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The prominent modeling technique for speech recognition today is the hidden
Markov model with Gaussian emission densities. However, they suffer from an inability to
learn discriminative information. Artificial neural networks have been proposed as a
replacement the Gaussian emission probabilities under the belief that the ANN models
provide better discrimination capabilities. However, the use of ANNs often results in
over-parameterized models which are prone to overfitting. Techniques such as
cross-validation have been suggested as remedies to the overfitting problem but
employing these is wasteful of both resources and computation. Further, cross-validation
does not address the issue of model structure and over-parameterization.

Recent work on machine learning has moved toward automatic methods for
controlling generalization and parameterization. A model that has gained much popularity
recently is the support vector machine (SVM). SVMs use the principle of structural risk
minimization to simultaneously control generalization and performance on the training

set. A recent dissertation from this university has employed the SVM in a hybrid



framework for speech recognition. While the HMM/SVM hybrid produced a decrease in
the error rate, the implementation had some significant shortfalls which we hope to
address in this work. First, the SVMs are not probabilistic in nature and, thus, are not able
to adequately express the posterior uncertainty in predictions. This is particularly
important in speech where there is significant overlap in the feature space. The SVMs also
make unnecessarily liberal use of parameters to define the decision region.

In this dissertation, we study a Bayesian model which takes the same form as the
SVM model. This model, termed the relevance vector machine (RVMs), provides a fully
probabilistic alternative to the SVMs. The RVMs have been found to provide
generalization performance on par with SVMs while typically using nearly an order of
magnitude fewer parameters. Sparseness of the model is automatic using MacKay'’s
automatic relevance determination methods. In this work we propose to develop the first
speech recognition system using RVMs. Similar to hybrid HMM/ANN systems, the RVM
model will replace the Gaussian density in the HMM models. To accomplish this, we must
develop closed-loop training routines which insure convergence and optimality.
Computational issues make this an impossibility currently and must be addressed before a

scalable system is feasible.
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CHAPTER 1

STATISTICAL APPROACH TO SPEECH RECOGNITION

Spoken communication is the most natural form of information exchange
employed by humans. The communication process requires a speaker to encode
information into a set of signals (speech production) and a listener to receive those signals
(speech perception), recognize (or decode) the components of the signal (often words, as
in speech recognition) and infer the implied meaning of the components and take action
(speech understanding) [1,2]. The process of human speech recognition often uses a
combination of sensory sources including facial gestures, body language, auditory input as
well as feedback from the speech understanding facilities to produce an accurate
transcription of the speaker’s message. However, for our limited purpose of computer
speech recognition, we will consider only the problem of converting an acoustic signal
(i.e. the speaker’s voice) into a stream of words. This problem is akin to communicating
over the telephone where the other sensory side-information is not available. Henceforth,
we will consider this as thepeech recognition problefsee [3] for examples of
multimodal recognition technology).

In this chapter, we describe the predominant approach to speech recognition. Itis a
statistical approach and is framed in a maximum likelihood paradigm using hidden

Markov models (HMMs) with Gaussian mixture model (GMM) emission distributions to



learn the long-range and local phenomena associated with speech patterns. While
tremendously successful, a criticism of these systems is that they are not able to
adequately model the discriminative information present in the speech signal. Hybrid
systems are described which combine the discriminative-modeling power of artificial
neural networks and the temporal modeling power of the HMM. The training techniques
for these hybrid systems will serve as inspiration for the techniques developed in this

thesis.

1.1. The Speech Recognition Problem

At the heart of computer speech recognition is a pattern recognition problem. It

can be stated thusly: given a set of acoustic observat@rs, o, 0,, ..., 07 , and a set of

models describing acoustic and linguistic patterns, we must determine which patterns

were observed and, in doing so, determine which word sequéice, w,, W,, ..., Wy,

was spoken. Four questions quickly arise from this problem statement:

1. How do we obtain the acoustic observations?

2. What model do we use for the acoustic and linguistic patterns?

3. How do we train these models?

4. How do we find the best word sequence when given a new set of observations?

The first of these questions embodies the problem of finding a suitable

transformation of the sampled speech signal into a compact feature space which has



properties amenable to pattern recognition techniques. The component of a speech system
that implements the transformation is the acoustic front-end. Volumes have been written
on front-end processing (for example see [4,5]), however, a fairly generic frame-based,
cepstral front-end is at the core of most acoustic front-ends for speech recognition and is
used in this work [6]. This front-end is depicted in Figure 1. While this front-end is not the
only possibility (see, for example [7]), it has been widely used in speech recognition

applications.

Sampled Speech Signal
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Figure 1.  Typical Mel-Cepstral acoustic front-end.

At the core of the cepstral front-end is a frame-based analysis which gives a
short-time analysis of the sampled speech signal [4]. Under the assumption that the speech
signal is stationary over short periods, a frame duration on the order of 10 milliseconds is

commonly used. The frame-based approach allows us to analyze the signal in terms of its



short-term frequency content. Mel-scale cepstral analysis (MFC) [6] is performed to
provide a compact representation of the vocal tract impulse response. The measured
cepstral response is correlated with the shape of the vocal tract and position of the
articulators at the time at which the frame of speech was uttered. While the frame-based
analysis assumes stationarity, it is an unrealistic assumption. Articulators do not
instantaneously switch position at frame boundaries, nor are they completely motionless
during the frame’s duration [8]. To account for some of the transitory behavior, first and
second derivative features are typically appended to the feature vector.

With the acoustic observations in place, we can address the second question from
above: what model of the acoustic and linguistic patterns do we use? Speech can be
loosely seen as a concatenation of units embedded in a hierarchy as shown in Figure 2. For
example, we might say that speech is a concatenation of sentences which are, in turn, a
concatenation of words which are a concatenation of syllables which, finally, are a
concatenation of phones. The phone is often considered to be the smallest, non-divisible
unit of sound. In describing the concatenative model, however, we made a false
assumption. In conversational speech it is rarely possible to perceptually isolate a single
phone. Rather, our perception of a phone is formed from the surrounding phonemic
context [9]. For example the ‘a’ sound in the words “am” and “apple” differ — the
proximity of the nasal sound, ‘m’ causes the ‘a’ in “am” to be nasalized. This type of
effect is particularly prevalent in conversational speech where the speakers are seldom

cautious in their articulation [10].
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To model these coarticulation effect, we use a context-dependent model in which
the model for a base sound is dependent upon the surrounding context. In our example
above, the ‘a’ in “am” and the ‘a’ in “apple” would be modeled separately. In most speech
applications, a single left context phone and a single right context phone modify the phone
in question. This unit is known as a triphone and tends to lead to large increases in
performance [11]. Larger contexts have also been applied with some smaller increases in
performance [12]. Coarticulation at word boundaries is also a major problem in
conversational speech. These effects are modeled by cross-word, context-dependent
models.

Speech recognition requires choosing amongst many different possible
transcriptions. This requires that we have some principled manner for directly comparing
candidate transcriptions so that the “best” one may be chosen. Probabilistic modeling is a
natural and very common comparison paradigm and provides our answer to the fourth
guestion above as well: how do we find the best word sequence given a new set of

observations. We can reformulate the speech recognition problem as a probabilistic one
where we want to find the word sequend®, , that is most probable given the acoustic
observations©

W = ar%:/nax P(W|O). (1)

This a posterioriformulation gives us no way to apply information about thpriori

probability of a word string. Thus, we use Bayes' rule to rewrite (1) as



argmax P(O|W)P(W)

W= w P(0)

(2)

whereP(O|W) is the probability that the acoustic observations would be seen when a
particular word sequence was spoke\W) isdhmiori probability of the word string

W being spoken, and(O) is the priori probability of the acoustic observation
sequence occurring?(O) can be safely eliminated from (2) because the observation
sequenceQ , is constant during the maximization. This yields

w = 9 b oiwypw) . 3)

The terms in (3) are usually modeled separat@&@W) is determined by a
statisticallanguage modelhich might take the form of a stochastic grammar or an
N-gram language model [13,14P(O|W) is given by aroustic modelThis acoustic

modeling component of the recognition system is explored in this dissertation. In most
state-of-the-art recognition systems, the hidden Markov model (HMM) is used as the

acoustic model [15,16,17,18]. The HMM (an example of which is shown in Figure 3) is a
doubly stochastic state machine that can be fully described by the {i$la, B} . Here,

S is the number of states in the machime,= {aij} is the state-transition probability set,
andB = {bj(ot)} is the emission probability distribution.

The popularity of HMMs as a model of speech phenomena is owed to the HMMs
ability to simultaneously model the temporal progression of speech (speech is usually seen

as a “left-to-right” process) and the acoustic variability of the speech observations. The
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Figure 3. A simple HMM featuring a five state topology with skip transitions. Each state has a sto-
chastic emission distribution.

temporal variation is modeled via an underlying Markov process while the emission
distribution models the acoustic variability. This acoustic variability may come as a result
of differing speakers, channel conditions, stress levels, dialect, accent, etc. in the speech
training corpus. The most commonly used emission distribution is the Gaussian mixture

model (GMM) described by

K
bj(o) = Y CyN(og|myj, Zj), > Cj = 1, where (4)
i=1
N = 1 0l Ty 71 O
(O jj» Z5) = eXpD—é(ot_Uij) 2 (0 = M) (5)

[(2m)"|z;|
In (4) and (5), theC, are the mixture weights and define the contribution of each

distribution to the total emission score and is the dimension of the acoustic observation

vector.



Finally, when building the acoustic models with HMMs, one must decide exactly
which acoustic unit (e.g. word, syllable or phone) to use. Most state-of-the-art systems, are
based on the cross-word context-dependent phones described earlier. In these systems,
each context-dependent phone (usually a triphone) is modeled by an HMM. Figure 2

shows how the HMM fits into the hierarchical model described previously.
1.2. Closed-loop, Supervised Parameter Estimation

The answer to the third question above (how do we train these models?) comes
from taking an account of the tunable parameters in the hierarchical HMM system

described previously. These are the language model probabilities, pronunciation model

probabilities and the HMM state transition@a(j} ), mixture weigm’ﬁ ( ), mea@s( )

and covariancesigj ). We ignore the first two of these in this dissertation and point the

reader to [13] regarding training procedures for language models and pronunciation
models. Instead, we concentrate on the HMM parameters which are directly related to the
acoustic model. Typically, this approach involves finding the HMM parameter set that
maximizes the likelihood of the data given the model — the maximum likelihood (ML)
approach.

As with most machine learning tasks, training acoustic models begins with some
labeled training data set. This training set consists of speech data and corresponding word
transcriptions (sometimes phonetic transcriptions are available as well). However, in
speech, there is a complicating factor: the alignment of the labels to the speech is usually

unknown. For instance, we may be given a five-second segment of speech and told that the
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transcription is “the boy ate candy”, but we do not know in which time interval each word
occurred. Therefore, we can not immediately determine which acoustic observation
should be used to train the individual emission probabilities. This is known as the
segmentation problem

A simple two-step approach can be taken to alleviate the segmentation problem.
First, hypothesize the sequence of HMM states which were most likely to have generated
the sequence of acoustic observations given the current parameter set; then update the
parameter set according to that state-labeled alignment. This is known as Viterbi
training [15] because the first step is a Viterbi alignment of the data to the current model.
With this procedure, updating of the HMM/GMM parameters is a straightforward
computation of the means and covariances for each GMM [2].

In the Viterbi training paradigm, a binary decision is made as to whether a state
occurred. In other words, thee posterioriprobability that a particular state generated a
particular observation is either 0 or 1. While simple to implement, it is questionable
whether the current model is sufficiently accurate to warrant a hard binary decision or that
the iterative procedure will converge. Baum and colleagues [19] addressed these problems
by defining a soft-decision training paradigm which is a special case of the
expectation-maximization (EM) algorithm [20]. The EM formulation has the desirable
property of guaranteed convergence to a local maximum.

Baum [19] defined an EM-type auxiliary function as

Q(A, A) = % P(O, qA)logP(O, qA) (6)
q
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whereA are the new estimates of the system paramekérs, are the current system
parameters, and is a given state sequence (i.e. a given state-frame alignment).
Maximizing Q(A, A") with respecttd insures that

QA ') 2Q(N, ) (1)
which implies that

P(O|A) 2 P(O|NY). (8)
Thus, maximizing the auxiliary function monotonically increases the likelihood of the

data given the model [19,20,2] until a critical point is reached. Note that the sum over

all g in (6) implies a soft decision as to which is the true alignment of states. Contrast this
to the Viterbi training algorithm where a single alignment was assumed to be the true
alignment.

In practice, the Baum-Welch training algorithm is implemented in a

forward-backward framework [2,16,17]. We define the forward probab'rbh]'-ﬁ) , as the
probability of having observed the partial observation sequemg®,, ..., 0, and state
at timet :

Gj('[) = P(04,05, ..., 0, 0; = j|)\'). (9)
We can inductively definexj(t) as a function af (t—1), ..., ag(t—1) . The backward
probability, Bj(t) , Is likewise defined as the probability of observing the partial

observation sequence,, 4, 0;, 5, ..., 01 , and sfate at time

Bj(t) = P(O;41, 0421 -, O, O = JIA). (10)
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It can be defined inductively as a function Bf(t+ 1), ..., Bg(t+1) . These inductive
representations provide an extremely efficient method for estimax'p(]tj Bia(rw

Note that, in Viterbi training, th@(j(t) anﬂj(t) were all unity for the states in the

assumed alignment and zero for all other state alignments.

The product ofcxj(t) anch(t) gives the probability of any alignment containing

statej at time
P(O, g, = j|N) = o (H)B;(1). (11)
Likewise, the total probability of observing the sequen@e, , is just the marginalization

across all states at any time
s
P(OIN) = 3 o (0)B;(1). (12)
j=1

Finally, we can define the probability of any alignment making a transition from state to

statej while observing,_; instate aod insjate as

P(O, g;_1=1,0= jIN) = a;(t—1)a;b;(0)B;(t). (13)
The above three probabilistic equations amount to the expectation step of the EM
algorithm. With (11), (12) and (13) in place, we can substitute them into the auxiliary
function, (6), and maximize with respect to each model parameter. This process defines
the maximization step of the EM algorithm which yields the parameter update equations.

These are fully derived in [2,13].
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While the combination of HMMs and Gaussian mixture models (HMM/GMM)
has been extremely successful, there are some key assumptions made that are not
appropriate for speech modeling.

1. The assumption of conditional independence (i.e. that all probabilities in the
system are conditioned only on the current state) is clearly false. The probability of
an acoustic observation given a particular state is highly correlated with both past
and future observations. Most HMM systems account for this by including
derivative features in the observation vector [5], thus breaking the model of
conditional independence. Ideally, one would want to condition the distribution

itself on the acoustic context, but that is impractical in conventional systems.

2. The HMM/GMM system makes assumptions about the parametric form of the
underlying distribution which may lead to a poor match to the true underlying

distribution.

3. Maximum likelihood approaches do not improve the discriminative abilities of the
model. In other words, the ML approach maximizes the probability of the correct
model while implicitly ignoring the probability of the incorrect model. Ideally, the
training approach should force the model toward in-class training examples while
simultaneously driving the model away from out-of-class training examples.
Methods such as maximum mutual information [21,22] and minimum

classification error [23] have been developed to incorporate discriminative training
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directly into the standard HMM/GMM framework. However, their success has

been limited due primarily to their considerable computational costs [22].

1.3. Connectionist Speech Recognition

The weaknesses of the HMM/GMM system have led researchers to seek models
which mitigate some or all of them [24,25,26,27]. Hybrid connectionist systems which
merge the power of artificial neural networks (ANNs) and HMMs have received a
particularly large amount of attention from the research community in the past decade as
an alternative to HMM/GMM systems [24,25,26,28,29,30]. The primary advantages of
using the hybrid HMM/ANN systems in speech are:

1. ANNSs are trained discriminatively to learn how to not only accept the correct class

assignments but to reject the incorrect class assignments.

2. ANN classifiers are able to learn complex probability functions in
high-dimensional feature spaces. GMM systems are usually restricted to smaller
dimensional vectors (on the order of 30-50) due to amount of training data that
would be necessary in estimating the parameters of the GMM distribution. HMM/
ANN system designers have put this to good use by using a longer feature vector

consisting of a concatenation of the acoustic observations used in the HMM/GMM
system; i.e. 0NN = [0, ,,...,0,_1,0, 0,1, ..., Or4\] [24,26]. Note that this

also circumvents the independence assumption since consecutive observations for

the ANN system are highly correlated.
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While some systems have used ANNs to model both the temporal and acoustic
properties of speech [31,32], most of the ANN systems have used the ANN as a
replacement for the GMM probability distribution and have maintained the HMM as a
model of the temporal properties. The outputs of a 1-of-N classifier trained under the
mean-squared error criteria are known to approximate the posterior class probability,

P(c|o), where the approximation accuracy is asymptotic in the size of the training
set [33]. Recall from the discussion of acoustic modeling earlier that the our goal is to
modelW which maximizes (2). In HMM/GMM systems, we directly build a model of
P(O|W), but with the ANN systems, we effectively have the posterR{\W|O) . Thus,
the posterior class probabilities need to be converted to likelihoods using Bayes’ rule

P(clo) _ P(ofc)
P(c) ~ P(o)

(14)

In practice, the priori class probabilities are estimated from the training data [24,29].
Using (14), the ANN can be used as a direct substitute for the GMM in the HMM
framework. Thus, it makes sense that they could/should be trained in the same manner.
Initially the hybrid systems were trained using a Viterbi (hard decision) training paradigm
as described for HMM/GMM systems above [24,29]. The HMM/ANN system with the
current ANN probability estimators was used to create a single alignment of the acoustic
observations to the HMM states. The ANN posterior estimators were then trained on each
observation that aligned to the HMM state using a typical ANN training algorithm such as

back propagation. Parallel training methods were pursued due to the resource-intensive
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nature of ANN training [34]. Because ANNSs are prone to overfitting, a held-out
cross-validation set is necessary to test for convergence of the models to a local maxima.
It is well known that, with infinite training data and sufficient model complexity, a
neural network trained on binary (0/1) targets will learn the posterior probability
distribution perfectly [33]. However, it is less clear how the same ANN will perform when
the training data is limited and the model topology is not matched to the true posterior
distribution. Yan, et al. [35] claim that, when given unseen data, an ANN trained under
such circumstances will produce unreasonable output. An appropriate response would be
to make a probability estimate which displays a lack of posterior knowledge about the
correct classification (a uniform probability for all classes, for instance). Instead, the
ANNSs often make extremely confident predictions despite the lack of any prior training
which supports the prediction. To address this issue, researchers have recently begun to
explore the use of the Baum-Welch framework as a method for training ANN
hybrids [35,36]. The goal of this method of training the HMM/ANN system is to train the
ANN to learn the posterior emission probability distribution from the targets that are

readily available from the Baum-Welch procedure:
o (t)B;(t)

o (T)
kgs “

The ANN is then directly trained on the$F(t) values.

Yj(t) = P(g = j|O,A) = (15)

The HMM/ANN hybrids have shown promise in terms of performance but have
not yet found widespread use due to some serious problems. ANNSs are prone to overfitting

the training data if allowed. To avoid overfitting, a cross-validation set must be used to
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define a stopping point for the training set. This is wasteful of data and resources — a
serious consideration in speech where the amount of labeled training data is very limited.
ANNSs also typically converge much slower than HMMs. Most importantly, the HMM/

ANN hybrid systems have not shown substantial improvements in recognition accuracy

over HMM/GMM systems.

1.4. Summary

This chapter has reviewed the most common acoustic modeling framework for
speech recognition systems — HMMs with GMM emission probability distributions. The
use of ANNSs as replacements for the GMM distributions has also been discussed. Of
particular importance in this chapter are the training techniques used in the HMM/GMM
systems and the hybrid HMM/ANN systems. The relevance vector machines explored in
this dissertation will act in a fashion similar to the ANNs as posterior estimators. Thus, the
approaches developed in this dissertation will draw significantly from the HMM/ANN
work. However, we will seek methods which are automatically immune to overfitting
without the artificial imposition of a cross-validation set as well as methods which can
automatically learn the appropriate model structure. The next two chapters define such
methods, the support vector machine and relevance vector machine, which both describe
principled methods for avoiding overfitting — structural risk minimization for the support
vector machine and Bayesian automatic relevance determination for the relevance vector

machine.



CHAPTER 2
SUPPORT VECTOR MACHINES FOR SPEECH
RECOGNITION

Given a training corpus® = {(04,¥4), (05, Y5), ...} ~wher@ is the i'th input
observation ang; is the corresponding target (e.g. class assignment or class probability),

the goal of a learning machine is to learn the mapping f(0) under some appropriate
optimization scheme. One flexible and popular class of functions are those which are
linear combinations of basis functions on the input observations
M
y(o;w) = wo+ Y wig (o) = wi({)o). (16)
i=1

A special form of (16) is one in which there is a basis function prescribed for each training
vector. These models are generally referred teessor machinesThe following chapters

discuss two such models: the Support Vector Machine (SVM) [37,38,39,40,41,42,43] and

Relevance Vector Machine (RVM) [44,45,46].
2.1. Support Vector Machines

Learning is a process by which a learning machine is optimized under a given set

of constraints. We can pose this process as one of optimizing eskntinction R(a),

18



19

where the optimal machine is the one whose free parameters, , are set such that the risk

is minimized. This minimization is written as

6 = R@)= "M [Q(o,y, a)dP(o, ) (17)

whereQ(o, y, a) is a loss function which penalizes the mismatch between both the form

and the parameterization of the learning machine and the true funttion, P(ang) is
the joint distribution of the observations and targets. Finding a minimum for (17) is
usually impossible becaud®(o,y) can not be foangriori. Thus, we look for a
simplification of (17) that is tractable.

A popular variation of thectual risk R(a), which can be easily evaluated is the
measured mean risk, empirical risk defined as,

Remp(a) =1 Q(o;, y;, 0). (18)

| i=T1..1

wherel is the number (assumed finite) of training observatiag,gp is therefore the loss

computed from a fixed training set under the maximum entropy assumption of uniformity
for P(o,y). Finding thea which minimizes (18) gives thempirical risk
minimization (ERM)olution and is one of the most commonly used optimization
procedures in machine learning. However, the issue of the generalization of the learning
machine is not specifically addressed when we use ERM — in fact, ERM requires that the
training set be representative of the true data distribution to be effective. There could be

several settings for the free parameters which give us the same empirical risk. To
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determine which settings are optimal, we have to know which one would achieve the least
actual risk.
Vapnik [37] provides an elegant solution to this problem. Through his analysis of

bounds on the actual risk he proved that bounds exist for the actual risk such that,

R(@) < Ry @) + f (h) (19)

whereh is the Vapnik-Chervonenkis (VC) dimension and is a measure of the capacity of
a learning machine to learn any training set [37,39] diid) is the VC confidence. If

f(h) is small (and we have done our job well of fitting the model to the training set), the
machine generalizes well because the actual risk is guaranteed to be close to the empirical

risk. For binary classifiers where the loss functions are indicator functib(ts), is

defined by

4R
205+ 1+ Femgig (20)

whereaq, is the parameter set that defines the learning machine for a particular training set

andg(l) is the measure of the difference between the actual risk and the empirical

risk [49] which we can use to compare system configurations which achieve equivalent

empirical risks.
We can write€(l) in terms of the VC dimensioh, , and the size of the training

set,| , as,

g(l) = 4h(Iog(2I/h +|1))—Iogr]/4' 21)
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From (21), we can see that whérh  is large,  dr(dh) are both small which implies
a convergence of the actual risk and the empirical risk [39]. This result matches our
intuition that a less complex machine (i.e. one where the capacity is much smaller than the
number of training samples) will generalize better than an overly complex machine given
that they achieve the same empirical risk. With this result, we can guarantee both a small

empirical risk (training error) and good generalization — an ideal situation for a learning

machine. The converse property of (21) is also true — whén is small, both and

f (h) are large and good generalization can not be guaranteed.

The principle ofstructural risk minimizatio(SRM) [37,49] is formulated to find
the minimum point on the curve describing the bound on the expected risk. It provides a
principled method to trade-off the accuracy of the trained machine and the complexity of
the machine. For a fixed training set size, the VC dimension, , becomes the controlling

parameter in/h . The joint optimization &z, arfdh) is not tractable in practical

problems. Thus, the principle of SRM is implemented in one of two distinct ways:
1. Fix the VC confidence to an appropriately low value and optimize the empirical

risk.

2. Fix the empirical risk to an appropriately low value and optimize the

VC confidence.

The support vector methodology [38,39,41,42,43] implements SRM using the latter

approach where the empirical risk is fixed at a minimum (typically zero for separable data
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sets) and the SVM learning process optimizes for a minimum confidence interval. The
SRM principle thus orders the solutions which are optimal in the ERM sense. In the next
section, the support vector classifiers will be ordered according to the margin between the

class boundaries and the separating hyperplane.
Support Vector Classifiers - Margin Maximization

Figure 4 shows a 2-class classification example where the training samples are
linearly separableH 1 anHi 2 define two hyperplanes on which the closest in-class and
out-of-class examples lie. The distance separating these hyperplanes is defined as the
margin between the two classes. SVMs use the SRM principle to impose an order on the
optimization process by ranking candidate separating hyperplanes based on the margin.
For separable data, the optimal hyperplane is the one that maximizes the margin. The
existence of a unique hyperplane that maximizes the margin of separation between the

classes is guaranteed [37]. The learning procedure is, thus, tasked with finding the location

of the optimal hyperplane.
Following [39], letw be a vector that is normal to the separating hyperplane and

let {0, y;},i = 1,...] be the training set of length wheye = +1  indicates class

membership (note that this is a binary classification problem with two class indicatbrs,
and-1). Sincew is a normal (not necessarily a unit normal though) to the separating
hyperplane, any poing , lying on the separating hyperplane satisfies

wlb+b =0 (22)
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origin ) optimal
\ O class 2 classifier

Figure 4.  Difference between empirical risk minimization and structural risk minimization for a
simple example involving a hyperplane classifier. Each hyperplane (CO, C1 and C2)
achieves perfect classification and, hence, zero empirical risk. However, CO is the op-
timal hyperplane because it maximizes the margin — the distance between the hyper-
planes H1 and H2. Maximizing the margin indirectly results in better generalization.

where|b|/||w| is the perpendicular distance of the hyperplane from the origin. We can

require that all of the training samples follow the relations
o lw+b=+1 fory, = +1 (23)
o;fw+bs-1 fory, = -1. (24)
These can be combined into a single set of inequalities,
yi(o, (w+b)-1>0 i (25)

Vectors for which the equality condition in (25) holds are knowsugport vectors
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We can require that all points satisfying the equality condition in (23) lie on the

hyperplaneH ;: o, Liv + b = 1 with normal vectaw and distance from the origin of

|1-bl/|wl|. Similarly, all points satisfying the equality condition in (24) lie
on H2 . 0 W+ b = -1 and distance from the origin ¢ 1 —b|/|w|| . Relating the

distance from the origin of each hyperplane, one can see that the distance between the two
hyperplanes (which we defined as the margin earlier) is equal fov| . Since we are

currently only concerned with completely separable data, the margin can be maximized by

minimizing ||w{|2 subject to the constraints of (25). Note that only the support vectors
contribute to the SVM solution because it is only those that define the margin. This will
become an important property which leads to sparseness in the solution space.

Techniques exist to optimize convex functions with constraints using the theory of
Lagrange multipliers [50]. Using these techniques we can pose the functional

N N
1 2
LPEEHW” - Z aiyi(oi [+ b) + Z qa; (26)
i=1 i=1

which is called thegprimal formulation of the convex optimization problem. Setting the

gradient ofLP with respect tov afddl  to zero gives

W = ZO(jyjoj,and (27)
]

ZO(iyi = 0. (28)
|
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Equations (22) and (27) imply that the decision function can be defined as,

N

f(x)= z a;y,0; o +b (29)
i=1

where the sign of can be used to classify examples as either in-class or out-of-class. This
equation defines the SVM classifier. Notice the correspondence between (29) and (16):
corresponds tav, ¢; tev, Mt ,ang(o) = y;0; (b . The classifier is completely

defined in terms of the training examples and the weights. However only those training
examples that lie on the hyperplanes, i.e. the support vectors, define the classifier. In
practice, the proportion of the training set that becomes support vectors is small, making

the classifier sparse. Interestingly, the data set itself defines how complex the classifier

needs to be thereby defining the lower limit for the VC confideh(®), [39].
Kernel Methods for Nonlinear, Non-separable Decision Problems

The preceding analysis has been only for those problems where the data is linearly
separable (i.e. a straight line can be drawn that completely separates the two classes of
data). Unfortunately, most real-world data does not conform to this prescription. The data
may be nonlinearly separable, or completely inseparable. In either case, we must find a
method which maximizes the margin while minimizing error on the training set. These
problems are attacked with two clever additions to the linear SVM methodology.

In many modeling paradigms, the problem of optimization for non-separable data

is solved through the use of soft decision classifiers that place a probability of correctly
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classifying each training example. However, the SVM is not posed as a probabilistic
problem, so we instead introduce the concepslatk variable438]. The hyperplane

constraint equations, (23) and (24), become

o;lW+b=+1-¢, fory, = +1, (30)
O lW+bs—-1+¢, fory, = -1, and (31)
£ =20 i, (32)

where& ‘s are the slack variables (one per input observation) that account for training
errors since, for an error to occu&i must exceed unity. T@Si, gives an upper bound
on the number of training errors [38]. A natural way to control the number of training
errors is to assign an extra cost for making an error. This is done through the use of a
trade-off parameterC , which is the penalty incurred by the optimizer for accepting a
training error. A large value o€  will tend to reduce the number of training errors - often

at the cost of a more complex modé&}. is a user-defined parameter that requires a
cross-validation procedure to estimate.
Providing for a nonlinear decision region is accomplished usingkdrael

trick [51]. Notice that, in the optimization problem formulated in (26), the only place in

which the data appears is in the form of dot produopﬂ)j . If we define a transformation

of the data to a higher dimensional space by the funafic) then we can still construct
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optimal margin classifiers if we can evaluate the dot prodp(ct) Etp(oj) . It would be

highly advantageous if we could definkeanelfunction,K such that

K(o;, Oj) = ¢(0;) EtP(Oj)- (33)
With this function, the dot product in the high-dimensional space could be computed
without having to know the explicit form ofp(o) . The decision function, (29), then

becomes

N

f(x)= z a;y, K (X, x;) +b. (34)
i=1

Using this kernel method, the SVM is able to transform the training data to a
high-dimensional space and construct a linear binary classifier in that space which
maximizes a nonlinear margin in the original space. However, only functions which
represent a dot product in some space are eligible as kernel functions. Mercer’s
condition [37] describes the requirements for a function to be a dot product kernel. If a
kernel is used which does not satisfy the Mercer conditions, the quadratic optimization is
no longer applicable and may lead to a problem whose solution does not converge. Some

commonly used kernels include the polynomial and RBF kernels
d
Kpoy(%, ¥) = (x Dy +1) (35)

2
Kree(X: ¥Y) = exp{=Y|x—y|"}. (36)
Kernel-based vector machines have had great success on static classification tasks,

(those in which no information can be gleaned from the ordering of the exemplars in the
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input set) for many years (for example [52,53,54,55]) . However, it is only recently that
these techniques have been employed on dynamic classification tasks (those in which the
ordering of exemplars is in some way informative) [27,56,57,58]. In this dissertation, we
are particularly interested in the application of such machines to the speech recognition
problem discussed in Chapter 1. In the remainder of this chapter, we detail the first attempt
to apply SVMs to the large vocabulary speech recognition problem using a hybrid HMM/

SVM system [27,59,60,61,62].

2.2. Support Vector Methods

Initial attempts to add discriminative information to speech recognition used
discriminative training of HMM/GMM systems using maximum mutual
information (MMI) approaches [21,22] and minimum classification error methods [23].
MMI, in particular, has recently been shown to be quite effective on conversational
speech [22]. Later, connectionist systems [e.g. 24,25,26,28,29,30] were employed that
used an inherently discriminative ANN acoustic model. While the connectionist systems
have been able to match state-of-the-art performance, they did not achieve the great
performance gains that were expected on large vocabulary tasks.

New approaches to discriminative modeling for speech recognition have centered
around the powerful SVM paradigm described above. The interest in these models for
speech is due to two important characteristics of the SVM model. First, SVMs are
formulated as optimal generalization machines — overfitting of the data is explicitly

avoided in the modeling. Contrast this to neural network approaches where overfitting is
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typically controlled using a cross-validation process that is wasteful of resources and
whose performance is not quantifiable (though see the next chapter for examples of
relevance determination methods by MacKay [47,48] which avoid this problem). This
property of SVMs has translated to classification performance that has consistently
exceeded neural networks and GMMs [25,53,64]. Second, the SVM (through the use of
Mercer kernels) has the ability to build a binary classifier in a high-dimensional space.
Unlike other classifiers, neither the dimensionality nor the sparsity of the data in the
transform space is a limiting factor for SVMs.

Initial applications of SVMs to speech came in the form of speaker verification
systems [65]. Their success was limited though due primarily to lack of efficient training
methods. Phone classification was the next problem to be tackled using SVMs [59,55].
These systems performed on par with the state-of-the-art and their performance was far
superior to neural network systems [25] on the same task. With the phone classification
problem, the SVM systems were forced to address the first problem with applying SVMs
to speech - nonuniform segment lengths. Their solution to this problem was to artificially
impose a fixed vector length using a segmental modeling approach that will be described
in detail below.

Steps toward using SVMs for word-level continuous speech recognition came in
the form of isolated word recognition systems. Bazzi and Katabi [57] built a digit
recognition system that employed the same techniques as the phone classification systems.

Each digit was modeled with a single one-vs-all classifier. A decimation approach was
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used to solve the nonuniform segment problem which can be described by the following

algorithm:

1. Compute a distance measule,= f(o,,0,_;) ,0ari<N

2. Find i for whichd; is a minimum. Remowg and decrease N by 1.

3. Repeat 1 and 2 until N is the desired size.

Following the decimation stage, a PCA transform was computed to bring the decimated
feature vector to its final size. Using a small training set, the SVM system was able to
achieve a 5.1% error rate compared to 9.3% error for a GMM classifier. However,
state-of-the-art on such tasks is a near-zero error rate.

To move from these simple applications of SVMs as static classifiers to an SVM
solution for continuous speech requires addressing two primary issues. First, the dynamic
nature of speech must be modeled. SVMs are inherently static classifiers while speech is a
dynamically evolving process. The systems described above tried to avoid the problem of
dynamics altogether by artificially imposing a fixed vector length. Hybrid connectionist
systems address the dynamics of speech by embedding neural networks into an HMM
structure [24,29]. The second problem to address is the need to insert SVMs into a
probabilistic framework that is used to combine disparate knowledge sources. SVMs are,
by definition, binary classifiers capable of giving an in-class/out-of-class judgement. This
judgement is rendered by finding the distance from the hyperplane boundary. In general,

only the sign of this distance provides useful information, but to apply SVMs in a
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probabilistic framework one has to map this distance measure to a probability measure (of
course one could try to learn the probability function directly using SVM regression but

then the power of the discriminative classification is lost).

2.3. Hybrid HMM/SVM System

Research into addressing these remaining issues has proceeded in two directions.
First are the systems which use a Fisher kernel capable of handling variable length
features [66,67,68] to solve the segmentation problem. While promising, this technique is
still in the early stages and has only been applied to relatively simple tasks to date. A more
mature method has been defined by Ganapathiraju [27] and colleagues [59,60,61,62,63]
which follows a hybrid approach combining techniques from the connectionist
systems [24,25,26,29] and segmental modeling systems [69,70]. It is the first to
comprehensively address the problems associated with applying SVMs to continuous
speech recognition (Chakrabartty, et al. [58] also proposed a hybrid system as well as a
circuit design to implement the system in hardware. However, they have only
demonstrated their system on a relatively trivial task so it is unclear if their approach holds

promise).

Posterior Estimation

The first challenge faced in building the HMM/SVM system is the construction of
a probabilistic model from the SVM discriminant function. The approach taken in [27,63]

which is drawn from the work of Kwok [71] and Platt [72] is to build a functional
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mapping from the SVM distance function to a number on the range of [0,1] representing a

probability function. If we letf (0) be the SVM distance function and be the class label

wherey = £1 , then we can write the posterior probabMy = 1|f) as

P(fly = 1P,
P(fly=1)P, +P(fly=-1)P_,;° (37)

P(y=1[f) =

It remains, then, to define the form of the likelihood functiof|y = 1) and

P(f|y=-1), and the priors on the in-class and out-of-class égta, Pand
Taking the maximum entropy approach, the likelihood functions can be defined by

Gaussian distributions as

(f-uy?
P(fly=1) = —=—e 2% and (38)

[2m0%

(f-uy)?
e 204 | (39)

P(fly=-1) =
2Mo2,

Normalizing (37) by its numerator and combining exponential terms yields

1 1
p(y=1|f) = = : (40)
L4 Py =P, . Cwy
P(fly=1) P, e %
1+ P__1 [2M02,
Py, (-up
e 20%

which, after simplification gives the form
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1
p(y=1|f) = e e gt (41)
1+P__1ﬁ _E[D o, U 0o, D}
P10,

Finally, if we assume that the variances of the discriminant function for in-class and
out-of-class data is equal then we can expand the squared terms in the exponent to define

the posterior probability in the form of a sigmoid function

1 _ 1
(W-u2)+2f(u,—-u)) 1+eAT*B

p(y=1|f) = - (42)

1+ _:}e_2_02
1

Here, the parametel& arigl are estimated using any suitable nonlinear optimization
scheme to optimally map the discriminant function to the probability space. Note that the
ratio of the priors has been incorporated into the exponential.

Recall that in the probabilistic formulation of speech presented in Chapter 1 the

acoustic model was used to determine the likelihood function; i.e. the probability of the

observed data given the assumed moB¢D| M) . However, from (42), we have derived

the posterior estimate of the probability of the model given the da{d |O) . To
generate the likelihood function, Bayes’ rule needs to be applied. The failure to consider
this is a potential weakness in the hybrid HMM/SVM system as it indicates a prior belief
that each class is equally likely. Connectionist systems such as those in [24,29] estimate
the class priors as part of the training routine. These systems have consistently shown

significant degradations in performance when equal priors are applied.
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Segmental modeling

A natural way to apply the new SVM acoustic model in an HMM/SVM hybrid
system is to perform the classification directly at the frame level — replacing the Gaussian
likelihood score with the SVM posterior described above. In fact, this is exactly the
approach used by many hybrid connectionist systems. There are, however, two issues to
consider in this regard.

1. Feasibility for large corpora: Large vocabulary training sets often contain on the
order of 10-100 million frames of speech data. Even with the extremely efficient

SVM optimizers available today, it is impractical to train the SVM on this quantity

of data. Connectionists systems face a similar problem in the iterative methods

used for training [29]. However, parallel processing techniques [34] have been

developed that allow them to use large data sets efficiently.

2. Modeling long-term temporal structure: Using frame-level data provides a very
localized view of the speech signal. It removes the potential for modeling
long-range dependencies in data such as cross-frame spectral correlations and for
modeling long range “features” of the data such as phone duration [73,74,75]. A
few approaches have been tried to alleviate this problem. HMM systems often
include derivative terms in the feature stream to account for changes in the feature
across frame boundaries [4]. Connectionist systems often concatenate a window of
frames around the frame of interest to create a large feature vector [26]. The neural

network is then allowed to learn the long-range correlations in the data. HMM/
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GMM systems could not use such an approach because the number of parameters
grows linearly with the size of the feature vector. However, many systems are now
using feature reduction techniques such as LDA and PCA to provide the HMM/
GMM systems with a reduced-sized feature vector that still captures the most

important long-range correlations [76].

To address both of these issues, the HMM/SVM system uses a segment-based
approach akin to those in [69,70]. By modeling at a phone-segment level (i.e. each
observation represents a sequence of frames that constitute a single spoken phone), the
HMM/SVM system is able to greatly reduce the number of training vectors (by as much as
2-3 orders of magnitude) and is able to simultaneously model both the spectral and
temporal structure of speech. With this approach, however, there remains the question of
where to get the phone segments in the first place. The HMM/SVM system uses an HMM/
GMM system to produce the segmentation information and then post-processes the data
under the assumption that the segmentation is correct. Recent linguistic analysis seems to
indicate that this is not a good assumption [77] for conversational speech.

Phone segments can have widely varying lengths (e.g. vowels tend to be longer
and consonants tend to be shorter). However, with the conventional SVM model (in
contrast to those which use Fisher kernels [66,67,68]) we still require a fixed observation
vector length. One way to mitigate this problem which follows the motivation of 3-state
HMM phone models is to divide each segment a into fixed number of distinct

subsections [78,79,80]. The frames in each subsection are then averaged and the averages
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are concatenated to yield a single fixed-length vector. This process is illustrated in
Figure 5. While the percentage of the segment that is allocated to each subsection can be
manipulated, the performance of the HMM/SVM system is invariant to changes in the

proportions [27,63].

System architecture

The hybrid HMM/SVM system is built using the rescoring paradigm shown in
Figure 6. The HMM/GMM system generates a pruned hypothesis space as well as a
segmentation (or set of segmentations). The SVM is used to rescore the hypothesis space
given the segmentation(s). In [27,63] N-best lists are used to represent the pruned
hypothesis space. These give a set of N unique hypotheses which are most highly
predicted by the HMM/GMM system.

For experimental purposes, the segment information was generated in two ways.

First, a single segmentation (1-best segmentation) was used to rescore all of the N-best

k frames

>
hh aw aa r y uw
region 1 region 2 region 3
0.3*k frames 0.4*k frames 0.3*k frames
mean region 1 mean region 2 mean region 3

o

Figure 5.  Composition of the segment level feature vector assuming a 3-4-3 proportion for the
three sections.
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Figure 6.  Flow graph for hybrid HMM/SVM system [27].

hypotheses. This segmentation was derived from a forced-alignment of a word sequence
to the speech data using the HMM/GMM system. For baseline testing, the word sequence
is the 1-best hypothesis (hypothesis segmentation). This gives the best-guess segmentation
of the HMM/GMM decoder. Note, however, that it may not be possible to align some of
the N-best hypotheses to the 1-best segmentation, thus the 1-best segmentation acts to
artificially constrain the search space for the SVM. For analysis, an oracle experiment can
also be run which uses the reference transcription to find a single segmentation. An
alternative segmentation method generates a separate segmentation for each entry in the
N-best list (N-best segmentation) and rescores each one in turn. While more

computationally expensive, this method provides a better comparison with an HMM/



38

Information Source HMM Hybrid
e Transcription | Segmentation AD SWB AD SWB
1 N-best Hypothesis 11.9 41.6 11.0 40.6
2 N-best N-best 12.0 42.3 11.8 42.1
3 N-best + Ref. Reference — — 3.3 5.8
4 N-best + Ref.| N-best + Ref. 11.9 38.4 9.1 38.11

Table 1. Summary of recognition experiments for hybrid HMM/SVM system [27]. The experiments
are differentiated by the corpus (Alphadigits or Switchboard), segmentation type (single
segmentation or n-best segmentation) and n-best rescoring type (n-best or oracle n-best
+ ref). All results are word error rates.

GMM system where the decoder is allowed to choose any segmentation for the

hypotheses.

Experimental analysis

The HMM/SVM system was run on two different telephone-bandwidth tasks: the
OGI Alphadigits [81] and the SWITCHBOARD (SWB) corpus [82]. The Alphadigits task
is a small vocabulary (~40 words), open grammar (any word sequence is possible) task
while the SWB task is a large vocabulary (modern lexicons contain as many as
100,000 words) open grammar task. The results of these experiments are shown in
Table 1 [27].

The most interesting thing to note about these results is the surprisingly large gains
made by the oracle system (experiment 4) for the Alphadigit system. A nearly 30%
reduction in WER is achieved by the HMM/SVM system over the HMM/GMM system.

This shows the potential power of the SVM classifier when it is presented with adequately
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rich information from the HMM system. Of course, reducing the n-best list error rate to
0% is usually not possible so we need to look for other ways to give the classifier a wider
variety of hypotheses to choose from — e.g. integrating the SVM directly into the search.
Another key point to note is the performance of the oracle system (experiment 3) using the
reference segmentation. With this system, a 80% reduction in WER was achieved. While
there is no fair comparison to an oracle HMM system given, this performance seems to
establish that a good segmentation is the most important issue in applying SVMs in the
hybrid framework. Making better use of the HMM framework for temporal modeling and
to drive the SVM models is necessary to approach these levels of performance.

A follow-up experiment (unpublished) run as part of this dissertation also showed
that the sigmoid posterior estimate applied by the hybrid HMM/SVM system does not
significantly contribute to the performance of the hybrid system. In the experiment, the
posterior estimate was replaced with a simple thresholding rule that mapped the SVM
distance to the range of [0,1]. If the distance was greater than O (indicating a sample
classified on the in-class side of the decision surface) then a probability of 1.0 was
emitted. Otherwise a probability of 0.0 was emitted. In other words, the threshold
probability mapping assumes perfect confidence in the classification provided by the
SVM. With this modification, the total word error rate on the Alphadigits data was
reduced by only 1.8% relative to the HMM/SVM system. If the sigmoid were an accurate

model of the posterior, we would expect a more pronounced difference.
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2.4. Summary

In this chapter, we have seen how the SVMs use a structural risk minimization
argument to define aaptimal decision surface which automatically rejects overfitting. In
this way, the SVM combines the problems of prediction and decision-making. The theory
of Mercer kernels are incorporated into the SVM framework to provide for extremely
flexible and highly nonlinear decision surfaces. Further, the chapter has discussed the use
of SVMs as classifiers for speech data. The first credible attempt at this is in the form of a
hybrid HMM/SVM system. This system uses segmental modeling and posterior
estimation techniques to address the issues related to interfacing SVMs to the HMM
framework.

In the next chapter we will discuss the relevance vector machines (RVMs) which
are the object of this dissertation. RVMs use a mathematical structure that is similar to the
SVM, but the RVM follows a more conventional motivation. RVMs seek to determine the
posterior likelihood of a class assignment given the data, thus allowing for an external
decision process. In this way, the RVM can take into account asymmetric misclassification
costs, and varying class prior probabilities. Overfitting is avoided through the application
of MacKay’s ARD principle [47,48]. While the generalization capability of the RVM is
comparable to that of the SVM, the RVM offers a few very important advantages which

will be explored in this dissertation.



CHAPTER 3

BAYESIAN METHODS AND THE RELEVANCE VECTOR

MACHINE

While the SVMs presented in the previous chapter provide an excellent
classification paradigm, they suffer from two serious drawbacks that hamper their
effectiveness in speech recognition. First, while sparse, the size of the SVM models
(number of non-zero weights) tends to scale linearly with the quantity of training data. For
a large speaker-independent corpus such as SWB this effect becomes prohibitive.
Techniques have been developed to overcome these problems [83], but they typically
involve approximations which can only attempt to insure that the location of the model on
the error surface remains reasonably close to optimal. We prefer methods where this
sparse optimization is implicit in the training of the model. As will be explained shortly,
there are a class of Bayesian methods that provide just such a framework.

Second, the SVMs are binary classifiers which are only capable of producing a
yes/no decision. In speech recognition this is an important disadvantage since there is
significant overlap in the feature space which can not be modeled by a yes/no decision
boundary [59]. Further, the combination of disparate knowledge sources (such as
linguistic models, pronunciation models, acoustic models, etc.) requires a method for

combining the scores produced by each model so that alternate hypotheses can be
41
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compared. Thus, we require a probabilistic classification which reflects the amount of
uncertainty in our predictions. Efforts [27,71,72] have been made to build posterior
probability estimates from the SVM models by mapping the SVM distances to a sigmoid
function. While this does build a posterior estimate, Tipping [44, Appendix D] argues
quite effectively that the sigmoid estimate is unreliable and that it tends to overestimate the
model’s confidence in its predictions.

In this chapter, we introduce a Bayesian approach due to MacKay [47,48] that
incorporates an automatic relevance determination (ARD) prior over each model
parameter. This tends to force most of the parameters to zero, leading to a sparse model
representation. A kernel-based learning technique termeRélevance Vector Machine
(RVM) [44,45] is an application of ARD methods that is explored in this dissertation. Key
to the RVM approach is the fact that only those parameters which are truly relevant to
accurate modeling are retained. Thus, sparseness in the RVM model is automatically
produced. In many cases, the RVM requires over an order of magnitude fewer parameters
than the SVM [44,84,85,86] under equal conditions while producing generalization
performance on par with the SVM. Further, the RVM approach is built from a fully
probabilistic framework. This avoids the rather clumsy coupling of the model to the

probability space as was necessary with the SVM.

3.1. Bayesian Methods

In the speech problem defined earlier, the task of learning amounted to finding the

values of the parameters in our model that best matched the training data. The hope was
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that, given sufficient training data, the model would generalize to unseen test sets. Implicit
in this problem was choosing a model that was best suited to the speech task. We
examined two three possible models thus far: the HMM/GMM, HMM/ANN and HMM/
SVM systems. Embodied in this discussion are the two primary inference tasks of data
modeling [47]. First, assuming that a particular model is true, we seek to infer the values
for the parameters of the model that best fit the data at hand. This is exactly the training
process given earlier — e.g. we presume the ANN topology and proceed to use back
propagation to find the optimal weights. The second level of inference is one that we have
not addressed closely to this point. That is the problem of inferring which model is most
appropriate given the data at hand, or model comparison.

A first-cut approach to model comparison might dictate that we simply choose the
model that fits the data best — the maximum likelihood solution. However, a more
complex model can always fit the data better. Jaynes [87] describes an extreme
interpretation of this problem where we would always choose the so-callesl Thing
hypothesis, under which exactly the training set and only training set is possible. Though
it is the maximum likelihood solution, the Sure Thing hypothesis is intuitively displeasing
and is counter to our desire for a solution which generalizes. We avoid choosing the Sure
Thing hypothesis by expressing anpriori preference for simpler solutions. This
preference for simple theories is given by a rather famous principle of modeling known as
Occam’s Razor.

Models studied previously, such as ANNs and SVMs have developed methods for

dealing with generalization — cross-validation for instance. Bayesian
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methods [87,88,89,90], on the other hand, provide a natural and quantitative embodiment
of Occam’s razor [48] as will be demonstrated shortly. First, the notation for Bayesian
methods needs to be developed (we will follow the notation of MacKay [48]). The first

level of inference requires that we find the best-fit parameters. We can write this

probabilistically asP(w|D, H;) , wherev is the set of adjustable paramelers, is the

data from which we will make all inferences, aikj  is the overall model of the world

including the form of the model, etc. Using Bayes’ rule, we can rewrite this as

P(D|w, H;)P(w| H)
P(DIH))

P(w|D, H;) = (43)

Gradient methods are typically applied to find a optimal settingvof . The denominator,
termed theevidencefor the hypothesidd; , is usually ignored during the first level of
inference because it is not needed in finding the most probable parameter settings,

The second level of inference requires the comparison of competing hypotheses,
H, andH, , by finding which oﬂD(H1|D) andD(H2|D) is maximum. Setting this
problem as a ratio of probabilities and using Bayes’ rule gives

P(H,|D) _ P(D[Hy)P(H,)
P(H,|D)  P(D|H,)P(Hy)

(44)

If we assume that the competing hypotheses arpriori equiprobable

(i.e. P(H;) = P(H,)), then the best hypothesis is chosen by evaluating the evidence,

P(DJ|H,). The evidence is computed by marginalization across the model parameters:
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P(D[H;) = [P(Dlw,H;)P(w|H;)dw. (45)
It is usually impractical to compute the integration, so MacKay [47,48] prescribes an
analytical approximation to the evidence computation. Under the assumption that the
posterior probability in (43)P(w|D,H;) = P(D|w,H;)P(w|H;) ,is well-approximated by
a Gaussian, the integrand in (45) can be assumed to have a strong peak at the most
probable value of the parameten®, . The evidence can then be approximated by
multiplication of the height of the integrand and the width of the postefiar, . This is

depicted in Figure 7.

The evidence is approximated by

P(D|H,) = P(D|W,H,)P(W|H,)Aw. (46)
UP(DIH;) —_ l
P(w|D,H;)
- I > W
W

Figure 7.  Evidence approximation for a single hypotheses. If the Gaussian assumption for the
posterior, peaked about W, is not a good one then other methods must be employed.
The width, Aw, is the posterior uncertainty in our estimate of W and can be deter-
mined by computing the error bars from the posterior.
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where the ternP(D|W,H;) is the likelihood of the data given the best-fit parameter set
and P(W|H;)Aw is a penalty on the range pd, 1] which measure of how well our

posterior distribution orw  fits with our prior specification. As shown in Figure 8, a more
complex model would be expected to have a smaller prior probabilityvfoP (W] H;) ,

than a less complex model and thus would be penalized more. This is precisely how the
evidence embodies Occam’s razor — all other things being equal, a less complex model is
preferred. The evidence provides a natural trade-off between the best-fit likelihood and the
Occam factor. This concept is closely related to other 'penalizing’ methods such as the
Minimum Description Length [91] and the Bayesian Information Criteria [92] where the

model is directly penalized by the number of parameters used. A similar idea was also

P(w[D,H))

Aw

P(w[H;)

Figure 8.  The prior distribution on the parameters in conjunction with the posterior distribution
width determine the Occam factor. Aw/ 0,, determines the penalty incurred for
choosing the model, Hi . A model with with more paramters will tend to have a larger
O,,- Thus, the penalty for such a model will be larger. The evidence defines the
trade-off between posterior likelihood and model complexity (generalization) in the
Bayesian framework.
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seen in the SVM models which penalized models with too large a capacity (VC
dimension) [37].

A impediment for the acceptance of Bayesian methods in the past has been the
belief that they required the specification of subjective priors, thus making their results
meaningless. While necessary, the priors are rarely subjective. Rather they are meant to
represent our prior state of belief in the nature of the problem. The strength of Bayesian
methods is that they allow us to quantitatively explore our prior beliefs. The failure of a
model can be analyzed in terms of the priors and the priors can be adjusted appropriately.
The Bayesian methodology also prescribes a principled manner of dealing with our lack of
prior knowledge using maximum entropy arguments [87,90]. This prescription is best

stated by Jaynes [87] when he says that
“out of all distributions, p; , that agree with the constraints, the one that
maximizes the Shannon entropy represents the 'most honest’ description of
our state of knowledge”.
This principle will be used often in the following sections when we seek to define prior
probabilities over the parametens, , wheweé] (—oo, ) . In these cases a zero-mean
Gaussian (maximum entropy) prior will be used which indicates our prior belief that most

parameters should go to zero, yielding a smooth model.

3.2. MacKay'’s Evidence Framework and Automatic Relevance Determination

MacKay [47] was the first to apply the evidence framework to regression and

classification problems using ANNs. A summarization of his analysis is given now.
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Defining the training data set & = {0, t} , our goal in neural network learning is to find

the set of weightsw , such that a global error teig,(w) , IS minimized. Typically

Ep(w) takes the form of a squared error as in the sum squared error in back propagation

DI
EpW) = 3 ¥ (th) -y, (0w))2, (47)
=1

wheret()) is the i'th component of the j'th target output an¢o();w) is the i’th output

of the ANN when presented with training samui€) when the weights are setto . To
discourage overfitting, a weight decay or regularizer term may be added which penalizes

largew, , for example

NI

zw?. (48)
|
The objective function for learning thus becomes

M(w) = BEp + aEy,. (49)

We can give a probabilistic interpretation for (49) if we consider the neural

network outputs to be perturbed by a Gaussian noise process so that
t() = y.(oD;w) +¢ (50)
whereg is a zero-mean Gaussian noise process with variance edjdgl to . Then,

p(tD[w, B, H) = N (tD|y,(0);w), 1/P) (51)
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specifies a Gaussian distribution owé?)  with meafo());w) and varidnge . The
total probability of the data given the model (using the log of the sum-squared error
condition) can then be written as

1 BEp
ZD(B)e ' (52)

P(Djw, B, H) =

whereZ(B) is the Gaussian normalization term. Likewise, the log of the weight decay

term, E,,, , can be interpreted as a prior probability over the parameters so that

P(w|a, H) = ﬁe—ﬁw. (53)

With E,, as givenin (48)P(w|a, H) is a zero-mean Gaussian whose width is defined by

1/a. Finally, we have that

P(D|w, B, H)P(w|a, H)

P(w|D,a,3,H) = P(D|a. B, H) : (54)
where, substituting (52) and (53) gives us
=5 @t )
P(w|D,a,3,H) = BB, B, ) = ae . (55)

It should be noted that binary and multi-class classification networks can be handled in a
similar manner [47]. We simply replace the sum-square error function by a log-likelihood
function, G(w) . The parametefs, , is not necessary in this case.

Application of (55) has the expected consequence that, by minimizing the

objective function, (49), we are maximizing the probability of the weights given the
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constraints. Finding the most probable weights, however, is not the end of the problem.
Two parametersgy  anf , have been introduced which need to be estimated. Note that as
o is increased, the probability distribution of the decay terms becomes peaked about zero
and smoother interpolants are favored. However, a value of that is too large (i.e. too
narrow a Gaussian) may limit the ability of the system to model a complex data set. As
is decreased, more complex interpolants are allowed. Here we have the first application of
the Occam factor as described above — we must findaahe that provides sufficient
flexibility to model the training data set without allowing so complex a model that
overfitting is encouraged. A similar argument can be mad@ for

Under typical statistical methods, we might turn to cross-validation to find suitable
values for these two parameters, but Bayesian methods provide a natural and principled
approach for estimating them using the data at hand. We can write down the probability of
the two parameters given our state of knowledge as

P(Dla, B, H)P(a, B|H)
P(D[H)

P(a, B|D, H) = (56)

Note thatP(D|a, B, H) is the evidence fax arffl and is the denominator in (54).
Assuming we have no prior knowledge that would cause us to favor a particular value of
a or B, we can find the optimal values for afd by evaluating the evidence (if we did
have prior knowledge, we would simply repeat the inference aver and using the prior,

P(a, B|H), similar to what was done in the optimization of . At some level of the
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inference, we will arrive at a point where our prior knowledge is too weak to apply and
then we evaluate the evidence).

Unfortunately, a maximum foP(Dj|a, 3, H) can not be found analytically in this
case, so we proceed with an approximation due to MacKay [47] and Gull [90]. Under the
assumption that the posterior distribution, (55), can be adequately approximated as a

Gaussiang  an@ can be updated as

~ _ N _y

B = 2_ED and (57)

Gl (58)
z(Wi)

whereN are the number of training points, are the most probable weights found by
maximizing (55),y is a measure of the number of parameters which are well-determined
by the training data and is given by

Yy = k—aTracqz). (59)
> is the covariance of the assumed posterior Gaussian and defines error bars on the
parametersw Z is found by computing the Hessian of the objective function given
in (55). Iterative application of (55) and (56) provides optimal values for the system
parametersyv ¢ anﬁ , under the set of Gaussian assumptions.

For the explanation above, it was assumed that only one parameter, , was used to

control the complexity of all parameters in the system. In practice, we may want to group

parameters of the system and control the complexity of each group separately. This
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requires little change to the above formulation. We now assume a Gaussian prior for each

class,c , of parameters so that

0 0
1 D_ZGCEW(C)D
P{w}anH) = =—e = : (60)

[14w(o

where

Ew(g = ichiZ/z (61)

and proceed with the optimization as above. In the extreme case, a control parameter,

can be assigned to each weight, . This extreme application of the Bayesian prior as a

control parameter is known as the methodwfomatic relevance determinatigARD). It
is so named because the prior over the input unit weights in a neural network can
'shut-off’ those input dimensions which are irrelevant to the problem at hand. ARD is at

the heart of the relevance vector machines that will be described next.
3.3. Relevance Vector Machines

All of the above analysis has been done in terms of neural network training. An
application of the evidence framework to kernel machines is the relevance vector
machine (RVM) [44,45]. As with SVMs, the RVMs are formed by defining a
vector-to-scalar mapping as a weighted linear combination of basis functions,

M
y(oow) = wo+ 5 wig (o) = wT (o), (62)
i=1
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wherew = |:Wo' Wy, ,__,WM]T and(p = [1, ®,(0), ..., (pM(o)}T isasetdl functions

that each form a, generally nonlinear, mapping of the observed vector, |, to a scalar. The
weights,w; , are the parameters to be tuned to produce an accurate model (under some

appropriate measure) of the phenomena we desire to learn. At this stage, it is important to

note the form of the basis functiong, . Since SVMs are optimizing a distance measure in

the transform space, they require that the basis functions take the form of a so-called
Mercer kernel [38] (i.e. a kernel which acts as a dot-product in some space). No such
restriction is placed on the basis functions that can be employed by the RVM. However,
the power demonstrated by kernel machines gives compelling reason to pursue this special
form of the basis function.

We reformulate (62) as

M
y(o;W) = w,+ z WiK(O;Oi), (63)
i=1
where there is one weighty; , associated with each training vectoK&amb,) defines a

kernel function (not necessarily a Mercer kernel). Due to the large number of parameters
in this model — one per observation — we must guard against overfitting of the model to
the training data. SVMs use the control parameter, , to implicitly balance the trade-off
between training error and generalization. RVMs take a Bayesian approach and explicitly

define an ARD prior distribution over the weights

1 —%WTAW

/(ZT[)N + 1|A—1|

N
oo = ] N 25- o
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where we have defined = diag(a,, a4, ..., ay) . This prior acts to force weak

components of the model toward a weight of zero, thus finding the inputs that are relevant

to modeling.

Each weight in the RVM model has an individual hyperparameder, , thatis
iteratively reestimated as part of the optimization process. Asxcthe  grows larger, the

prior onw; becomes infinitely peaked around zero, forcing  to go to zero and, thus,

contributing nothing to the summation in (63). This process automatically embodies the
principle of Occam’s Razor because it explicitly seeks the simplest model that satisfies the
data constraints. In practice, the majority of the weights are pruned, resulting in an
exceedingly sparse model with generalization abilities on par with SVMs [44]. To

complete the Bayesian specification of the model, we have to specify a prior probability

over thea; . In practice we use a non-informative (flat) prior to indicate a lack of

preference [44].

With SVMs the form of (63) arises from the need to optimize the classification
margin in a high-dimensional space. With RVMs, however, the goal is to directly model
the posterior probability distribution. The posterior is, thus, formed by generalizing the

linear model to a probability distribution with a sigmoid link function,

1
1+e’

o(y) = (65)

and adopting the two-class Bernoulli distribution R{t| o) to give

P(t|w, @) = [o{y(0,w)}]" [1-o{y(o;w)H ™ (66)
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wheret; 0{0, 1} — an integrated multiple-class approach is also defined but due to

computational concerns is less favorable than a set of one-versus-all classifiers. Under the
assumption that each data sample is drawn independently, the likelihood of the training

data set can be written as
N
P(tlw, 0) = ] op(1-0,)' ™" (67)
n=1

whereo, = o{y(o,,w)} .

The objective of training is to find a parameter set which yields a model that is

well-matched to the training data. In mathematical terms we want to find

argmax

(W, a) = p(w, alt, O). (68)

w, O
Using Bayes’ rule and (67), we can form (68) as finding @&nd that maximize

p(tjw, a, O)p(w, a|O)

N CTe)

(69)

A closed form solution to this maximization is not possible so we use the iterative
approximation used by MacKay [47] which was described earlier.
1. For afixeda , find the locally most probable weigkits . In other words, we want
to find thew that maximizep(w|t, a, O) . This is equivalent to maximizing
P(t|w, O)p(w|a). Taking the logarithm of this quantity and ignoring the scale

factor onp(w|a) which is a constant due to the fixed  we can write
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L = log{P(tjw, O)p(w|a)}
N ot 10
_ th(1 _ -t, : el
= log LDlon(l g, iDONEI\HO,GiD} | (70)
N
= 3 [tylog(ay) +(1-t,)log(1-0,)] —%WTAW
n=1

The gradient and Hessianbf  are found by differentiating with respect to
O,L = ®[t—y]—Aw (71)
0,0,L = «(®TB® + A), (72)

whereB = diag(By, Bs, ..., By) WithB, = 0,(1-0,) , andd isthe Nx N+1

matrix defined by® = [@(X;), ®(X,), ..., ®(Xy)]T with

P(x,) = [1, K(Xp X1), K (X X5), ey KXy Xp )1 T (73)
The Hessian defined in (72) is negative-definite everywhere, and therefore defines
a unimodal, log-concave surface — this is easy to see sBic2" ® Aand
contain only positive entries. We can, thus, use second-order Newton methods to
solve for thew that maximizek with an assuredness that the process will

converge.

. The Hessian is negated and inverted and to give an approximation to the

covariance of a Gaussian posterior over the weights, centeredvabout

> = (dTBP+A)L (74)
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3. Using 2 andw as the covariance and mean, respectively, of the Gaussian

approximation, we can follow MacKay's approach [47] to updatg thé by
o. = L = 1—-0. (75)
| Wz’ yl 1=

This iterative procedure is repeated until suitable convergence criteria are met.

Central to this iterative method is the second-order Newton maximization of
P(tjw, O) p(w|a) requiring an O(N) inversion operation. As the quantity of training
data increases, this becomes prohibitive. SVMs have a similar problem with scaling up

that has been addressed through iterative refinement of the training set [40]. Current

research is focusing on similar methods for RVMs [93].
3.4. Summary

In this chapter, sparse Bayesian methods have been examined. These methods use
the evidence framework to compare potential models. Sparsity is explicitly encouraged in
the model through the invocation of an ARD prior. The RVM is a kernel machine that is
formed as a special case of this methodology. The form of the RVM is similar to the SVM
but it overcomes some of the drawbacks of the SVM paradigm. Namely, the RVM
provides superior sparsity with little to no degradation in generalization. The RVM also
operates as a purely probabilistic model so there is no need to coax probabilities out of the

model as was necessary with the SVM. In this dissertation, we will exploit the advantages
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of the RVM on the speech recognition problem. The next chapter will describe the

framework, data, and experiments that will be employed by this dissertation.



CHAPTER 4

PROPOSED WORK AND EXPERIMENTS

The HMM/SVM hybrid framework defined by Ganapathiraju and
colleagues [27,63] gave improved performance for continuous speech recognition tasks.
In particular, the oracle results showed the promise of discriminative kernel methods.
However, the results also exposed the shortcomings of the presented framework. The
nature of the SVM model necessitated the use of ad hoc procedures for estimating the
segmentation of the speech data as well as the posterior probability distributions, neither
of which seemed to reap the full power of the SVM model. Further, the HMM/SVM
hybrid framework was not able to make full use of the power of HMMs to automatically
find segmentations which maximize the likelihood of the data given the SVM model. Nor
was it able to leverage the existing methods common to HMM/GMM systems such as
iterative EM training.

In this work, we seek to use the HMM/SVM work as a springboard to an integrated
solution which follows the form of standard HMM/GMM systems. Yet, we desire to retain
the power to define nonlinear decision regions by discriminatively training in a
high-dimensional space via kernels. The Bayesian formulation of the RVM provides
exactly these benefits. The primary contribution of this thesis work will be to motivate,

investigate, define and implement a set of theoretically well-founded techniques for

59
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estimating and evaluating an HMM/RVM continuous speech recognition system. This
new methodology will address three primary issues:

1. Integrated, iterative HMM/RVM training : The results of the HMM/SVM
hybrid system [27,63] indicate a need to automatically incorporate segmentation
variation into the training process. HMMs offer a principled approach to this
problem via the EM-based Baum-Welch algorithm [19]. In this work we propose
to create a similar algorithm for training HMM/RVM systems. The RVM will
replace the Gaussian as the frame-level emission distribution in the HMM state.
Iterative reestimation formulae which describe cycles of Baum-Welch statistical
accumulation (the expectation step) followed by Bayesian RVM training
(maximization step) will be derived. In building this training algorithm we must
address issues of iterative and monotonic convergence and stopping criteria.
Similar work that has been developed for connectionist HMM/ANN

systems [35,36] will serve as reference.

2. Practical optimization methods As with SVMs, the process to train an RVM
classifier is computationally expensive even for small problems. For the RVM,

though, this is primarily due to the need for inversion of the Hessian matrix which

is an O(MP) operation requiring O(¥) memory, where M is the number of basis
functions (also the number of non-zero multipliers). At initialization M is set to the
size of the training corpus, N. Since our new training paradigm would replace the

HMM emission distribution by an RVM, the RVM would be exposed to every
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frame of data in the training corpus. For even small speech corpora the number of

frames in the training set is on the order of1The usual RVM training methods

described previously are rendered impractical.

There are three immediate avenues for research on this problem. The first is to
define a technique analogous to teinking algorithn{40] used in efficient SVM
optimization. With this, the RVM optimization problem can be decomposed into a
set of smaller problems whose respective solutions can be combined to form a
solution for the full problem, all while insuring optimality (or near-optimality).
Faul and Tipping [44,93] refer briefly to a second constructive method in which the
optimization begins with a single basis function and others are added or deleted as
the optimization proceeds. Finally, an active data selection mechanism akin to that
described by MacKay [47] may be defined. Similar to Tipping’s method,
MacKay'’s is constructive in the sense that only those data points which are
expected to add significant new information (e.g. those which are likely to have

non-zero multipliers) are added to the optimization.

. Integrated hierarchical Viterbi-HMM/RVM decoder : Finally, we will build

upon the ISIP hierarchical HMM decoder [94] to create an HMM/RVM decoder.
Construction of this HMM/RVM decoder primarily requires the replacement of the
Gaussian core with the trained RVM models. The remainder of the decoder
machinery remains unchanged, though some tuning of parameters will be

necessary for each experimental task.
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4.1. Corpora

The work in this thesis will incorporate three corpora which cover the full range of
continuous speech corpora:

1. The Deterding vowel [95] set is a publicly available vowel classification task. This
is a good data set to evaluate the efficacy of static RVM classifiers and to compare
their performance to SVM classifiers on speech data since it has been used as a
standard benchmark for several non-linear classifiers for several years. In this
evaluation, the speech data was collected at a 10 kHz sampling rate and low pass
filtered at 4.7 kHz. The signal was then transformed to 10 log-area parameters,
giving a 10 dimensional input space. A window duration of 50 msec. was used for
generating the features. The training set consists of 528 observations from eight
speakers and the test set consists of 462 observations from a different set of seven
speakers. The speech data consisted of 11 vowels uttered by each speaker in a h*d
context. This data set is one of the most widely used for benchmarking non-linear
classifiers. Though it appears to be a simple task, the small training set and

significant confusion in the vowel data make it a very challenging task.

2. The TIDigits corpus [96] consists of more than 25 thousand digit (“zero” through
“nine” and “oh”) sequences spoken by over 300 men, women, and children. The
data was collected in a quiet studio environment and digitized at 20 kHz. However,
most experiments begin by downsampling the data to 8 kHz. The typical

word-error rates on TIDigits is close to 1% so this corpus will not serve to prove
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the superiority of the new methods. Instead we will use this corpus to provide a
benchmark where experiments can be completed quickly — until the HMM/RVM
system approaches state-of-the-art on this task there is no reason to continue on to

more complicated tasks.

. The OGI Alphadigits [81] corpus is a collection of about 78,000 examples from
3031 speakers saying strings of letters ("a"-"z") and digits ("zero"-"nine" and
"oh") over the telephone. The data was recorded directly off of a digital T1 phone
line without digital-to-analog or analog-to-digital conversion at the recording end.
An 8kHz sampling rate was used. Experimentation on the Alphadigits corpus will
follow directly from the TIDigits experiments since the form of the task is identical
(open grammar on a small domain without a probabilistic language model). This
will also give us our first comparison point with the hybrid HMM/SVM system.

State-of-the-art word-error rates on this task are near 10%.

Switchboard [82] corpus consists of spontaneous conversations averaging Six
minutes in length. Over 500 speakers of both genders from every major dialect of
American English are represented. The data is a digital version of speech signals
collected directly from the telephone network over T1 lines by automatic

switching software. The added confusability and conversational style as well as the
addition of a high-perplexity stochastic language model makes this one of the most

difficult tasks being tackled in recognition research today. Results from a basic
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HMM/GMM system hover near 40%, while state-of-the-art systems are able to

achieve error rates near 20%.

For the TIDigits task the standard, speaker-independent, open-loop training and
test sets will be used. A proposed segmentation into training and test sets for the
Alphadigits corpus has been defined [97] and will be used in all experimentation with that
corpus. For the SWITCHBOARD corpus, the training and test sets created during the
1997 LVCSR Summer workshop at Johns Hopkins University [98] will be used since they

were used in the HMM/SVM work [27] and will provide a point of comparison.

4.2. Preliminary Experiments

Preliminary experiments using RVMs have been run on a large number of data
sets, both synthetic and real. A representative example of these is the Deterding vowel
classification data. Table 2 gives the results and compares them to the SVM classifiers
trained in [59]. Importantly, the RVM classifiers achieve superior performance to the SVM
classifiers while utilizing nearly an order of magnitude fewer parameters. While we do not
expect the superior error performance to be typical (on pure classification tasks) we do
expect the superior sparseness to be typical. This sparseness property will be particularly

important when attempting to build systems which are practical to train and test.

4.3. Planned Experiments

Before the integrated/iterative training methods can be tested on any

(reasonably-sized) speech corpus, we must address the issue of practical training methods
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Average number
non-zero weights

14

Classifier| Error Rate

SVM 35.0% 82.8
RVM 30.3% 12.6

Table 2. Comparison of SVM and RVM classifiers on Deterding vowel data [95]. Each classifier
type was trained as a set of 11 1-vs-all classifiers. The training and test set sizes for each
classifier was 532 examples and 462 examples respectively. Both the SVM and RVM
system used an RBF kernel with the variance parameter set to 0.7. For the SVM system,
the trade-off parameter, C, was set to 10. The best performance reported thus far on this
data is 29% using a speaker adaptation scheme called Separable Mixture Models [99].

for the static RVM classifiers. For this task, we will mirror the alphadigit
segmental-modeling experiments performed using the hybrid HMM/SVM system [27].
This is a reasonable benchmark point for the proposed methods since these segmental
models are trained on as many as 350 thousand training vectors. A key difference between
the HMM/RVM and HMM/SVM segmental systems will be the posterior estimate. While
the HMM/SVM system relied on an ML-fit of the posterior probabilities to a sigmoid, the
HMM/RVM system will directly predict the posterior probability.

Our initial recognition experiments will use the TIDigits corpus. We first propose
to build two sets of 5-state left-to-right word models with GMM emission probabilities
and RVM emission probabilities respectively. The HMM/GMM models will be trained
using the standard Baum-Welch algorithm on all of the TIDigits training data. The number
of mixtures in the GMMs will be increased up to 16 mixtures. The HMM/RVM models
will be trained using the training algorithm developed as part of this dissertation. The

power of the RVM model should obviate the need for the mixtures, so no mixture model
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will be generated for the RVM system. This initial training experiment will be key to the
development of convergence criteria for the HMM/RVM training system.

Further experiments with the TIDigits corpus will build context-independent
phone models as well as context-dependent cross-word phone models. Due to insufficient
training data for some models, we will have to face the issue of parameter tying. Initial
attempts at parameter tying will use the same tied state mapping as determined by the
HMM/GMM system. Because the RVM model describes a probability distribution we can
also examine a decision tree methodology which uses a cross-entropy measure between
two RVM models to generate the tree of similar states. The test set will be evaluated by
decoding a loop grammar (any number of words is possible and any word sequence is
possible).

Extending the techniques to the alphadigits and SWB tasks should prove to be a
trivial extension of the lessons learned in the TIDigits experiments, with the added
inconvenience of an order of magnitude longer training and decoding time. To abbreviate
the SWB decoding experiments, we will rescore lattices generated from an HMM/GMM
cross-word triphone system. These lattices will have an inherent error rate of
approximately 10-15%. Both the alphadigits and SWB systems will be built as
cross-word, context-dependent triphone systems. The alphadigits system language model
will be modeled as a loop grammar while the SWB system will use a trigram language
model.

With all of these experiments, the question of what feature set to use arises. One

objection we have to many of the previous results with discriminative models is that it is
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difficult if not impossible to decouple the improvement due to the new learning machine
from the improvement due to the increased feature set dimension. The authors would
likely argue (and rightly so) that the ability to avoid the curse of dimensionality is an
important feature of their model. However, when comparing two modeling paradigms, we
would like to as much as possible be able to make an apples-to-apples comparison. For
instance, if GMM models are no worse than the proposed discriminative models, then
perhaps more effort should go into ways to train GMM models with larger feature sets.
Thus, we will initially use the same features for the HMM/RVM system as is used
for the HMM/GMM system. These will include 12 FFT-derived cepstral coefficients and
one energy coefficient along with the first and second derivatives of those 13 to constitute
a single 39-dimensional feature vector generated for each 10 milliseconds of speech data.
Using these features will allow us to determine if the RVM system is truly learning some
modality of the data beyond what the GMM is able to learn. In further experiments, we
will use an extended feature set to determine what additional information can be gained by
the RVM. We will use a sliding window of frames of data along the lines of connectionist

systems. The window size will vary from 5 frames to 15 frames.
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