we will discuss the relevance vector machines (RVMs) w

are the object of this dissertation. RVMs use a mathematical structure that is similar t

SVM, but the RVM follows a more conventional motivation. RVMs seek to determine

posterior likelihood of a class assignment given the data, thus allowing for an exte

decision process. In this way, the RVM can take into account asymmetric misclassific

costs, and varying class prior probabilities. Overfitting is avoided through the applica

of MacKay’s ARD principle [47,48]. While the generalization capability of the RVM

comparable to that of the SVM, the RVM offers a few very important advantages w

will be explored in this dissertation.
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CHAPTER 3

BAYESIAN METHODS AND THE RELEVANCE VECTOR

MACHINE

While the SVMs presented in the previous chapter provide an excel

classification paradigm, they suffer from two serious drawbacks that hamper t

effectiveness in speech recognition. First, while sparse, the size of the SVM mo

(number of non-zero weights) tends to scale linearly with the quantity of training data

a large speaker-independent corpus such as SWB this effect becomes prohib

Techniques have been developed to overcome these problems [83], but they typ

involve approximations which can only attempt to insure that the location of the mode

the error surface remains reasonably close to optimal. We prefer methods wher

sparse optimization is implicit in the training of the model. As will be explained shor

there are a class of Bayesian methods that provide just such a framework.

Second, the SVMs are binary classifiers which are only capable of produci

yes/no decision. In speech recognition this is an important disadvantage since th

significant overlap in the feature space which can not be modeled by a yes/no dec

boundary [59]. Further, the combination of disparate knowledge sources (suc

linguistic models, pronunciation models, acoustic models, etc.) requires a metho

combining the scores produced by each model so that alternate hypotheses c
41
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compared. Thus, we require a probabilistic classification which reflects the amou

uncertainty in our predictions. Efforts [27,71,72] have been made to build poste

probability estimates from the SVM models by mapping the SVM distances to a sigm

function. While this does build a posterior estimate, Tipping [44, Appendix D] arg

quite effectively that the sigmoid estimate is unreliable and that it tends to overestima

model’s confidence in its predictions.

In this chapter, we introduce a Bayesian approach due to MacKay [47,48]

incorporates an automatic relevance determination (ARD) prior over each m

parameter. This tends to force most of the parameters to zero, leading to a sparse

representation. A kernel-based learning technique termed theRelevance Vector Machine

(RVM) [44,45] is an application of ARD methods that is explored in this dissertation. K

to the RVM approach is the fact that only those parameters which are truly releva

accurate modeling are retained. Thus, sparseness in the RVM model is automat

produced. In many cases, the RVM requires over an order of magnitude fewer param

than the SVM [44,84,85,86] under equal conditions while producing generaliza

performance on par with the SVM. Further, the RVM approach is built from a fu

probabilistic framework. This avoids the rather clumsy coupling of the model to

probability space as was necessary with the SVM.

3.1. Bayesian Methods

In the speech problem defined earlier, the task of learning amounted to findin

values of the parameters in our model that best matched the training data. The hop
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that, given sufficient training data, the model would generalize to unseen test sets. Im

in this problem was choosing a model that was best suited to the speech tas

examined two three possible models thus far: the HMM/GMM, HMM/ANN and HMM

SVM systems. Embodied in this discussion are the two primary inference tasks of

modeling [47]. First, assuming that a particular model is true, we seek to infer the va

for the parameters of the model that best fit the data at hand. This is exactly the tra

process given earlier — e.g. we presume the ANN topology and proceed to use

propagation to find the optimal weights. The second level of inference is one that we

not addressed closely to this point. That is the problem of inferring which model is m

appropriate given the data at hand, or model comparison.

A first-cut approach to model comparison might dictate that we simply choose

model that fits the data best — the maximum likelihood solution. However, a m

complex model can always fit the data better. Jaynes [87] describes an extr

interpretation of this problem where we would always choose the so-calledSure Thing

hypothesis, under which exactly the training set and only training set is possible. Th

it is the maximum likelihood solution, the Sure Thing hypothesis is intuitively displeas

and is counter to our desire for a solution which generalizes. We avoid choosing the

Thing hypothesis by expressing ana priori preference for simpler solutions. Thi

preference for simple theories is given by a rather famous principle of modeling know

Occam’s Razor.

Models studied previously, such as ANNs and SVMs have developed method

dea l ing wi th genera l i za t ion — cross-va l ida t ion fo r ins tance. Bayes i
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methods [87,88,89,90], on the other hand, provide a natural and quantitative embod

of Occam’s razor [48] as will be demonstrated shortly. First, the notation for Baye

methods needs to be developed (we will follow the notation of MacKay [48]). The f

level of inference requires that we find the best-fit parameters. We can write

probabilistically as , where is the set of adjustable parameters, is

data from which we will make all inferences, and is the overall model of the wo

including the form of the model, etc. Using Bayes’ rule, we can rewrite this as

(43)

Gradient methods are typically applied to find a optimal setting of . The denomina

termed theevidencefor the hypothesis , is usually ignored during the first level

inference because it is not needed in finding the most probable parameter settings,

The second level of inference requires the comparison of competing hypoth

and , by finding which of and is maximum. Setting thi

problem as a ratio of probabilities and using Bayes’ rule gives

. (44)

I f we assume that the compet ing hypotheses area pr io r i equ iprobab le

(i.e. ), then the best hypothesis is chosen by evaluating the evide

. The evidence is computed by marginalization across the model paramete

P w D Hi,( ) w D

Hi

P w D Hi,( )
P D w Hi,( )P w Hi( )

P D Hi( )
--------------------------------------------------=

w

Hi

ŵ

H1 H2 P H1 D( ) P H2 D( )

P H1 D( )
P H2 D( )
----------------------

P D H1( )P H1( )
P D H2( )P H2( )
---------------------------------------=

P H1( ) P H2( )=

P D Hi( )
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It is usually impractical to compute the integration, so MacKay [47,48] prescribes

analytical approximation to the evidence computation. Under the assumption tha

posterior probability in (43), , is well-approximated b

a Gaussian, the integrand in (45) can be assumed to have a strong peak at the

probable value of the parameters, . The evidence can then be approximate

multiplication of the height of the integrand and the width of the posterior, . This

depicted in Figure 7.

The evidence is approximated by

. (46)

P D Hi( ) P D w Hi,( )P w Hi( ) wd∫=

P w D Hi,( ) P D w Hi,( )P w Hi( )≈

ŵ

w∆

P D Hi( ) P D ŵ Hi,( )P ŵ Hi( ) w∆≈
P D Hi( )∼

∆w

P w D Hi,( )

w

ŵ

Figure 7. Evidence approximation for a single hypotheses. If the Gaussian assumption for the
posterior, peaked about , is not a good one then other methods must be employed.
The width, , is the posterior uncertainty in our estimate of and can be deter-
mined by computing the error bars from the posterior.

ŵ
∆w ŵ
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where the term is the likelihood of the data given the best-fit parameter

and is a penalty on the range of which measure of how well o

posterior distribution on fits with our prior specification. As shown in Figure 8, a m

complex model would be expected to have a smaller prior probability for ,

than a less complex model and thus would be penalized more. This is precisely ho

evidence embodies Occam’s razor — all other things being equal, a less complex mo

preferred. The evidence provides a natural trade-off between the best-fit likelihood an

Occam factor. This concept is closely related to other ’penalizing’ methods such a

Minimum Description Length [91] and the Bayesian Information Criteria [92] where

model is directly penalized by the number of parameters used. A similar idea was

P D ŵ Hi,( )

P ŵ Hi( ) w∆ 0 1,[ ]

w

ŵ P ŵ Hi( )
∆w

P w Hi( )

P w D Hi,( )

w
σw
Figure 8. The prior distribution on the parameters in conjunction with the posterior distribution
width determine the Occam factor. determines the penalty incurred for
choosing the model, . A model with with more paramters will tend to have a larger

. Thus, the penalty for such a model will be larger. The evidence defines the
trade-off between posterior likelihood and model complexity (generalization) in the
Bayesian framework.

∆w σw⁄
Hi

σw
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seen in the SVM models which penalized models with too large a capacity

dimension) [37].

A impediment for the acceptance of Bayesian methods in the past has bee

belief that they required the specification of subjective priors, thus making their res

meaningless. While necessary, the priors are rarely subjective. Rather they are me

represent our prior state of belief in the nature of the problem. The strength of Bay

methods is that they allow us to quantitatively explore our prior beliefs. The failure

model can be analyzed in terms of the priors and the priors can be adjusted appropr

The Bayesian methodology also prescribes a principled manner of dealing with our la

prior knowledge using maximum entropy arguments [87,90]. This prescription is

stated by Jaynes [87] when he says that

“out of all distributions, , that agree with the constraints, the one that

maximizes the Shannon entropy represents the ’most honest’ description of

our state of knowledge”.

This principle will be used often in the following sections when we seek to define p

probabilities over the parameters, , where . In these cases a zero-m

Gaussian (maximum entropy) prior will be used which indicates our prior belief that m

parameters should go to zero, yielding a smooth model.

3.2. MacKay’s Evidence Framework and Automatic Relevance Determination

MacKay [47] was the first to apply the evidence framework to regression

classification problems using ANNs. A summarization of his analysis is given n

pi

w w ∞ ∞,–( )∈
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Defining the training data set as , our goal in neural network learning is to

the set of weights, , such that a global error term, , is minimized. Typica

 takes the form of a squared error as in the sum squared error in back propag

, (47)

where is the i’th component of the j’th target output and is the i’th outp

of the ANN when presented with training sample when the weights are set to

discourage overfitting, a weight decay or regularizer term may be added which pena

large , for example

. (48)

The objective function for learning thus becomes

. (49)

We can give a probabilistic interpretation for (49) if we consider the neu

network outputs to be perturbed by a Gaussian noise process so that

(50)

where  is a zero-mean Gaussian noise process with variance equal to . Then,

(51)

D o t,{ }=

w ED w( )

ED w( )

ED w( ) ti
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specifies a Gaussian distribution over with mean and variance .

total probability of the data given the model (using the log of the sum-squared e

condition) can then be written as

, (52)

where is the Gaussian normalization term. Likewise, the log of the weight de

term, , can be interpreted as a prior probability over the parameters so that

. (53)

With as given in (48), is a zero-mean Gaussian whose width is define

. Finally, we have that

, (54)

where, substituting (52) and (53) gives us

. (55)

It should be noted that binary and multi-class classification networks can be handle

similar manner [47]. We simply replace the sum-square error function by a log-likelih

function, . The parameter, , is not necessary in this case.

Application of (55) has the expected consequence that, by minimizing

objective function, (49), we are maximizing the probability of the weights given

ti
j( ) yi o j( ) w;( ) 1 β⁄

P D w β H, ,( ) 1
ZD β( )
---------------e

βED–
=

ZD β( )

EW

P w α H,( ) 1
ZW α( )
----------------e αEW–=

EW P w α H,( )

1 α⁄

P w D α β H, , ,( )
P D w β H, ,( )P w α H,( )

P D α β H, ,( )
------------------------------------------------------------=

P w D α β H, , ,( )

1
ZD β( )
---------------e

βED– 1
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constraints. Finding the most probable weights, however, is not the end of the prob

Two parameters, and , have been introduced which need to be estimated. Note

is increased, the probability distribution of the decay terms becomes peaked abou

and smoother interpolants are favored. However, a value of that is too large (i.e

narrow a Gaussian) may limit the ability of the system to model a complex data set. A

is decreased, more complex interpolants are allowed. Here we have the first applicat

the Occam factor as described above — we must find the that provides suffic

flexibility to model the training data set without allowing so complex a model th

overfitting is encouraged. A similar argument can be made for .

Under typical statistical methods, we might turn to cross-validation to find suita

values for these two parameters, but Bayesian methods provide a natural and prin

approach for estimating them using the data at hand. We can write down the probabi

the two parameters given our state of knowledge as

. (56)

Note that is the evidence for and and is the denominator in (5

Assuming we have no prior knowledge that would cause us to favor a particular valu

or , we can find the optimal values for and by evaluating the evidence (if we

have prior knowledge, we would simply repeat the inference over and using the p

, similar to what was done in the optimization of . At some level of th

α β

α

α

α

α

β

P α β D H,,( )
P D α β H, ,( )P α β H,( )

P D H( )
-----------------------------------------------------------=

P D α β H, ,( ) α β

α β α β

α β

P α β H,( ) w



51

and

is

r the

as a

d by

ined

n the

iven

em

sed to

roup

This
inference, we will arrive at a point where our prior knowledge is too weak to apply

then we evaluate the evidence).

Unfortunately, a maximum for can not be found analytically in th

case, so we proceed with an approximation due to MacKay [47] and Gull [90]. Unde

assumption that the posterior distribution, (55), can be adequately approximated

Gaussian,  and  can be updated as

 and (57)

, (58)

where are the number of training points, are the most probable weights foun

maximizing (55), is a measure of the number of parameters which are well-determ

by the training data and is given by

. (59)

is the covariance of the assumed posterior Gaussian and defines error bars o

parameters, . is found by computing the Hessian of the objective function g

in (55). Iterative application of (55) and (56) provides optimal values for the syst

parameters, , , and , under the set of Gaussian assumptions.

For the explanation above, it was assumed that only one parameter, , was u

control the complexity of all parameters in the system. In practice, we may want to g

parameters of the system and control the complexity of each group separately.

P D α β H, ,( )

α β

β̂ N γ–
2ED
-------------=

α̂ γ
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ˆ( )2

i
∑
-------------------=

N ŵ

γ

γ k αTrace Σ( )–=

Σ

w Σ

ŵ α̂ β̂
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requires little change to the above formulation. We now assume a Gaussian prior for

class, , of parameters so that

, (60)

where

(61)

and proceed with the optimization as above. In the extreme case, a control paramet

can be assigned to each weight, . This extreme application of the Bayesian prio

control parameter is known as the method ofautomatic relevance determination(ARD). It

is so named because the prior over the input unit weights in a neural network

’shut-off’ those input dimensions which are irrelevant to the problem at hand. ARD

the heart of the relevance vector machines that will be described next.

3.3. Relevance Vector Machines

All of the above analysis has been done in terms of neural network training

application of the evidence framework to kernel machines is the relevance ve

machine (RVM) [44,45]. As with SVMs, the RVMs are formed by defining

vector-to-scalar mapping as a weighted linear combination of basis functions,

, (62)

c
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where and is a set of functions

that each form a, generally nonlinear, mapping of the observed vector, , to a scala

weights, , are the parameters to be tuned to produce an accurate model (unde

appropriate measure) of the phenomena we desire to learn. At this stage, it is import

note the form of the basis functions, . Since SVMs are optimizing a distance measu

the transform space, they require that the basis functions take the form of a so-c

Mercer kernel [38] (i.e. a kernel which acts as a dot-product in some space). No

restriction is placed on the basis functions that can be employed by the RVM. How

the power demonstrated by kernel machines gives compelling reason to pursue this s

form of the basis function.

We reformulate (62) as

, (63)

where there is one weight, , associated with each training vector and defi

kernel function (not necessarily a Mercer kernel). Due to the large number of param

in this model — one per observation — we must guard against overfitting of the mod

the training data. SVMs use the control parameter, , to implicitly balance the trad

between training error and generalization. RVMs take a Bayesian approach and exp

define an ARD prior distribution over the weights

(64)

w wo w1 … wM, , ,
T

= φ 1 φ1 o( ) … φM o( ), , ,
T

= M

o

wi

φi

y o w;( ) wo wiK o oi;( )
i 1=

M

∑+=

wi K o oi;( )

C

p w α( ) N wi 0
1
αi
-----, 

 
i 0=

N

∏ 1

2π( )N 1+ A 1–
---------------------------------------e

1
2
---wT Aw–

= =
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where we have defined . This prior acts to force wea

components of the model toward a weight of zero, thus finding the inputs that are rel

to modeling.

Each weight in the RVM model has an individual hyperparameter, , tha

iteratively reestimated as part of the optimization process. As the grows larger

prior on becomes infinitely peaked around zero, forcing to go to zero and, t

contributing nothing to the summation in (63). This process automatically embodie

principle of Occam’s Razor because it explicitly seeks the simplest model that satisfie

data constraints. In practice, the majority of the weights are pruned, resulting i

exceedingly sparse model with generalization abilities on par with SVMs [44].

complete the Bayesian specification of the model, we have to specify a prior proba

over the . In practice we use a non-informative (flat) prior to indicate a lack

preference [44].

With SVMs the form of (63) arises from the need to optimize the classificat

margin in a high-dimensional space. With RVMs, however, the goal is to directly mo

the posterior probability distribution. The posterior is, thus, formed by generalizing

linear model to a probability distribution with a sigmoid link function,

, (65)

and adopting the two-class Bernoulli distribution for  to give

(66)

A diag αo α1 … αN, , ,( )=

αi

αi

wi wi

αi

σ y( ) 1
1 e y–+
----------------=

P t o( )

P ti w o, i( ) σ y oi w;( ){ }[ ]ti 1 σ y oi w;( ){ }–[ ]1 ti–=
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where — an integrated multiple-class approach is also defined but du

computational concerns is less favorable than a set of one-versus-all classifiers. Und

assumption that each data sample is drawn independently, the likelihood of the tra

data set can be written as

(67)

where .

The objective of training is to find a parameter set which yields a model tha

well-matched to the training data. In mathematical terms we want to find

. (68)

Using Bayes’ rule and (67), we can form (68) as finding  and  that maximize

. (69)

A closed form solution to this maximization is not possible so we use the itera

approximation used by MacKay [47] which was described earlier.

1. For a fixed , find the locally most probable weights . In other words, we w

to find the that maximizes . This is equivalent to maximizin

. Taking the logarithm of this quantity and ignoring the sca

factor on  which is a constant due to the fixed  we can write

ti 0 1,{ }∈

P t w O,( ) σn
tn 1 σn–( )1 tn–

n 1=

N

∏=

σn σ y on w;( ){ }=

ŵ α̂,( )
argmax

w α,
p w α t O,,( )=

w α

p w α t O,,( )
p t w α O, ,( ) p w α, O( )

p t O( )
---------------------------------------------------------=

α ŵ

w p w t α O, ,( )

P t w O,( ) p w α( )

p w α( ) α
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The gradient and Hessian of  are found by differentiating with respect to

(71)

, (72)

where with , and is the N x N+1

matrix defined by  with

. (73)

The Hessian defined in (72) is negative-definite everywhere, and therefore de

a unimodal, log-concave surface — this is easy to see since an

contain only positive entries. We can, thus, use second-order Newton metho

solve for the that maximizes with an assuredness that the process

converge.

2. The Hessian is negated and inverted and to give an approximation to

covariance of a Gaussian posterior over the weights, centered about

(74)

L = P t w O,( ) p w α( ){ }log

= log σn
tn 1 σn–( )1 tn–

n 1=

N

∏ N wi 0
1
αi
-----, 

 
i 0=
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∏

= tn σn( )log 1 tn–( ) 1 σn–( )log+[ ]
n 1=

N
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2
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B diag β1 β2 … β, N, ,( )= βn σn 1 σn–( )= Φ
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3. Using and as the covariance and mean, respectively, of the Gau

approximation, we can follow MacKay’s approach [47] to update the  by

. (75)

This iterative procedure is repeated until suitable convergence criteria are

Central to this iterative method is the second-order Newton maximization

requiring an O(N3) inversion operation. As the quantity of training

data increases, this becomes prohibitive. SVMs have a similar problem with scalin

that has been addressed through iterative refinement of the training set [40]. Cu

research is focusing on similar methods for RVMs [93].

3.4. Summary

In this chapter, sparse Bayesian methods have been examined. These metho

the evidence framework to compare potential models. Sparsity is explicitly encourag

the model through the invocation of an ARD prior. The RVM is a kernel machine tha

formed as a special case of this methodology. The form of the RVM is similar to the S

but it overcomes some of the drawbacks of the SVM paradigm. Namely, the R

provides superior sparsity with little to no degradation in generalization. The RVM a

operates as a purely probabilistic model so there is no need to coax probabilities out

model as was necessary with the SVM. In this dissertation, we will exploit the advant

Σ ŵ

αi{ }

αi

γ i

ŵi
2

------= γ i, 1 αiΣii–=

P t w O,( ) p w α( )
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of the RVM on the speech recognition problem. The next chapter will describe

framework, data, and experiments that will be employed by this dissertation.
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CHAPTER 4

PROPOSED WORK AND EXPERIMENTS

The HMM/SVM hybr id f ramework defined by Ganapath i ra ju an

colleagues [27,63] gave improved performance for continuous speech recognition

In particular, the oracle results showed the promise of discriminative kernel meth

However, the results also exposed the shortcomings of the presented framework

nature of the SVM model necessitated the use of ad hoc procedures for estimatin

segmentation of the speech data as well as the posterior probability distributions, n

of which seemed to reap the full power of the SVM model. Further, the HMM/SV

hybrid framework was not able to make full use of the power of HMMs to automatic

find segmentations which maximize the likelihood of the data given the SVM model.

was it able to leverage the existing methods common to HMM/GMM systems suc

iterative EM training.

In this work, we seek to use the HMM/SVM work as a springboard to an integra

solution which follows the form of standard HMM/GMM systems. Yet, we desire to ret

the power to define nonlinear decision regions by discriminatively training i

high-dimensional space via kernels. The Bayesian formulation of the RVM prov

exactly these benefits. The primary contribution of this thesis work will be to motiv

investigate, define and implement a set of theoretically well-founded technique
59
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estimating and evaluating an HMM/RVM continuous speech recognition system.

new methodology will address three primary issues:

1. Integrated, iterative HMM/RVM training : The results of the HMM/SVM

hybrid system [27,63] indicate a need to automatically incorporate segmenta

variation into the training process. HMMs offer a principled approach to t

problem via the EM-based Baum-Welch algorithm [19]. In this work we propo

to create a similar algorithm for training HMM/RVM systems. The RVM wi

replace the Gaussian as the frame-level emission distribution in the HMM s

Iterative reestimation formulae which describe cycles of Baum-Welch statis

accumulation (the expectation step) followed by Bayesian RVM traini

(maximization step) will be derived. In building this training algorithm we mu

address issues of iterative and monotonic convergence and stopping cri

Similar work that has been developed for connectionist HMM/AN

systems [35,36] will serve as reference.

2. Practical optimization methods: As with SVMs, the process to train an RVM

classifier is computationally expensive even for small problems. For the RV

though, this is primarily due to the need for inversion of the Hessian matrix wh

is an O(M3) operation requiring O(M2) memory, where M is the number of basi

functions (also the number of non-zero multipliers). At initialization M is set to t

size of the training corpus, N. Since our new training paradigm would replace

HMM emission distribution by an RVM, the RVM would be exposed to eve
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frame of data in the training corpus. For even small speech corpora the numb

frames in the training set is on the order of 106. The usual RVM training methods

described previously are rendered impractical.

There are three immediate avenues for research on this problem. The firs

define a technique analogous to thechunking algorithm[40] used in efficient SVM

optimization. With this, the RVM optimization problem can be decomposed in

set of smaller problems whose respective solutions can be combined to fo

solution for the full problem, all while insuring optimality (or near-optimality

Faul and Tipping [44,93] refer briefly to a second constructive method in which

optimization begins with a single basis function and others are added or delet

the optimization proceeds. Finally, an active data selection mechanism akin to

described by MacKay [47] may be defined. Similar to Tipping’s metho

MacKay’s is constructive in the sense that only those data points which

expected to add significant new information (e.g. those which are likely to h

non-zero multipliers) are added to the optimization.

3. Integrated hierarchical Viterbi-HMM/RVM decoder : Finally, we will build

upon the ISIP hierarchical HMM decoder [94] to create an HMM/RVM decod

Construction of this HMM/RVM decoder primarily requires the replacement of

Gaussian core with the trained RVM models. The remainder of the deco

machinery remains unchanged, though some tuning of parameters wi

necessary for each experimental task.
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4.1. Corpora

The work in this thesis will incorporate three corpora which cover the full range

continuous speech corpora:

1. The Deterding vowel [95] set is a publicly available vowel classification task. T

is a good data set to evaluate the efficacy of static RVM classifiers and to com

their performance to SVM classifiers on speech data since it has been used

standard benchmark for several non-linear classifiers for several years. In

evaluation, the speech data was collected at a 10 kHz sampling rate and low

filtered at 4.7 kHz. The signal was then transformed to 10 log-area parame

giving a 10 dimensional input space. A window duration of 50 msec. was used

generating the features. The training set consists of 528 observations from

speakers and the test set consists of 462 observations from a different set of

speakers. The speech data consisted of 11 vowels uttered by each speaker in

context. This data set is one of the most widely used for benchmarking non-li

classifiers. Though it appears to be a simple task, the small training set

significant confusion in the vowel data make it a very challenging task.

2. The TIDigits corpus [96] consists of more than 25 thousand digit (“zero” throu

“nine” and “oh”) sequences spoken by over 300 men, women, and children.

data was collected in a quiet studio environment and digitized at 20 kHz. Howe

most experiments begin by downsampling the data to 8 kHz. The typ

word-error rates on TIDigits is close to 1% so this corpus will not serve to pr
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the superiority of the new methods. Instead we will use this corpus to provid

benchmark where experiments can be completed quickly — until the HMM/RV

system approaches state-of-the-art on this task there is no reason to continue

more complicated tasks.

3. The OGI Alphadigits [81] corpus is a collection of about 78,000 examples fr

3031 speakers saying strings of letters ("a"-"z") and digits ("zero"-"nine" a

"oh") over the telephone. The data was recorded directly off of a digital T1 ph

line without digital-to-analog or analog-to-digital conversion at the recording e

An 8kHz sampling rate was used. Experimentation on the Alphadigits corpus

follow directly from the TIDigits experiments since the form of the task is identic

(open grammar on a small domain without a probabilistic language model).

will also give us our first comparison point with the hybrid HMM/SVM system

State-of-the-art word-error rates on this task are near 10%.

4. Switchboard [82] corpus consists of spontaneous conversations averagin

minutes in length. Over 500 speakers of both genders from every major diale

American English are represented. The data is a digital version of speech si

collected directly from the telephone network over T1 lines by automa

switching software. The added confusability and conversational style as well a

addition of a high-perplexity stochastic language model makes this one of the

difficult tasks being tackled in recognition research today. Results from a b
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HMM/GMM system hover near 40%, while state-of-the-art systems are abl

achieve error rates near 20%.

For the TIDigits task the standard, speaker-independent, open-loop training

test sets will be used. A proposed segmentation into training and test sets fo

Alphadigits corpus has been defined [97] and will be used in all experimentation with

corpus. For the SWITCHBOARD corpus, the training and test sets created durin

1997 LVCSR Summer workshop at Johns Hopkins University [98] will be used since

were used in the HMM/SVM work [27] and will provide a point of comparison.

4.2. Preliminary Experiments

Preliminary experiments using RVMs have been run on a large number of

sets, both synthetic and real. A representative example of these is the Deterding

classification data. Table 2 gives the results and compares them to the SVM class

trained in [59]. Importantly, the RVM classifiers achieve superior performance to the S

classifiers while utilizing nearly an order of magnitude fewer parameters. While we do

expect the superior error performance to be typical (on pure classification tasks) w

expect the superior sparseness to be typical. This sparseness property will be partic

important when attempting to build systems which are practical to train and test.

4.3. Planned Experiments

Before the integrated/iterative training methods can be tested on

(reasonably-sized) speech corpus, we must address the issue of practical training m
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Classifier Error Rate
Average number
non-zero weights

SVM 35.0% 82.8

RVM 30.3% 12.6

Table 2. Comparison of SVM and RVM classifiers on Deterding vowel data [95]. Each classifier
type was trained as a set of 11 1-vs-all classifiers. The training and test set sizes for each
classifier was 532 examples and 462 examples respectively. Both the SVM and RVM
system used an RBF kernel with the variance parameter set to 0.7. For the SVM system,
the trade-off parameter, C, was set to 10. The best performance reported thus far on this
data is 29% using a speaker adaptation scheme called Separable Mixture Models [99].
for the static RVM classifiers. For this task, we wil l mirror the alphadig

segmental-modeling experiments performed using the hybrid HMM/SVM system [

This is a reasonable benchmark point for the proposed methods since these seg

models are trained on as many as 350 thousand training vectors. A key difference be

the HMM/RVM and HMM/SVM segmental systems will be the posterior estimate. Wh

the HMM/SVM system relied on an ML-fit of the posterior probabilities to a sigmoid,

HMM/RVM system will directly predict the posterior probability.

Our initial recognition experiments will use the TIDigits corpus. We first propo

to build two sets of 5-state left-to-right word models with GMM emission probabilit

and RVM emission probabilities respectively. The HMM/GMM models will be train

using the standard Baum-Welch algorithm on all of the TIDigits training data. The num

of mixtures in the GMMs will be increased up to 16 mixtures. The HMM/RVM mode

will be trained using the training algorithm developed as part of this dissertation.

power of the RVM model should obviate the need for the mixtures, so no mixture m
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will be generated for the RVM system. This initial training experiment will be key to

development of convergence criteria for the HMM/RVM training system.

Further experiments with the TIDigits corpus will build context-independe

phone models as well as context-dependent cross-word phone models. Due to insuf

training data for some models, we will have to face the issue of parameter tying. In

attempts at parameter tying will use the same tied state mapping as determined

HMM/GMM system. Because the RVM model describes a probability distribution we

also examine a decision tree methodology which uses a cross-entropy measure be

two RVM models to generate the tree of similar states. The test set will be evaluate

decoding a loop grammar (any number of words is possible and any word sequen

possible).

Extending the techniques to the alphadigits and SWB tasks should prove to

trivial extension of the lessons learned in the TIDigits experiments, with the ad

inconvenience of an order of magnitude longer training and decoding time. To abbre

the SWB decoding experiments, we will rescore lattices generated from an HMM/G

cross-word triphone system. These lattices will have an inherent error rat

approximately 10-15%. Both the alphadigits and SWB systems will be built

cross-word, context-dependent triphone systems. The alphadigits system language

will be modeled as a loop grammar while the SWB system will use a trigram langu

model.

With all of these experiments, the question of what feature set to use arises

objection we have to many of the previous results with discriminative models is that
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difficult if not impossible to decouple the improvement due to the new learning mac

from the improvement due to the increased feature set dimension. The authors w

likely argue (and rightly so) that the ability to avoid the curse of dimensionality is

important feature of their model. However, when comparing two modeling paradigms

would like to as much as possible be able to make an apples-to-apples compariso

instance, if GMM models are no worse than the proposed discriminative models,

perhaps more effort should go into ways to train GMM models with larger feature se

Thus, we will initially use the same features for the HMM/RVM system as is u

for the HMM/GMM system. These will include 12 FFT-derived cepstral coefficients a

one energy coefficient along with the first and second derivatives of those 13 to cons

a single 39-dimensional feature vector generated for each 10 milliseconds of speech

Using these features will allow us to determine if the RVM system is truly learning so

modality of the data beyond what the GMM is able to learn. In further experiments

will use an extended feature set to determine what additional information can be gain

the RVM. We will use a sliding window of frames of data along the lines of connectio

systems. The window size will vary from 5 frames to 15 frames.
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